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Abstract. We construct an integral representation for the global Rankin-Selberg (par-
tial) L-function L(s, π × τ) where π is an irreducible globally generic cuspidal automor-

phic representation of a general spin group (over an arbitrary number field) and τ is one

of a general linear group, generalizing the works of Gelbart, Piatetski-Shapiro, Rallis,
Ginzburg, Soudry and Kaplan among others. We consider all ranks and both even and

odd general spin groups including the quasi-split forms. The resulting facts about the

location of poles of L(s, π× τ) have, in particular, important consequences in describing
the image of the Langlands funtorial transfer from the general spin groups to general

linear groups.

1. Introduction

The purpose of this article to develop integral representations for the Rankin-Selberg con-
volution L-functions for the globally generic automorphic representations of GSpin × GL
groups. We consider all semi-simple ranks of both the general spin groups and the general
linear groups, including the case of the quasi-split, non-split, even, general spin groups. Our
work in this article corresponds to steps (1), part of (2), and (4) in the “L-function machine”
as described in [19, §1.7]: establish a “Basic Identity” for the global zeta integrals and ex-
pand them as an Euler product; analyze the meromorphic behavior while we do not deal
with the functional equation in this article; and complete the “unramified computation”
which relates the local zeta integrals to local Langlands L-functions in the unramified case.

For us the main motivation for this work was its application to classifying the image of the
generic functorial transfer from the general spin groups to the general linear groups, even
though our results are otherwise of interest as well, just as it has been the case with all the
cases of developing integral representations for automorphic L-functions. Indeed in [7] the
first and third authors already used some analytic properties of the partial Rankin-Selberg
L-function LS(s, π×τ) for the description of the image of the generic functorial transfer from
GSpin2n+1 or GSpin2n to GL2n. Here, π is a globally generic, unitary, cuspidal automprhic
representation of the general spin group and τ is one of the general linear group. As usual,
S denotes a finite set of places, including the Archimedean places, outside of which all the
data is unramified. See Proposition 9.2 for the precise statement.

Our results here are restricted to the globally generic representations, and their application
is to the functorial transfer of the globally generic automorphic representations. However,
in recent years there have been great strides in establishing functorial transfer of arbitrary
(not necessarily generic) automorphic representations from the classical groups and their
similitude versions, as well as unitary groups, to the general linear groups. In particular we
mention J. Arthur’s endoscopic classification of representations of special orthogonal and
symplectic groups [2] and the works of Y. Cai, S. Friedberg, D. Ginzburg, D. Gourevitch and
E. Kaplan on global functoriality for non-generic representations [12, 13, 10, 11, 22]. Arthur’s
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book does not consider the case of general spin groups, even though Arthur’s methods, with
appropriate modifications, would be applicable to the general spin groups. On the other
hand, the works of Y. Cai et al mentioned above for the non-generic representations do cover
the general spin groups. The generic transfer for the general spin groups was established
earlier by the first and third named authors [6, 7].

S. Gelbart, I. I. Piatetski-Shapiro and S. Rallis gave the original methods of constructing
integral representations that produce the Rankin-Selberg L-functions for G × GLn in [18],
where G = SO2n+1, SO2n, or Sp2n. The integrals in each case look different and they needed
substantially different methods to deal with each, calling them Method A, Method B, and
Method C, respectively. As we only deal with groups of Dynkin types B and D, we will
focus on the first two methods, which we briefly recall below.

In Method A, one takes a globally generic cuspidal automorphic representation π of SO2n+1(A)
and a cuspidal representation τ of GLn(A). We consider GLn as the Levi factor of the Siegel
parabolic subgroup in SO2n (i.e., “doubling the number of variables”) and construct an
Eisenstein series on it. One then embeds SO2n in SO2n+1 and integrates a Whittaker func-
tion of π against a Fourier coefficient of the Eisenstein series. Here, the integral is over the
adelic points of SO2n modulo its rational points. Gelbart, Piatetski-Shapiro and Rallis then
study this integral by “unfolding” it and writing it as an Euler product. They then compute
the local integral at an unramified finite place v, which will turn out to be expressed as a
quotient of the local L-function L(s, πv × τv) and the exterior square L-function L(s, τ,∧2).
They prove this by considering the decomposition of a certain symmetric algebra and use
some results of Ton-That [38, 39] along with the Caselman-Shalika formula. A similar con-
struction can be done for SO2n × GLn−1 as well, with an embedding of SO2(n−1)+1 inside

SO2n, with the symmetric square L-function L(s, τ, Sym2) replacing the exterior square
L-function.

In Method B, the roles of cuspidal representation π and the Eisenstein series constructed
from τ are switched, so the cuspidal representation is on the smaller group SO2n while the
Eisenstein series is on the larger group SO2n+1, coming from an induced representation from
the Siegel parabolic of SO2n+1. While the analysis in Method B is somewhat different, a
similar unramified computation can be done. The result will be again the local Rankin-
Selberg L-function L(s, π × τ), divided by the symmetric square L-function L(s, τ, Sym2).
Again, one can also consider the case of SO2n×GLn using Method B and again the exterior
square L-function L(s, τ,∧2) appears. While [18] mostly focuses on the split groups, they
point out that the methods work for quasi-split groups as well, and even double covers
of special orthogonal groups, i.e., the spin groups. (They also cover the Rankin-Selberg
construction for Sp2n ×GLn in their Method C as we mentioned above.)

D. Ginzburg [20] generalized Method A from SO2n+1 × GLn, resp. SO2n × GLn−1, to the
case of SO2n+1 × GLm with m ≤ n, resp. SO2n × GLm with m ≤ n − 1. The idea here
is that one proceeds similarly as above, using τ on GLm to construct an Eisenstein series
on SO2m and embeds SO2m inside SO2m+1. However, one then “pads” the integral with
some unipotent integrals in order to produce the zeta integral that gives the Rankin-Selberg
L-function for SO2n+1 ×GLm. It is clear that m ≤ n is necessary for this process to work.
Again, there is also a similar procedure for SO2n×GLm with m ≤ n− 1. In order to do the
unramified computations, Ginzburg uses an inductive argument that reduces the proof to
that of the case of m = n, resp. m = n− 1. Fortunately, the results of Ton-That mentioned
above for decomposing the symmetric algebra is still available for any rank and one could
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replace the inductive argument with the direct decomposition the symmetric algebra in this
case, as we do in our work for the general spin groups (see below).

However, when one considers generalizing Method B for SO2n+1 × GLm with m > n, a
serious obstacle appears because the decomposition of the symmetric algebra appears to
be much more complicated and not so easily tractable. D. Soudry [34] showed how to
resolve this issue by finding a certain “duality” between the Rankin-Selberg L-function for
SO2n+1 × GLm with m > n (in Method B) and that for SO2m × GLn with m > n (in
Method A). E. Kaplan [24] then extended this work to the case of SO2n×GLm with m ≥ n.
Kaplan also considers the quasi-split, non-split, forms that exist in the case of even special
orthogonal groups.

In this article we give a construction of an integral representations for Rankin-Selberg L-
functions L(s, π × τ) where π is an irreducible globally generic (i.e., having a Whttaker
model with respect to a generic character) cuspidal automorphic representation of a general
spin groups and τ is an irreducible cuspidal automorphic representation of a general linear
group. See Thoerem 4.2 and Theorem 5.1. We consider both the odd and the even cases,
including the quasi-split non-split forms in the even case, and any rank of the general linear
group. As such, we are generalizing all the works above, both in Method A and Method B.
See the table in Section 7 for the details of the various cases.

Naturally, we follow similar constructions as in the works of Ginzburg, Soudry and Kaplan
(and the original works of Gelbart, Piatetski-Shapiro and Rallis). The main difference
in the similitude case, in addition to a careful analysis of the unfolding arguments, is the
appearance of the twisted symmetric/exterior square L-functions of τ . See Theorems 8.1 and
8.2 for the details. We also point out that in the quasi-split non-split case the expressions
obtained from the unramified computations in the two theorems resemble the ones in the
“opposite parity” case. This phenomenon is to be expected considering the Galois action
on the Dynkin diagram in the even case, for example, and it is already present in the work
of E. Kaplan for quasi-split SO2n.

As we mentioned above, for the symmetric algebra decomposition we use the results of
Ton-That [38, 39], which are available for the special orthogonal and symplectic groups. We
carefully study the effect of the presence of the center in the similitude case, cf. Section
8.1. We then combine this with a suitable version of the Casselman-Shalika formula that
we review in Section 8.2 in order to complete the unramified computations. As we already
mentioned we then use ideas similar to [18, Appendix] to show directly that the two sides
of the equations we are claiming as the result of our unramifed computation given the
same power series in q−s. It should be possible to accomplish the same goal by arguing
inductively as in the works of Ginzburg or Kaplan. As pointed above, there is substantially
difference analysis in Methods A and B and therefore the unramifed computations also look
significantly different. That is why we do the two methods in two separate theorems in
Section 8.3 even though the final expressions for the local unramified integrals look similar
in Theorems 8.1 and 8.2.

In order to effect the duality argument of Soudry, mentioned above, for our cases we need to
use some results about the γ-factors for the groups involved. The constructions and analysis
of the γ-factors is part of the “L-function machine” that we have not studied in this article.
However, fortunately E. Kaplan, J. F. Lau and B. Liu have studied them for exactly the
cases we need in [28]. As such we have simply used their result in the only place where we
need to invoke the γ-factors in this article, namely the generalization of Soudry’s duality
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argument. Finally, we point out that in the quasi-split case in Method B, we also need to
invoke a certain uniqueness result which is fortunately also provided by [28] as part of their
work on local descent from general spin groups.

We note that GSpin5
∼= GSp4 and therefore our results, in particular, cover the Rankin-

Selberg product L-functions for GSp4 × GL1, GSp4 × GL2 and GSp4 × GL3 for generic
representations. These cases have been studied extensively over the years. The twist by
GL1 essentially amounts to the construction of the standard L-function of GSp4 while the
twist by GL2 was studied by Novodvorsky [31, §3] and Soudry [33]. Bump [8, §3.3–3.5]
surveys these two cases as well as the twist by GL3, where he gives a particular embedding
of GL3 in GL4 and assumes that the representations have trivial central character. We point
out that the split group GSpin6 is isomorphic to

{
(A, b) ∈ GL4 ×GL1 : det(A) = b2

}
(cf.

[4, §2.2]). As such, the subgroup of GL4 that Bump works with for this case corresponds
to one of the two (isomorphic, non-conjugate) Siegel Levi subgroups in GSpin6 and our
construction would then agree with Bump’s description in [8, §3.5]. (There are also many
more works for GSp4 × GL2 that consider non-generic representations, which our results
here do not cover.)

Recently P. Yan and Q. Zhang have considered a Rankin-Selberg integral for a general linear
group and a product of two general linear groups in [40]. Their study, in particular, gives
another proof of Jacquet’s local converse theorem. Since the small rank case of GL2 ×GL2

is very close to the group GSpin4, their integral for (GL2 × GL2) × GLn and our case of
GSpin4 ×GLn are closely related.
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2. The Preliminaries

2.1. Notation. Let k be a number field and let A = Ak be the ring of adèles of k. Also,
let F be a local field of characteristic zero. Often we have F = kv for some place v of the
number field k.

We consider both odd and even (split and quasi-split) general spin groups defined over k or
F . We will use G = Gn′ = GSpinn′ and H = Hm′ = GSpinm′ with either

(case A) n′ = 2n+ 1,m′ = 2m, or
(case B) n′ = 2n,m′ = 2m+ 1

with m and n positive integers.

Later on we will assume that n′ < m′ and introduce an embedding G ↪→ H with n′ and m′

of opposite parity.

As in [23, Theorem 4.3.1] there exist surjections Gn′ −→ SOn′ and we fix one such surjection
and denote it by pr, so that we have

pr : Gn′ −→ SOn′ . (2.1)

The projection map also gives maps at the level of k-points, F -points, and the adèlic points,
all of which will also be denoted pr.

2.2. Structure of GSpin Groups. There are several constructions one could give for the
general spin groups. One construction is via the introduction of a based root datum for each
group as in [36, §7.4.1], which we do below. More detailed descriptions can also be found in
[6, §2] and [23, §4].

2.2.1. The root data of GSpin groups. Let n′ ≥ 3. (See Remark 2.16 below.) The based
root datum of the split GSpinn′ is given by (X,R,∆, X∨, R∨,∆∨), where X and X∨ are Z-
modules generated by generators e0, e1, · · · , en and e∗0, e

∗
1, · · · , e∗n, respectively. The pairing

⟨ , ⟩ : X ×X∨ −→ Z (2.2)

is the standard pairing.
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When n′ = 2n+ 1 the roots and coroots are given by

R = R2n+1 = {±(ei ± ej) : 1 ≤ i < j ≤ n} ∪ {±ei : 1 ≤ i ≤ n} (2.3)

R∨ = R∨
2n+1 =

{
±(e∗i − e∗j ) : 1 ≤ i < j ≤ n

}
∪ (2.4){

±(e∗i + e∗j − e∗0) : 1 ≤ i < j ≤ n
}
∪ {±(2e∗i − e∗0) : 1 ≤ i ≤ n}

along with the bijection R −→ R∨ given by

(±(ei − ej))
∨ = ±(e∗i − e∗j ) (2.5)

(±(ei + ej))
∨ = ±(e∗i + e∗j − e∗0) (2.6)

(±ei)∨ = ±(2e∗i − e∗0). (2.7)

Moreover, we fix the following choice of simple roots and coroots:

∆ = {e1 − e2, e2 − e3, · · · , en−1 − en, en} , (2.8)

∆∨ =
{
e∗1 − e∗2, e

∗
2 − e∗3, · · · , e∗n−1 − e∗n, 2e

∗
n − e∗0

}
. (2.9)

This based root datum determines the group GSpin2n+1 uniquely, equipped with a Borel
subgroup B containing a maximal torus T.

When n′ = 2n we have

R = R2n = {±(ei ± ej) : 1 ≤ i < j ≤ n} (2.10)

R∨ = R∨
2n =

{
±(e∗i − e∗j ) : 1 ≤ i < j ≤ n

}
∪ (2.11){

±(e∗i + e∗j − e∗0) : 1 ≤ i < j ≤ n
}

along with the bijection R −→ R∨ given by

(±(ei − ej))
∨ = ±(e∗i − e∗j ) (2.12)

(±(ei + ej))
∨ = ±(e∗i + e∗j − e∗0). (2.13)

and

∆ = {e1 − e2, e2 − e3, · · · , en−1 − en, en−1 + en} , (2.14)

∆∨ =
{
e∗1 − e∗2, e

∗
2 − e∗3, · · · , e∗n−1 − e∗n, e

∗
n−1 + e∗n − e∗0

}
. (2.15)

Again, this based root datum determines the split group GSpin2n uniquely, equipped with
a Borel subgroup B containing a maximal torus T.

Remark 2.16. We should also mention that GSpin0
∼= GL1, GSpin1

∼= GL1 and GSpin2
∼=

GL1×GL1. While some of the notation above make sense for these small rank cases as well,
∆ and ∆∨ are empty. Finally, for the quasi-split non-split even general spin group GSpin∗2,
associated with a quadratic extension K/k (see below), we have GSpin∗2

∼= ResK/kGL1.

2.2.2. Abstract group structure of GSpin groups. We proved in [3] that the above is equiva-
lent to a second construction of the split GSpinn′ given as a suitable quotient of GL1×Spinn′ ,
where Spinn′ is the split, simply-connected, simple, connected group of typeBn if n′ = 2n+1,
or of type Dn if n′ = 2n. If n′ ≥ 3, we have

GSpinn′ ∼= (GL1 × Spinn′) / {(1, 1), (−1, c)} , (2.17)

where c is a particular element of the center of Spinn′ as follows:

(A) If n′ = 2n+ 1, then Z(Spinn′) = {1, c} ∼= Z/2Z,

(B1) If n′ = 2n with n even, then Z(Spinn′) = {1, c, z, cz} ∼= Z/2Z× Z/2Z, and
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(B2) If n′ = 2n with n odd, then Z(Spinn′) = {1, z, c = z2, z3} ∼= Z/4Z,

where c = α∨
n(−1) when n′ = 2n + 1 and c = α∨

n−1(−1)α∨
n(−1) when n′ = 2n, an element

of order 2 in all cases.

2.2.3. Quasi-split forms of even GSpin. When n′ = 2n, we also have the quasi-split GSpinn′

groups, which we describe below. They are of type 2Dn. We refer to [23] and [16] for more
details about them.

Let G be a quasi-split form of GSpin2n. We have a fixed Borel subgroup B and a Cartan
subgroup T ⊂ B. We fix a pinning (or splitting) (B, T, {xα}α∈∆), where {xα} is a collection
of root vectors, one for each simple root of T in B. We also denote the maximal k-split
subtorus of T by Ts. Following [23] we give the following two parametrizations of the quasi-
split forms of GSpin2n.

First Parametrization. By [36, §16.2], the quasi-split forms of GSpin2n over k are determined
by the indexed root data (X,∆, X∨,∆∨,∆0, ν). Here, ∆0 is empty since the group is quasi-
split. Also, ν denotes a Galois action on X and X∨. The Galois action is either trivial or
switches the simple roots en−1−en and en−1+en while keeping all other simple roots fixed.
In fact, the nontrivial Galois element acts on X and on X∨ via

ν(ei) =


e0 + en, i = 0,

ei, 1 ≤ i ≤ n− 1,

−en, i = n,

and ν(e∗i ) =


e∗0, i = 0,

e∗i , 1 ≤ i ≤ n− 1,

−e∗n + e∗0, i = n.

(2.18)

Moreover, the k-rational character lattice kX is spanned by e1, . . . , en−1, en + 2e0 and
the k-rational cocharacter lattice kX

∨ is spanned by e∗0, e
∗
1, . . . , e

∗
n−1 (cf. [23, §4.3].) In

particular, the root system of G relative to Ts is of type Bn−1 with k-rational simple
roots and k-rational simple coroots given by k∆ = {e1 − e2, . . . , en−2 − en−1, en−1} and

k∆
∨ =

{
e∗1 − e∗2, . . . , e

∗
n−2 − e∗n−1, 2e

∗
n−1 − e∗0

}
.

There is a one-to-one correspondence between

(i) the quasi-split k-groups G with connected component of L-group LG0 ∼= GSO2n(C)

and

(ii) the characters µ : Gal(k/k) −→ S, where

S = {σ ∈ Aut(X(T )) : σ permutes ∆ via an automorphism of the Dynkin diagram} .

We have S ∼= Z/2Z and by class field theory the characters of order two of Gal(k/k) are in
bijection with

(iii) the quadratic characters µ : k×\A× −→ {±1} .

Therefore, the quasi-split forms of GSpin2n are parametrized by the quadratic idele class
characters of k. When µ is nontrivial, we denote the associated quasi-split non-split group
by GSpinµ2n or simply GSpin∗2n when the particular µ is unimportant. We will also denote
the quadratic extension of k associated with µ by Kµ/k or simply K/k.
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Second Parametrization. For a ∈ k×, denote its square class in k×/(k×)2 by a = a(k×)2. Let
k(
√
a) be the smallest extension of k in which the elements of a are squares, so that k(

√
a) =

k(
√
a). We then let GSpin

a
2n = GSpina2n denote the quasi-split form of GSpin2n such that

the associated map Gal(k/k) −→ {±1} factors through Gal
(
k(
√
a)
/
k) = Gal (k(

√
a)/k).

2.2.4. Dual of GSpin Groups. Yet another construction for GSpinn′ is via their dual groups
as follows [23, §4.3]:

(A) If n′ = 2n+1, then the split G = GSpinn′ is the k-split, connected, reductive group
having the based root datum dual to GSp2n (so of type Bn). (See [6, §2.3] for the
precise description.) Hence, LG = GSp2n(C) × Gal(k/k), with the Galois group
acting trivially.

(B) If n′ = 2n, then the split G = GSpinn′ is the k-split connected, reductive group
having based root datum dual to that of GSO2n (so of typle Dn). Here, GSO2n is
the connected component of the group GO2n with all groups defined over k. (Again,
see [6, §2.3] for the precise description.) Hence, LG = GSO2n(C)×Gal(k/k), with
the Galois group acting trivially.

(C) If n′ = 2n, G = GSpina2n, the quasi-split group associated withK = k(
√
a) as above,

and its L-group can be given by LG = GSO2n(C)⋊Gal(k/k), a semi-direct product
where the Galois action on GSO2n(C) is given as follows. If γ ∈ Gal(k/k) with
γ|K = 1, then the action is trivial. If γ|K ̸= 1, then the action of γ on g ∈ GSO2n(C)

is given by jgj−1, where j = diag(In−2,diag(w,w), In−2) and w =

(
0 1
1 0

)
.

2.3. Weyl Groups. By [23, Lemma 6.2.1], we know that the Weyl group of Gn′ = GSpinn′

is isomorphic to the Weyl group of SOn′ .

When n′ = 2n, for the split G2n, as for SO2n, we have that the Weyl group Wn′ ∼= Sn ⋊
{±1}n−1. Choose representatives (p, ϵ) ∈ Sn⋊ {±1}n−1 as in [23, §6]. Similarly, when n′ =
2n+1, for the split G2n+1, as for SO2n+1, we have that the Weyl group Wn′ ∼= Sn⋊{±1}n.
Again, take representatives (p, ϵ) ∈ Sn ⋊ {±1}n. In both cases, we have the following Weyl
actions on the root and coroot lattices of Gn′ :

(p, ϵ) · ei =


ep(i) i > 0, ϵp(i) = 1,

−ep(i) i > 0, ϵp(i) = −1,

e0 +
∑

ϵp(i)=−1

ep(i) i = 0,

and

(p, ϵ) · e∗i =


e∗p(i) i > 0, ϵp(i) = 1,

e∗0 − e∗p(i) i > 0, ϵp(i) = −1,

e∗0 i = 0.

The above assertions for n′ even are proved in [23, Lemma 6.2.3]. The assertions in the
odd case were intended to be the content of [23, Lemma 13.2.2] although it appears that
Lemma 13.2.2 and its proof were copies of Lemma 6.2.3 and its proof without modification.
However, a similar calculation gives the above.
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3. Unipotent Periods, Parabolic Subgroups, and Embeddings

3.1. Unipotent Periods. We recall the following facts from [23, §4,11]:

• The kernel of the projection map pr in (2.1) lies in the center Z(Gn′). In fact, if we
write

1 −→ {(1, 1), (−1, c)} −→ GL1 × Spinn′ −→ Gn′ −→ 1,

then ker(pr) is the image of the GL1 factor and so it is central. From this it follows
that the action of Gn′ on itself by conjugation factors through pr.

• If u is a unipotent element of Gn′(A) and g ∈ Gn′(A), then pr(gug−1) is unipotent
in SOn′(A) and gug−1 is the unique unipotent element of its preimage in Gn′(A).

• pr : Gn′ −→ SOn′ induces an isomorphism of unipotent varieties. We may specify
unipotent elements of subgroups by their images under pr. This defines coordinates
for any unipotent element or subgroup. Hence, we may write ui,j for the (i, j)-
entry of pr(u). In particular, unipotent periods in Gn′ and SOn′ can be identified.
Therefore, any identity or relationship between unipotent periods in SOn′ which is
proved only by conjugation or “swapping” (root exchange) extends to Gn′ .

Following the notation of [23], if G is any reductive algebraic group defined over k, U is a
unipotent subgroup of G, and ψU is a character of U(k)\U(A), we define

φ(U,ψU )(g) =

∫
U(k)\U(A)

φ(ug)ψ−1
U (u) du. (3.1)

This unipotent integral is a Fourier coefficient (cf. [21, 34]). Here, one can take φ to be an
automorphic form on G.

3.2. Parabolic Subgroups. There are two types of parabolic subgroups that play a role.

3.2.1. The Maximal Parabolic Subgroups Pℓ. For 1 ≤ ℓ < n if n′ = 2n+ 1 or 1 ≤ ℓ < n− 1
if n′ = 2n, let Pℓ be the standard maximal parabolic subgroup of Gn′ with Levi isomorphic
to GLℓ ×GSpinn′−2ℓ.

If γ ∈ GLℓ(k) with k a field, we let γ∧ denote the image of γ under the isomorphism of GLℓ×
GSpinn′−2ℓ with the Levi component of Pℓ. (Note that the character and cocharacter lattices
of GSpinn′−2ℓ are sublattices of X and X∨, spanned by the generators e0, eℓ+1, · · · , en and
e∗0, e

∗
ℓ+1, · · · , e∗n, respectively.) Since there is a corresponding parabolic subgroup of SOn′

we can write

γ∧ =

γ In′−2ℓ

γ∗

 ∈ SOn′(k)

which we can identify with its lift to Gn′(k) if γ is a unipotent or a Weyl group element.

3.2.2. The Siegel Parabolic Subgroup Pn. This is a standard maximal parabolic subgroup
with Levi isomorphic to GLn×GL1.When Gn′ is split with n′ = 2n, there are two parabolic
subgroups P =MU with Levi subgroup M ∼= GLn ×GL1. Following [23, §6], we denote by
Pn the one in which one deletes the root en−1 + en and the coroot e∗n−1 + e∗n − e∗0.

If we consider Gn′ with n′ = 2n + 1, then there is a unique standard parabolic subgroup
P =MU with M ∼= GLn ×GL1. We denote this parabolic by Pn as well.
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In either case, the subgroup Sn ⊂ Wn′ is isomorphic to WM , the Weyl group of M. Also,
pr (GLn ×GL1) = GLn and ker(pr) = im(e∗0).

3.2.3. The Parabolic Subgroups Qℓ. For Gn′ split with n′ = 2n, and for 1 ≤ ℓ < n − 1, we
let Qℓ = LℓNℓ denote the standard parabolic subgroup with Levi

Lℓ ∼= GLℓ1 ×G2n−2ℓ

and unipotent radical given by

Nℓ = {u |ui,j = 0 for i > ℓ with i < j ≤ 2n− i} .

For n′ = 2n+ 1 and 1 ≤ ℓ < n, we let Qℓ = LℓNℓ be the parabolic subgroup with Levi

Lℓ ∼= GLℓ1 ×G2n+1−2ℓ

and unipotent radical given by

Nℓ = {u |ui,j = 0 for i > ℓ with i < j ≤ 2n+ 1− i} .

3.2.4. Stabilizers. First, consider the parabolic Qℓ ⊂ Gn′ with n′ = 2n even. In this case, a
general character of Nℓ is of the form (cf. [23, Remark 9.1.2])

ψ0 (c1u1,2 + · · ·+ cℓ−1uℓ−1,ℓ + d1uℓ,ℓ+1 + · · ·+ d2n−2ℓuℓ,2n−ℓ) ,

where ψ0 is a fixed non-trivial additive character (of k, A, or F , depending on the context).

The Levi Lℓ acts on the space of characters and over an algebraically closed field there
is an open orbit, consisting of all those elements with ci ̸= 0 for all i and d J td ̸= 0,
where d = (d1, d2, . . . , d2n−2ℓ) and J is the matrix with 1’s on the skew diagonal and zeros
elsewhere. Over a general field k two such elements are in the same k-orbit if and only if
the values of d J td are in the same square class.

Let Ψℓ be the character of Nℓ defined by

Ψℓ(u) = ψ0 (u1,2 + · · ·+ uℓ−1,ℓ + uℓ,n − uℓ,n+1) .

Then one can see ([23, Remark 9.1.2]) that

• the stabilizer LΨℓ

ℓ has two connected components,

• the connected component of the identity
(
LΨℓ

ℓ

)0 ∼= G2n−2ℓ−1,

• there is an “obvious” choice of isomorphism ι : G2n−2ℓ−1 −→
(
LΨℓ

ℓ

)0
having the

following property: If {e∗i : i = 0, 1, . . . , n} is the basis for the cocharacter lattice of
G2n, and {ē∗i : i = 0, 1, . . . , n− ℓ− 1} is the basis for Gn−ℓ−1, then

ι ◦ ē∗i =

{
e∗0 i = 0,

e∗ℓ+1 i = 1, . . . , n− ℓ− 1.

Note that it follows from ι ◦ ē∗0 = ē∗0 that the induced map between ē∗0 (GL1) in G and
ē∗0 (GL1) in H is the identity (and not, for example, the inversion map).

Next, consider Qℓ ⊂ Gn′ with n′ = 2n+ 1 odd. In this case, the general character of Nℓ is
of the form

θ(u) = ψ0 (c1u1,2 + · · ·+ cℓ−1uℓ−1,ℓ + d1uℓ,ℓ+1 + · · ·+ d2n+1−2ℓuℓ,2n+1−ℓ) .
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The Levi Lℓ acts on the space of characters and over an algebraically closed field there is
an open orbit, consisting of all those elements with ci ̸= 0 for all i and d J td ̸= 0, where
d = (d1, d2, . . . , d2n+1−2ℓ) and J is the matrix with 1’s on the skew diagonal and zeros
elsewhere. Over a general field k two such elements are in the same k-orbit if and only
if the two values of d J td are in the same square class. With θ as above, define Inv(θ) to
be the square class of d J td. The character θ is said to be in general position if ci ̸= 0 for
i = 1, . . . , ℓ− 1 and Inv(θ) ̸= 0.

By [23, Lemma 16.1.7] we have that if θ is in general position, then its stabilizer in Lℓ,

namely Lθℓ , has two components and
(
Lθℓ
)0 ∼= G

Inv(θ)
2n−2ℓ.

For a ∈ k× let Ψaℓ be the character of Nℓ defined by

Ψaℓ (u) = ψ0

(
u1,2 + · · ·+ uℓ−1,ℓ + uℓ,n +

a

2
uℓ,n+2

)
.

Then the orbit of Ψaℓ is determined by the square class of a. The character θ is in the same

orbit as Ψ1
ℓ . For each a ∈ k×, we have

(
L
Ψa

ℓ

ℓ

)0 ∼= G
a
2n−2ℓ, where a is the square class of a.

We note here that [23] states the above assertions only in the case of even n because only
this case is needed there. However, the assertions are valid for all n.

Remark 3.2 (Notaion for the parabolic subgroups of [21]). We note that [21] uses a different
notation for its parabolic subgroups. However, while we have switched the notation for the
parabolics to match both [23] and what seems to us more standard notation, the notation
for the unipotent radicals do agree with those of [21]. As this caused confusion at one point,
let us make this explicit.

In [21], the parabolic Pℓ is that preserving a maximal isotropic flag of length ℓ [21, p. 42]. Its
Levi decomposition is Pℓ =MℓNℓ withMℓ

∼= (GL1)
ℓ×h(Wm,ℓ) in their notation. They then

define a character ψℓ or ψℓ,α which agrees with our Ψaℓ and then have Stabh(Wm,ℓ)(ψℓ,α)
∼= G.

Therefore,
PGRSℓ = QACSℓ MGRS

ℓ = LACSℓ NGRS
ℓ = NACS

ℓ . (3.3)

In [21] the parabolic Qℓ is that preserving a maximal isotropic subgroup of dimension ℓ
[21, pp. 65–66]. Its Levi decomposition is Qℓ = DℓUℓ with Dℓ

∼= GLℓ × h(Wm,ℓ) in their
notation [21, p. 81]. Therefore,

QGRSℓ = PACSℓ DGRS
ℓ =MACS

ℓ UGRSℓ = UACSℓ . (3.4)

Here, the labels GRS refer to the subgroups in [21] and the labels ACS refer to the corre-
sponding ones in this paper.

4. Global Integrals I (Case B)

In this section we translate [21, §10.3] into the context of GSpin groups. This corresponds
to Method B in the original work of Gelbart and Piatetski-Shapiro [18, Part B], which dealt
with the special orthogonal and general linear groups with equal (or nearly equal) ranks.
As such, we refer to the integrals of this section as Case B. (See the table in Section 7 for
a summary of various cases.) Also, recall Remark 3.2 on our notation for the parabolic
subgroups.

We begin with a number field k and a k-vector space V of dimension dimV = m′ ≥ 3, where
m′ can be even or odd. We take a non-degenerate quadratic form on V and let h(V ) =
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SO(V ) = SOm′ denote the special orthogonal group of V.We letH = Hm′ = GSpinm′ be the
associated GSpin group that covers h(V ), so associated to a quadratic space of dimension
m′. We assume that h(V ) and H are split so that m = [ 12 dimV ] is the Witt index of V.
(This is Assumption 2.1 of [21].) Therefore, either m′ = 2m or m′ = 2m+1. Recall that we
have fixed a projection

pr : Hm′ −→ h(V )

that induces an isomorphism of unipotent varieties and allows us to identify unipotent
periods on H and h(V ). (See [23].)

Following [23], we take an integer ℓ such that 1 ≤ ℓ < m and let Qℓ ⊂ H be the standard

parabolic subgroup of H, where Qℓ = LℓNℓ with Lℓ ∼= GLℓ1 × Hm′−2ℓ and the unipotent
radical Nℓ is as in Section 3.2.3. We consider the following characters of Nℓ :

Ψℓ(u) = ψ0 (u1,2 + · · ·+ uℓ−1,ℓ + uℓ,2m − uℓ,2m+1) if m′ = 2m,

or

Ψaℓ = ψ0

(
u1,2 + · · ·+ uℓ−1,ℓ + uℓ,2m +

a

2
uℓ,2m+2

)
if m′ = 2m+ 1,

where a ∈ k×. We let

G = StabLℓ
(Ψℓ)

0 ∼= GSpin2m−2ℓ−1 if m′ = 2m,

by [23, Section 9.1] or

G = StabLℓ
(Ψaℓ )

0 ∼= GSpina2m−2ℓ if m
′ = 2m+ 1

by [23, Lemma 16.1.7], which allows for the case of G being quasi-split. In what follows, we
will simply use Ψℓ in either case and suppress the a ∈ k×.

In [23], the authors do not consider the case ℓ = 0 which would correspond to the con-
struction of Gelbart and Piatetski-Shapiro [18, Part B]. When ℓ = 0 there is no Ψℓ and we
just “restrict”. We are able to “pull back” the embedding in [21, p. 43]. The embedding
proceeds as follows. When ℓ = 0 we take

w0 = ya = em̃ + (−1)m
′+1 a

2
e−m̃ ∈ SOm′

in the notation of [21]. Then ya ∈Wm,m̃−1 and hence in Wm,ℓ for all ℓ including ℓ = 0. We

have (ya, ya) = (−1)m
′+1a with a ∈ k×. Then we take G to be pr−1(y⊥a ) ⊂ H. In this case,

G ∼= GSpin2m−1 if m′ = 2m

or

G ∼= GSpina2m if m′ = 2m+ 1.

(Note in [21] in the case Bm′ they take a vector ℓ0 such that V = X ⊕ ⟨ℓ0⟩ ⊕ X∨ with
(ℓ0, ℓ0) = 1. The vector ya should play the same role as their ℓ0. Note that in either case,
the larger group H is of type Bm′ .) The statements below now hold in the ℓ = 0 case.

Let Pm =MmU ⊂ H denote the Siegel parabolic subgroup of H.We made a choice of Pm in
Section 3 and we haveMm

∼= GLm×GL1. We fix the isomorphism between GLm×GL1 and
Mm as in [12, §1], where the isomorphism is denoted by iM . (The choice of this isomorphism
matters later, such as in (4.2), where we use ω−1, not ω.) With this isomorphism fixed, we
have pr : Mm −→ GLm with ker(pr) = im(e∗0) = Z(H)0. Let τ be a cuspidal automorphic
representation of GLm(A) and let η be an idele class character of GL1(A) = A×. We form
the following induced representation (with s being replaced by s− 1/2 later on below):
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ρ = ρτ,η,s = Ind
H(A)
Pm(A) (τ |det |

s ⊗ η) .

For Re(s) ≫ 0 we can choose a section fs ∈ Vρ, the space of ρ, form the Eisenstein series

E(h, fs) =
∑

δ∈Pm(k)\H(k)

fs(δh),

continue as a function of s, and form, as in (3.1), the unipotent period

E(Nℓ,Ψℓ)(g, fs),

which is naturally an automorphic form on G(A) = (StabLℓ
Ψℓ)

0
(A). Note that in the ℓ = 0

case we interpret as above, i.e., G ↪→ H and simple restriction from H to G.

Take G ∼= GSpinm′−2ℓ−1 and H ∼= GSpinm′ as above with the embedding G ↪→ H. Let
(π, Vπ) be a cuspidal automorphic representation of G(A) with central character ωπ and
denote by ω the idele class character such that for a ∈ A×, we have

π(e∗0(a)) = ω(a) IdVπ
. (4.1)

Let (τ, Vτ ) be a cuspidal automorphic representation of GLm(A). Let fs be aK-finite section
(with K denoting the maximal compact at the Archimedean place) in the space of

ρτ,ω−1,s−1/2 = Ind
H(A)
Pm(A)

(
τ |det |s−1/2 ⊗ ω−1

)
. (4.2)

For φ ∈ Vπ, a cusp form on G(A), consider

L(φ, fs) =
∫

Z(A)G(k)\G(A)

φ(g)E(Nℓ,Ψℓ)(g, fs) dg,

where Z = Z(G)0 is the identity component of the center of G. (When ℓ = 0 we would just
restrict and there is no unipotent period.)

Lemma 4.1. The integral L(φ, fs) converges absolutely and uniformly in vertical strips in
C away from poles of the Eisenstein series. Therefore, it defines a meromorphic function
on C.

Proof. This is essentially basic estimates on Siegel sets in G. It is verified in the SO case in
[21] and the same proof works for GSpin. □

Theorem 4.2. Let the notation be as above.

(i) Assume that L(φ, fs) is not identically zero. Then π is globally generic (for a suitable
ψ-Whittaker model).

(ii) If Re(s) ≫ 0, then we have an identity

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

Wψ
φ (g)

∫
Nℓ(A)∩β−1Pm(A)β\Nℓ(A)

f (Zm,ψ)
s (βug)Ψℓ(u)

−1 du dg,

where

• NG ⊂ G is a standard maximal unipotent subgroup of G,

• ψ = ψNG
is the standard Whittaker character on NG obtained from ψ0 as in

[21, p. 289],
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• Wψ
φ (g) is the corresponding ψ-Whittaker function of φ,

• β = βℓ,a is a product of a certain Weyl group element and a (rational) “diago-
nal” element in H, or more precisely, in a unipotent subgroup J ⊂ Nℓ described
in Lemma 4.5 below,

• Zm is the maximal unipotent subgroup of GLm ⊂ Pm ⊂ H and ψ is the standard
Whittaker character of Nm, and

• we have

f (Zm,ψ)
s (h) =

∫
Zm(k)\Zm(A)

fs(ẑh)ψ
−1(z) dz,

with ẑ the image of z ∈ GLm in H.

Proof. We prove this in the ℓ ̸= 0 case. The ℓ = 0 case follows as in [18]. The proof involves
several steps as we detail below, establishing several intermediate results along the way.

Step 1. The integral converges for all s, because

• φ is rapidly decreasing (mod Z),

• E is of moderate growth (mod Z),

• E(Nℓ,Ψℓ) is a compact integration.

Step 2. For Re(s) ≫ 0, i.e., in the realm of absolute convergence of the Eisenstein series,
we replace E by its absolutely convergent series. Then,

E(Nℓ,Ψℓ)(h, fs) =

∫
Nℓ(k)\Nℓ(A)

∑
δ∈Pm(k)\H(k)

fs(δuh)Ψ
−1
ℓ (u) du.

Step 3. We factor the sum through the double cosets of Pm\H/Pℓ, where Pℓ is the maximal
parabolic subgroup of H with Levi isomorphic to GLℓ ×GSpinm′−2ℓ.

Lemma 4.3. The coset representatives for Pm(k)\H(k)/Pℓ(k) are as in [21, pp. 70-71], or
[21, p. 285], i.e., ϵr ∈WH =WSOm′ for 0 ≤ r ≤ ℓ, with

pr(ϵr) =

Ir 0 Im−ℓ
Iℓ−r 0

∧


Ir

Iℓ−r
Im′−2ℓ

Iℓ−r
Ir

wℓ−rb ,

where the ∧ notation is defined in 3.2.1, taken for the group H, and where wb is as in [21,
pp. 70–71], so an auxiliary Weyl group element.

Proof. We know that WH
∼= WSOm′ and that ker(pr) ⊂ Z(H) ⊂ Z(T ), where T is the

maximal torus in H. From [21] we know that

SOm′ =

ℓ⊔
r=0

pr (Pm(k)) pr(ϵr)pr (Pℓ(k)) .
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Since ker(pr) ⊂ Z(H) ⊂ Pm, we have

H(k) =

ℓ⊔
r=0

Pm(k)ϵrPℓ(k).

□

Using this decomposition, we can partially unfold the Eisenstein series:

E(Nℓ,Ψℓ)(h, fs) =

ℓ∑
r=0

∫
Nℓ(k)\Nℓ(A)

∑
δ∈P (r)

ℓ

fs (ϵrδuh)Ψ
−1
ℓ (u) du,

where P
(r)
ℓ = Pℓ ∩ ϵ−1

r Pmϵr.

The authors of [21] make P
(r)
ℓ explicit in their equation (4.19)–(4.20) or (4.22)–(4.23).

If we write P
(r)
ℓ = M

(r)
ℓ ⋉ U

(r)
ℓ , then the unipotent part U

(r)
ℓ agrees with [21] and the

GSpinm′/SOm′ difference is in M
(r)
ℓ . We will need the Levi part of this decomposition when

r = 0.

Step 4. Now, we factor the innermost sum through the double cosets P
(r)
ℓ \Pℓ/Rℓ, where

Rℓ = Rℓ,a = StabLℓ
(Ψaℓ ) ⋉Nℓ = G ⋉Nℓ. The authors of [21] compute the representatives

for these double cosets for SOm′ . In the case of SOm′ they are of the formϵ γ
ϵ∗


with ϵ running through a set of representatives for WGLr×GLℓ−r

\WGLℓ
and

γ =



Im′−2ℓ if m′ = 2m, or m′ = 2m+ 1 and a ̸= t2,


Im′−ℓ−1

1

±t 1

− t2

2 ∓t 1

Im′−ℓ−1

 if m′ = 2m+ 1 and a = t2.

Note that these are either Weyl group representatives, which we choose representatives for
in H, or Weyl group representatives times unipotents, which have unique lifts to H. So we
obtain the following.

Lemma 4.4. The representatives {η} for P
(r)
ℓ (k)\Pℓ(k)/Rℓ(k) are either Weyl group rep-

resentatives or Weyl group representatives times unipotents and so are uniquely determined
by

pr(η) =

ϵ γ
ϵ∗

 ∈ SOm′(k)

as above.
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Then we can further unfold the Eisenstein series

E(Nℓ,Ψℓ)(h, fs) =
ℓ∑

r=0

∑
η∈P (r)

ℓ (k)\Pℓ(k)/Rℓ(k)

∫
Nℓ(k)\Nℓ(A)

∑
δ∈Rℓ(k)∩η−1P

(r)
ℓ (k)η\Pℓ(k)

fs(ϵrηδuh)Ψ
−1
ℓ (u) du.

Step 5. We next describe some decompositions. Since Rℓ = G ·Nℓ, we have

Rℓ ∩ η−1P
(r)
ℓ η =

(
G ∩ η−1M

(r)
ℓ η

)
·
(
Nℓ ∩ η−1P

(r)
ℓ η

)
and

(Rℓ ∩ η−1P
(r)
ℓ η)\Rℓ =

(
(G ∩ η−1M

(r)
ℓ η)\G

)
·
(
(Nℓ ∩ η−1P

(r)
ℓ η)\Nℓ

)
.

We utilize this decomposition inside the Nℓ integration. For fixed r and η the inner inte-
gration becomes∫
Nℓ(k)\Nℓ(A)

∑
δ2∈(G(k)∩η−1M

(r)
ℓ (k)η)\G(k)

∑
δ1∈(Nℓ(k)∩η−1P

(r)
ℓ (k)η)\Nℓ(k)

fs(ϵrηδ1δ2uh)Ψ
−1
ℓ (u) du.

We next interchange the u integral and the δ2 sum. We can do this, as in [21], by the
absolute convergence for Re(s) ≫ 0. Note that any modulus character will be 1 on δ2 since
it is rational, and since δ2 ∈ G(k) it stabilizes the character Ψℓ. After interchanging, we can
collapse the Nℓ integration and the δ1 summation to obtain∑

δ∈(G(k)∩η−1M
(r)
ℓ (k)η)\G(k)

∫
(Nℓ(k)∩η−1P

(r)
ℓ (k)η)\Nℓ(A)

fs(ϵrηuδh)Ψ
−1
ℓ (u) du.

Step 6. We next fix δ and factor the Nℓ integration as∫
(Nℓ(k)∩η−1P

(r)
ℓ (k)η)\Nℓ(A)

fs(ϵrηuδh)Ψ
−1
ℓ (u) du =

∫
(Nℓ(A)∩η−1P

(r)
ℓ (A)η)\Nℓ(A)

∫
(Nℓ(k)∩η−1Pℓ(k)η)\(Nℓ(A)∩η−1P

(r)
ℓ (A)η)

fs(ϵrηu
′uδh)Ψ−1

ℓ (u′u) du′ du.

Lemma 4.5. If r > 0, then there exists a unipotent k-group J ⊂ Nℓ ∩ η−1P
(r)
ℓ η such that

• Ψℓ is non-trivial on J(A) and

• ϵrηJη
−1ϵ−1

r ⊂ Um, the unipotent radical of Pm.

Proof. This exists in SOm′ by [21, page 287 or the proof of Proposition 5.1]. However, this
is a unipotent element and the unipotent varieties are the same for SOm′ and H. Hence, the
group theoretic statements remain true in H.

The characters ψℓ,α of [21, (3.10)] and Ψaℓ of [23, Definition 16.1.9] are equal, so we get the
first statement. □
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So if r > 0, since ϵrηJη
−1ϵ−1

r ⊂ Um and the Eisenstein series is induced from Pm, for
j ∈ J(A), we see that

fs (ϵrηju
′′uδh) = fs

(
ϵrηjη

−1ϵ−1
r ϵrηu

′′uδh
)

= fs (ϵrηu
′′uδh)

and ∫
J(k)\J(A)

Ψ−1
ℓ (j) dj = 0.

Therefore, the unipotent (Nℓ,Ψℓ) integration is zero except in the case of r = 0. Hence, we
have the following.

Proposition 4.6.

E(Nℓ,Ψℓ)(h, fs) =
∑

η∈P (0)
ℓ \Pℓ(k)/Rℓ(k)

∑
δ∈(G(k)∩η−1M

(0)
ℓ η)\G(k)∫

(Nℓ(k)∩η−1P
(0)
ℓ (k)η)\Nℓ(A)

fs (ϵ0ηuδh)Ψ
−1
ℓ (u) du.

Step 7. At this point we consider two cases:

Case I: m′ is even, or m′ is odd and a ̸= t2 is not a square. In this case there is only one
η, namely η = Im′ .

Case II: m′ is odd and a = t2 is a square. In this case there are three choices for η, namely,
η = Im′ , η+, and η−, where

η± =

Iℓ γ±
Iℓ


and

γ± =


Im′−ℓ−1

1
±t 1

− t2

2 ∓t 1
Im′−ℓ−1

 .

Lemma 4.7. The above are still the coset representatives for P
(0)
ℓ (k)\Pℓ(k)/Rℓ(k).

Proof. This lemma follows from the agreement of the unipotent varieties for GSpin and
SO along with the fact that the differences between GSpin and SO will lie in Pℓ(k) and
Rℓ(k). □

We can now eliminate Case II and η = η±.

Proposition 4.8. In the case of m′ = 2m+1 and η = η±, the contributions of these terms
to the unipotent period of the Eisenstein series vanish.
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Proof. We let η = η± ̸= Im′ . We have Nℓ(k) ∩ η−1P
(0)
ℓ (k)η = η−1

(
Nℓ(k) ∩ P (0)

ℓ

)
η. There-

fore, ∫
(Nℓ(k)∩η−1P

(0)
ℓ (k)η)\Nℓ(A)

fs (ϵ0ηuδh)Ψ
a
ℓ (u)

−1 du =

∫
(Nℓ(A)∩η−1P

(0)
ℓ (A)η)\Nℓ(A)

∫
(Nℓ(k)∩P (0)

ℓ (k))\(Nℓ(A)∩P (0)
ℓ (A))

fs(ϵ0vηuδh)Ψ
0
ℓ(η

−1vηu)−1 dv du.

In terms of matrices, as in [23], using the agreement of unipotent varieties,

Nℓ ∩ P (0)
ℓ =

v =


z 0 0 y 0

Im−ℓ 0 0 y′

1 0 0
Im−ℓ 0

z∗

 : z ∈ Zℓ

 .

Note that

Ψaℓ (η
−1vη) = ψ(z1,2 + · · ·+ zℓ−1,ℓ) = ψℓ(z)

and this is independent of y. If we conjugate this past ϵ0, we obtain

ϵ0

(
Nℓ ∩ P (0)

ℓ

)
=

{
ϵ0vϵ

−1
0 = ẑ′ℓ =

(
Im−ℓ x

ζ

)∧
}

= Ẑ ′
ℓ,

where for g ∈ GLt, we set ĝ to be the lift of g into the Levi GLt × GLm′−2t of Pt. Note
that even though we have not specified ζ, as in [21, p. 287] we know that ζ ∈ Zℓ. In these
coordinates

Ψaℓ (η
−1vη) = ψ(ζ1,2 + · · ·+ ζℓ−1,ℓ) = ψ(z′m−ℓ+1,m−ℓ+2 + · · ·+ z′m−1,m).

If we denote this character of Z ′
ℓ by ψ

0
Z′

ℓ
and

f
(Z′

ℓ,ψ
0
Z′
ℓ
)

s (h) =

∫
Z′

ℓ(k)\Z
′
ℓ(A)

fs(ẑ
′
ℓh)ψ

0
Z′

ℓ
(z′ℓ)

−1 dz′ℓ,

then we have ∫
Nℓ(k)∩P (0)

ℓ (k)\Nℓ(A)∩P (0)
ℓ (A)

fs (ϵ0vηuδh)Ψ
0
ℓ

(
η−1vη

)−1
dv = f

(Z′
ℓ,ψ

0
Z′
ℓ
)

s (ϵ0ηuδh)

and finally ∫
(
Nℓ(k)∩η−1P

(0)
ℓ (k)η

)∖
Nℓ(A)

fs (ϵ0ηuδh)Ψ
a
ℓ (u)

−1 du =

∫
(
Nℓ(A)∩η−1P

(0)
ℓ (A)η

)∖
Nℓ(A)

f
(Z′

ℓ,ψ
0
Z′
ℓ
)

s (ϵ0ηuδh)Ψ
a
ℓ (u)

−1 du.

However, in the unipotent period f
(Z′

ℓ,ψ
0
Z′
ℓ
)

s (ϵ0ηuh), as an inner integral we have the con-
stant term of fs along the unipotent radical of the standard parabolic subgroup of GLm
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which corresponds to the partition (m − ℓ, ℓ) of m. Since we are inducing from a cuspidal
representation τ of GLm(A) and 1 ≤ ℓ ≤ m, we have that this constant term is ≡ 0. Hence,∫

(Nℓ(k)∩η−1P
(0)
ℓ (k)η)\Nℓ(A)

fs (ϵ0ηuδh)Ψ
a
ℓ (u)

−1 du ≡ 0

as desired. □

Now, in either case I or Case II we are reduced to η = Im′ . As a consequence of the previous
proposition, we have the following corollary.

Corollary 4.9.

E(Nℓ,Ψℓ) (h, fs) =
∑

δ∈(G(k)∩M(0)
ℓ (k))\G(k)

∫
(Nℓ(k)∩P (0)

ℓ (k))\Nℓ(A)

fs (ϵ0uδh)Ψℓ(u)
−1 du.

Step 8. If we take this last expression for the Fourier coefficient of the Eisenstein series
and insert it into our global integral we arrive at the expression

L(φ, fs) =

∫
Z(A)G(k)\G(A)

φ(g)E(Nℓ,Ψℓ)(g, fs) dg

=

∫
Z(A)G(k)\G(A)

φ(g)

 ∑
δ∈(G(k)∩M(0)

ℓ (k))\G(k)

∫
(Nℓ(k)∩P (0)

ℓ (k))\Nℓ(A)

fs (ϵ0uδg)Ψℓ(u)
−1 du

 dg.

Since δ ∈ G(k) and φ is automorphic, we can bring φ into the sum over δ and replace φ(g)
by φ(δg). Then we can absorb the δ sum into the integral over G(A).

Proposition 4.10.

L(φ, fs) =
∫

Z(A)
(
G(k)∩M(0)

ℓ (k)
)
\G(A)

φ(g)

∫
(Nℓ(k)∩P (0)

ℓ (k))\Nℓ(A)

fs (ϵ0ug)Ψℓ(u)
−1 du dg.

As noted above, if we conjugate the unipotent past ϵ0 we obtain

ϵ0

(
Nℓ ∩ P (0)

ℓ

)
ϵ−1
0 =

{
ϵ0uϵ

−1
0 = ẑ′ℓ =

(
Im−ℓ x

ζ

)∧
}

= Ẑ ′
ℓ,

where for g ∈ GLt, we denote by ĝ the lift of g into the Levi GLt ×GSpinm′−2t of Pt. If we
transfer the character Ψℓ = Ψaℓ to Z ′

ℓ, we find

Ψaℓ
(
ϵ−1
0 ẑ′ℓϵ

)
= ψ

(
ζ1,2 + · · ·+ ζℓ−1,ℓ +

a

2
xm−ℓ,1

)
and so on the group Z ′

ℓ we set

ΨZ′
ℓ
(z′ℓ) = ΨaZ′

ℓ
(z′ℓ) = ψ

(a
2
z′m−ℓ,m−ℓ+1 + z′m−ℓ+1,m−ℓ+2 + · · ·+ z′m−1,m

)
.
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Then if we set

f
(Z′

ℓ,ΨZ′
ℓ
)

s (h) =

∫
Z′

ℓ(k)\Z
′
ℓ(A)

fz(ẑ
′
ℓ)ΨZ′

ℓ
(z′ℓ)

−1 dz′ℓ

=

∫
Z′

ℓ(k)\Z
′
ℓ(A)

fz(ẑ
′
ℓ)Ψℓ(ϵ

−1
0 z′ℓϵ0)

−1 dz′ℓ,

then part of the integral that appears in the global integral is the unipotent period∫
(Nℓ(k)∩P (0)

ℓ (k))\(Nℓ(A)∩P (0)
ℓ (A))

fs (ϵ0u
′ug)Ψℓ(u

′)−1 du′ = f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0ug)

and the integral representation itself becomes

L(φ, fs) =
∫

Z(A)
(
G(k)∩M(0)

ℓ (k)
)
\G(A)

φ(g)

∫
(Nℓ(A)∩P (0)

ℓ (A))\Nℓ(A)

f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0ug)Ψℓ(u)
−1 du dg.

Next we turn to the Whittaker coefficient. Recall that in Step 1 we commented on conver-
gence issues and steps 2 through 8 only deal with the Eisenstein series and have nothing
to do with the dg integration. The purpose in these steps was to unfold and simplify the
Eisenstein series and show that certain terms vanish. In step 9 below we show that integral
factors through a Whittaker-Fourier coefficient of φ.

Step 9. We now have to analyze G(k) ∩M (0)
ℓ (k). Recall that

G ∼=

{
GSpin2(m−ℓ)−1 if m′ = 2m,

GSpina2(m−ℓ) if m′ = 2m+ 1.

As in [21], we have G ∩M (0)
ℓ ⊂ PG,m−ℓ, the “Siegel” parabolic subgroup of G. (We placed

“Siegel” in quotes since in the case of a ̸= t2. we did not define it as such.) If we consider
the cases, then we have the following:

Case (i): m′ = 2m even. In this case G ∩M (0) ⊂ PG,m−ℓ−1, the Siegel parabolic of G. The

Levi of the Siegel is then GLm−ℓ−1 ×GL1. We may have G∩M (0) = GLm−ℓ−1 ⋉UG,m−ℓ−1

or G ∩M (0) = PG,m−ℓ−1.

Case (ii): m′ = 2m + 1 and a ̸= t2. In this case we have that G ∩M (0) ⊂ PG,m−ℓ−1. This

parabolic subgroup of G has Levi subgroup given by GLm−ℓ−1×GSpina2 . Again, G∩M (0) =
GLm−ℓ−1 ⋉ UG,m−ℓ−1.

Case (iii): m′ = 2m+ 1 and a = t2 a square. We still have G ∩M (0) ⊂ PG,m−ℓ. (This case
does not appear in [21] since it was not needed there.)

On the other hand, the actual form of the Levi part of G∩M (0) does not play a role. What
one needs is the following. Write G ∩M (0) = P ′ = M ′U ′. Then U ′ is the same as in [21]
since it is unipotent.

Define
C = CG,m−ℓ = {u′ ∈ U ′ : u′em = em} .

Lemma 4.11. We have
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• ϵ0CG,m−ℓϵ
−1
0 ⊂ UH,m, the unipotent radical of the Siegel parabolic H.

• CG,m−ℓ normalizes Nℓ and commutes with Nℓ ∩ P (0)
ℓ .

• CG,m−ℓ preserves Ψℓ.

Proof. Note that CG,m−ℓ has these properties in the SO case, so by the equality of unipotent
varieties and lifting of Weyl elements remains true in the GSpin case. □

Therefore, this unipotent subgroup leaves f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0ug)Ψℓ(u)
−1 invariant. So we can

factor it through and take this unipotent period of φ. Note that since this is not the unipotent
radical of a parabolic subgroup, there is no reason for this period of φ to vanish. Then

L(φ, fs) =
∫

P ′(k)C(A)Z(A)\G(A)

φ(C,1)(g)

∫
(Nℓ(A)∩P (0)

ℓ (A))\Nℓ(A)

f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0ug)Ψℓ(u)
−1 dudg.

Step 10. We next need the following Lemma.

Lemma 4.12. C\P ′ ∼= P 1
m−ℓ ⊂ GLm−ℓ, the mirabolic subgroup of GLm−ℓ.

Proof. We can see this in a similar way as in [21, p. 288–289]. There are obvious similitude
analogs of [21, (10.16) and (10.17)] which give the elements of P 1

m−ℓ. The similitude analogs
would only have the similitude character in the term d∗ in the notation of [21, (10.16) and
(10.17)] (so that the element is indeed in the GSpin group) and otherwise the same formulas
apply. We could then give the isomorphism by sending the cosets of C in C\P ′ to their
corresponding elements in P 1

m−ℓ as in [21, p. 289]. □

Since φ(C,1)(g) is left invariant under both C(A), by taking period, and P ′(k), since φ
is cuspidal, we can use the process of Piatetski-Shapiro and Shalika to Fourier expand
along C\P ′ ∼= P 1

m−ℓ. Note that P 1
m−ℓ

∼= GLm−ℓ−1 ⋉ km−ℓ−1 and the GLm−ℓ−1 lies in the
Levi of the parabolic subgroup of G with Levi GLm−ℓ−1 × GL1 if m′ = 2m is even and
GLm−ℓ−1 ×GSpina2 if m′ = 2m + 1 is odd. The Fm−ℓ−1 represents a unipotent subgroup.
So this construction should lift from SO2(m−ℓ)−1 (resp. SOa2(m−ℓ)) to G. Then, according

to [21] we have

φ(C,1)(g) =
∑

d∈Zm−ℓ−1(k)\GLm−ℓ−1(k)

Wψ
φ

Iℓ d
1

∧

g

 =
∑

q∈NG(k)\P ′(k)

Wψ
φ (qg),

where

Wψ
φ (g) =

∫
NG(k)\NG(A)

φ(vg)ψ(v)−1 dv

and ψ = ψNG
is the standard Whittaker character on NG.

If we replaceWψ
φ (g) with its Fourier expansion and unfold the sum overNG(k)\P ′(k) against

the integral over P ′(k)C(A)\G(A), we obtain

L(φ, fs) =
∫

NG(k)C(A)Z(A)\G(A)

Wψ
φ (g)

∫
Nℓ(A)∩P (0)

ℓ (A)\Nℓ(A)

f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0ug)Ψℓ(u)
−1 dudg.
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Step 11. We next factor the dg integration through NG(k)\NG(A). The Whittaker function
will return ψNG

(u′). So we first obtain

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

Wψ
φ (g)

∫
NG(k)C(A)\NG(A)

ψNG
(u′)

∫
Nℓ(A)∩P (0)

ℓ (A)\Nℓ(A)

f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0uu
′g)Ψℓ(u)

−1 dudu′dg.

Now u ∈ Nℓ(A) and u′ ∈ NG(A). Since G = Lℓ,a lies in the Levi subgroup Lℓ, we know
that u′ normalizes u and does not change Ψℓ. Therefore, we can interchange the (compact)
u and u′ integrations and write the argument of fs as

f
(Z′

ℓ,ΨZ′
ℓ
)

s (ϵ0u
′ug) .

Following [21], we decompose ϵ0u
′ϵ−1
0 = z′u′′ with z′ ∈ Zm, the maximal unipotent of

GLm ∈ H and u′′ ∈ Um, the unipotent radical of the Siegel parabolic Pm ⊂ H.

Lemma 4.13. If we write ϵ0u
′ϵ−1
0 = z′u′′ as above, then

• Zm = Z ′
ℓ ·
{
z′ : ϵ−1

0 z′ϵ0 ∈ NG
}

• ψNG

(
ϵ−1
0 z′ϵ0

)
= Ψam|{z′:ϵ−1

0 z′ϵ0∈NG} for Ψam some non-degenerate character of Zm.

Proof. This is true in SO and, by the agreement of unipotent varieties and lifts of Weyl
elements (ϵ0), it also holds in GSpin. □

Therefore ∫
NG(k)C(A)\NG(A)

ψNG
(u′)f

(Z′
ℓ,ΨZ′

ℓ
)

s (ϵ0u
′ug) du′ = f

(Zm,Ψ
a
m)

s (ϵ0ug) ,

where Ψam is a non-degenerate character of Zm and

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

Wψ
φ (g)

∫
Nℓ(A)∩P (0)

ℓ (A)\Nℓ(A)

f
(Zm,Ψ

a
m)

s (ϵ0ug)Ψℓ(u)
−1 dudg.

When G = GSpin2m it may be occasionally useful, particularly in the local context, to
consider an arbitrary Whittaker character ψ of NG for the Whittaker model of π. One can
do this by making Ψam or β explicit (each determining the other).

Step 12. Choose an element da ∈ Tm ⊂ GLm which conjugates Ψam to the standard
character ψm of Zm, i.e.,

Ψam
(
daxd

−1
a

)
= ψm(z), z ∈ Zm.

This all takes place in the GLm Levi of the Siegel parabolic in SOm′ and so the same is true
in GSpinm′ = H. Then

f
(Zm,Ψ

a
m)

s (h) = f (Zm,ψm)
s

(
d̂ah
)
.

So if we let

β = βℓ,a = d̂aϵ0,
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then

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

Wψ
φ (g)

∫
Nℓ(A)∩P (0)

ℓ (A)\Nℓ(A)

f (Zm,ψm)
s (βug)Ψℓ(u)

−1 dudg.

We finally note that

Nℓ ∩ P (0) = Nℓ ∩ Pℓ ∩ ϵ−1
0 Pmϵ0 = Nℓ ∩ β−1Pmβ

since β = d̂aϵ0 and d̂a ∈ Tm ⊂ GLm ⊂ Pm. Then

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

Wψ
φ (g)

∫
Nℓ(A)∩β−1Pm(A)β\Nℓ(A)

f (Zm,ψm)
s (βug)Ψℓ(u)

−1 dudg.

This finishes the proof of Theorem 4.2 □

5. Global Integrals II (Case A)

In this section we translate [21, §10.4] into the GSpin context. This corresponds to Method
A in the original work of Gelbart and Piatetski-Shapiro [18, Part B], which dealt with the
special orthogonal and general linear groups with equal (or nearly equal) ranks. As such,
we refer to the integrals of this section as Case A. (See the table in Section 7 for a summary
of various cases.) We again note that we follow [23] in the labeling of various parabolic
subgroups (cf. Remark 3.2).

We still take H = GSpinm′ to be the larger group. Now, (π, Vπ) will be a cuspidal repre-
sentation of H(A) and H will be either split or quasi-split. The group G = GSpinn′ will be
the smaller group, split, and having the opposite parity to H.

We have that H is the GSpin cover of an orthogonal group SOm′(V ) with V a quadratic
space. Let m̃ be the Witt index of V. Hence,

m̃ =


m if m′ = 2m+ 1,

m if m′ = 2m with H split,

m− 1 if m′ = 2m with H quasi-split.

Let 0 ≤ ℓ be such that ℓ < m̃ if m′ is even and ℓ < m̃ − 1 if m′ is odd. Let Qℓ = Lℓ ⋉Nℓ
be the parabolic subgroup of H with Levi of the form (GL1)

ℓ ×GSpinm′−2ℓ. Let Nℓ be its
unipotent radical. Let Ψℓ be a character of Nℓ so that StabLℓ

(Ψℓ) is a split GSpinm′−2ℓ−1.
If H is split, we can take the character Ψℓ from the previous section.

When H is quasi-split, we find a character Ψℓ of Nℓ such that StabLℓ
(Ψℓ) is split and the

GSpin cover of the SO(Wm,ℓ ∩ w⊥
0 ) of [21]. This is done in the same as the Ψℓ from the

previous section for a = 1. In [23] the authors do not consider this case since for descent
they can always take the larger group H to be split. Note that if H is quasi-split, so an
even GSpin, then SO(Wm,ℓ ∩ w⊥

0 ) is an odd SO and so automatically split. Hence, it does
not matter which anisotropic vector we take.

Let G = StabLℓ
(Ψℓ). Then G = GSpinm′−2ℓ−1. We let n′ = m′ − 2ℓ− 1. If m′ = 2m+ 1 is

odd, then n′ = 2n with n = m− ℓ and if m′ = 2m is even, then n′ = 2m− 2ℓ− 1 = 2n+ 1
with n = m− ℓ− 1. In either case G is split.

Again, when ℓ = 0 there is no Ψℓ and we just “restrict” and the statements below hold in
the ℓ = 0 case as well.
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Let PG = MG ⋉ UG be the Siegel parabolic subgroup of G. Then MG = GLn × GL1 with
the GL1 factor being the connected component of the center of G. Let τ be a cuspidal
automorphic representation of GLn(A) and let

ρ = ρτ,ω−1
π ,s = IndGPG

(
τ |det |s ⊗ ω−1

π

)
(5.1)

so that ρs transforms by ω−1
π under the connected component of the center of G. (Again,

we will replace s by s− 1/2 below.) Let fs be a K-finite holomorphic section of ρ and form
the Eisenstein series

E(g, fs) =
∑

δ∈PG(k)\G(k)

fs(δg)

which is absolutely convergent, uniformly on compact subsets, for Re(s) ≫ 0.

For φ ∈ Vπ, a cusp form on H(A), define

L(φ, fs) =
∫

G(k)Z(A)\G(A)

φ(Nℓ,Ψℓ)(g)E(g, fs) dg,

where Z = Z(G)0 is the identity component of the center of G as in the earlier case.

Similarly to Lemma 4.1, the integral L(φ, fs) converges absolutely and uniformly in vertical
strips in C away from poles of the Eisenstein series and hence it defines a meromorphic
function on C.

Theorem 5.1. Let the notaion be as above.

(i) If L(φ, fs) is not identically zero, then π is globally generic with respect to a certain
“standard” Whittaker character ψ. (For a precise description of the character ψ of
NG is all cases we refer to [34] and [24].)

(ii) For Res≫ 0 we have an identity

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

∫
X (A)

Wψ
φ (λδℓg)f

(Zn,ψn)
s (g) dλ dg,

whereWψ
φ is the appropriate Whittaker function of φ, X is isomorphic to a unipotent

subgroup of GLm if m′ = 2m+ 1, resp. GLm−1 if m′ = 2m, and is of the form

X =

{(
In
λ Iℓ

)∧
}
, (5.2)

the element

δℓ =

(
0 In
Iℓ 0

)∧

(5.3)

is a Weyl group element of GLm, resp. GLm−1, as above, and f
(Zn,Ψn)
s is the

same unipotent period that appears in Theorem 4.2 (so Zn is the maximal unipotent
subgroup of GLn.)

Proof. For Re(s) ≫ 0 the Eisenstein series E(g, fs) is an absolutely convergent series. We
replace it by its definition:

L(φ, fs) =
∫

G(k)Z(A)\G(A)

φ(Nℓ,Ψℓ)(g)
∑

δ∈PG(k)\G(k)

fs(δg) dg.
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Since φ is automorphic and G = Stab(Ψℓ), we can move the summation outside φ(Nℓ,Ψℓ)

L(φ, fs) =
∫

G(k)Z(A)\G(A)

∑
δ∈PG(k)\G(k)

φ(Nℓ,Ψℓ)(δg)fs(δg) dg

and collapse the sum against the integral to obtain

L(φ, fs) =
∫

PG(k)Z(A)\G(A)

(
φ(Nℓ,Ψℓ)

)(UG,1)

(g)fs(g) dg.

We now come to a crucial result.

Proposition 5.2. We have(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =
∑

γ∈Zn(k)\GLn(k)

∫
X (A)

Wψ
φ (γ̂λδℓg) dλ.

Proof. We will prove this Proposition in Section 6 after we review the process of “root
exchange”. The analogous result for the special orthogonal groups is [21, Theorem 7.3]. □

With this, we have

L(φ, fs) =
∫

MG(k)UG(A)Z(A)\G(A)

∑
γ∈Zn(k)\GLn(k)

∫
X (A)

Wψ
φ (γ̂λδℓg) fs(g) dλ dg,

where UG is the unipotent radical of the Siegel parabolic PG as in above (5.1). (In particular,
we have ZnUG = NG, the maximal unipotent subgroup of G.)

Now, for γ ∈ Zn(k)\GLn(k), we have that γ̂ normalizes the group X . This is true whether
we are in the SO context or the GSpin context because it is taking place in the GLm or
GLm−1 Levi subgroups.

We claim that δ−1
ℓ γ̂δℓ is a general element of MG(k)/Z(k) = GLn(k). Again this is true

because it takes palce in the GLm, resp. GLm−1, Levi subgroup.

So we now move γ̂ to the right and then collapse the sum over Zn(k)\GLn(k) with the
integral to obtain

L(φ, fs) =
∫

Zn(k)UG(A)Z(A)\G(A)

∫
X (A)

Wψ
φ (λδℓg) fs(g) dλ dg.

If we now integrate over Zn(k)\Zn(A), then Wψ
φ (λδℓg) will produce a character ψn of Zn.

We then integrate this unipotent period for fs and obtain

L(φ, fs) =
∫

Zn(k)UG(A)Z(A)\G(A)

∫
X (A)

Wψ
φ (λδℓg) f

(Zn,ψn)
s (g) dλ dg.

Finally, it follows from ZnUG = NG that

L(φ, fs) =
∫

NG(A)Z(A)\G(A)

∫
X (A)

Wψ
φ (λδℓg) f

(Zn,ψn)
s (g) dλ dg.

This finishes the proof of Theorem 5.1. □
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6. Constant Terms

We now translate [21, Section 7] into the GSpin context.

6.1. The Process of Root Exchanges. We need the process of “root exchanges” of [21].
A version of this occurs in [23] as well, but the Euler product expansion of Theorem 5.1
requires the more elaborate version of [21]. Let us work in the following context.

Let H be a connected reductive algebraic k-group, such as one of our GSpin groups. For
our purposes we can have it be quasi-split. Let U < G be a maximal unipotent k-subgroup.
Suppose C < U is a k-subgroup of U , and ψ = ψC is a non-trivial character of C(k)\C(A).
Suppose we have two other k-subgroups X and Y of U such that the following six axioms
hold:

(1) X and Y normalize C.

(2) X ∩ C is normal in X and (X ∩ C)\X is abelian, and similarly Y ∩ C is normal in
Y and (Y ∩ C)\Y is abelian.

(3) When X(A) and Y (A) act on C(A) by conjugation, they preserve ψC .

(4) ψC is trivial on (X ∩ C)(A) and (Y ∩ C)(A).

(5) The commutator (X,Y ) ⊂ C. (Recall that (x, y) = x−1y−1xy and (X,Y ) denotes
the subgroup generated by all the commutators.)

Note that these five conditions imply that, for a fixed y ∈ Y (A), the map x 7→ ψC((x, y))
defines a character of X(A), trivial on (X ∩ C)(A) and similarly, for a fixed x ∈ X(A), the
map y 7→ ψC((x, y)) defines a character of Y (A) which is trivial on (Y ∩ C)(A). (This is
checked in [21, §7.1].) Finally

(6) The pairing of (X ∩ C)(A)\X(A)× (Y ∩ C)(A)\Y (A) given by (x, y) 7→ ψC((x, y))
is bilinear and non-degenerate and identifies

(Y ∩ C)(k)\Y (k) ≃ [(X(k)(X ∩ C)(A))\X(A)]∧

and

(X ∩ C)(k)\X(k) ≃ [(Y (k)(Y ∩ C)(A))\Y (A)]∧ .

Now let B = CY = Y C, D = CX = XC and A = CXY . Extend ψC to a character ψB of
B(A) trivial on B(k) by making it trivial on Y (A) and to a character ψD of D(A) trivial on
D(k) by making it trivial on X(A).

Proposition 6.1 (Root exchange). Let f be an automorphic function on H(A) which is
smooth and of uniform moderate growth. Then∫

B(k)\B(A)

f(v)ψB(v)
−1 dv =

∫
(Y ∩C)(A)\Y (A)

∫
D(k)\D(A)

f(uy)ψD(u)
−1 dudy,

where the right hand side converges in the sense that∫
(Y ∩C)(A)\Y (A)

∣∣∣∣∣∣∣
∫

D(k)\D(A)

f(uyh)ψD(u)
−1 du

∣∣∣∣∣∣∣ dy <∞

uniformly in any compact subset of H(A).
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Proof. The proof of this proposition in [21] depends only on the six axioms above and the
properties of smooth automorphic functions of uniform moderate growth. As G is connected
reductive, the results of [29], as used by [21], hold. The proposition follows as in [21]. □

The proof of the proposition has the following corollary that is used in the proof of Propo-
sition 5.2.

Corollary 6.2. Let f be a smooth automorphic function of uniform moderate growth on
H(A). Then there exist smooth, uniform moderate growth, automorphic functions f1, . . . , fr
and Schwartz functions ϕ1, . . . , ϕr ∈ S((Y ∩ C)(A))\Y (A) such that for all y ∈ (Y ∩
C)(A)\Y (A) we have∫

D(k)\D(A)

f(uy)ψ−1
D (u) du =

r∑
i=1

ϕi(y)

∫
D(k)\D(A)

fi(uy)ψ
−1
D (u) du.

Proof. The proof in [21] uses the theory of smooth automorphic functions of uniform mod-
erate growth from [29] as well as the theorem of Dixmier and Malliavin from [17], both of
which hold in our context. The result follows as in [21]. □

6.2. Proof of Proposition 5.2. We keep the notation from Section 5. We will use repeat-
edly that a cusp form φ ∈ Vπ on H(A) is smooth and of uniform moderate growth, so that
we may use Section 6.1. The proof will be an induction, and for the induction we will need
the following subgroups.

Recall that if m′ = 2m+ 1 is odd, then n+ ℓ = m− 1 (by assumption) and GLn+ℓ ⊂ H is
the Levi subgroup of the parabolic subgroup of H with Levi subgroup GLn−ℓ ×H3 where
H3 is the split GSpin3. If m

′ = 2m is even then n+ ℓ = m− 1 and GLm is part of the Levi
of the parabolic subgroup with Levi GLn+ℓ×H2, where H2 denotes the (split or quasi-split)
GSpin(2). In either case, for γ ∈ GLn+ℓ we let γ∧ denote the lift of γ to an element of H.
Since there is a corresponding parabolic subgroup of SOm′ we can follow [21] and write

γ∧ =

γ Im′−2(n+ℓ)

γ∗

 ∈ SOm′

which we can identify with its lift to Hm′ if γ is unipotent or a Weyl group element. Note
that m′ − 2(n+ ℓ) is either equal to 3 or 2.

We have defined

X =

{(
In
λ Iℓ

)∧
}

and we set

X (i) =


(
In
λ Iℓ

)∧

∈ X : λ =

λ1...
λℓ

 with λj = 0 for j ̸= ℓ− i


and

Xi =

{(
In
λ Iℓ

)∧

∈ X : λℓ−i = · · · = λℓ = 0

}
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Note that for each i, Xi−1 = XiX (i) where we set X−1 = X . In what follows we will also
need the groups

U in+ℓ =

{(
In+ℓ−i ∗

z

)∧

: z ∈ Zi

}
· Un+ℓ. ⊂ Nn+ℓ

By definition we have

φ(Nℓ,Ψℓ)(g) =

∫
Nℓ(k)\Nℓ(A)

φ(vg)Ψ−1
ℓ (v) dv

and then

(φ(Nℓ,Ψℓ))(UG,1)(g) =

∫
UG(k)\UG(A)

 ∫
Nℓ(k)\Nℓ(A)

φ(vrg)Ψ−1
ℓ (v) dv

 dr.

As φ is automorphic on H, it is left invariant by δℓ ∈ H(k). Thus

φ(vrg) = φ(δℓvrg) = φ(δℓvrδ
−1
ℓ δℓg).

The authors of [21] analyze the conjugates δℓNℓδ
−1
ℓ and δℓUGδ

−1
ℓ in terms of matrices in

SOm′ . To this end, let

s(z;u, a, d, e;x, y) =


In x d y
u z a e d′

Im′−2(n+ℓ) a′ x′

z∗

u′ In


where z ∈ Zℓ, the maximal unipotent subgroup of GLℓ. With this notation,

δℓUGδ
−1
ℓ = {s(Iℓ; 0, 0, 0, 0, ;x◦, y) ∈ H : δ−1

ℓ s(Iℓ; 0, 0, 0, 0;x
◦, y)δℓ ∈ UG}

=




In x◦ 0 y
0 Iℓ 0 0 0

Im′−2(n+ℓ) 0 x◦′

Iℓ
0 In




where there is a condition on x◦ to make sure this comes from an element of UG, and

δℓNℓδ
−1
ℓ = {s(z;u, a, d, e; 0, 0) : z ∈ Zℓ}

=




In 0 d 0
u z a e d′

Im′−2(n+ℓ) a′ 0
z∗

u′ In


 .

Let

S = δℓUGNℓδ
−1
ℓ

and let the character ΨS be the character of S obtained as follows: we extend the character
Ψℓ of Nℓ(k)\Nℓ(A) to UGNℓ by making it trivial on UG(A) and then set ΨS(s) = Ψℓ(δ

−1
ℓ sδℓ).
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Let
S̃ = {s ∈ S : u = 0, z = Iℓ}

=




In x◦ d y
0 Iℓ a e d′

Im′−2(n+ℓ) a′ x◦′

Iℓ
0 In


 .

Note that X ⊂ S consists of the lower triangular elements of S, that is, X = {s(0;u, 0, 0, 0; 0, 0)}.

Lemma 6.3. ΨS is trivial on X .

Proof. By definition ΨS(s) = Ψℓ(δ
−1
ℓ sδℓ). We have δℓ =

(
0 In
Iℓ 0

)∧

and X =

{(
In 0
λ Iℓ

)∧
}
.

Letting λ̃ =

(
In 0
λ Iℓ

)
we find that ΨS(λ̃) = Ψℓ(δ

−1
ℓ λ̃δℓ). However

δ−1
ℓ λ̃δℓ =

((
0 Iℓ
In 0

)(
In 0
λ Iℓ

)(
0 In
Iℓ 0

))∧

=

(
Iℓ λ
0 In

)∧

and

Ψℓ

((
Iℓ λ
0 In

)∧
)

=

{
ψ0(λℓ,m − λℓ,m+1) if m′ = 2m,

ψ0(λℓ,m + a
2λℓ,m+2) if m′ = 2m+ 1.

by the definitions in Section 4. If m′ = 2m+1, then n+ℓ = m−1 and so λℓ,m = λℓ,m+2 = 0.
If m′ = 2m, then n+ ℓ = m− 1 and again λℓ,m = λℓ,m+1 = 0. (For these conditions on the

relation between n, ℓ,m see the second paragraph of Section 6.2.) Hence ΨS(λ̃) = 1. □

With this notation we can write

(φ(Nℓ,Ψℓ))(UG,1)(g) =

∫
UG(k)\UG(A)

 ∫
Nℓ(k)\Nℓ(A)

φ(vrg)Ψ−1
ℓ (v) dv

 dr

=

∫
S(k)\S(A)

φ(sδℓg)Ψ
−1
S (s) ds

=

∫
Zℓ(k)\Zℓ(A)

∫
X (k)\X (A)

∫
S̃(k)\S̃(A)

φ(zλs̃δℓg)Ψ
−1
S (s̃)Ψ−1

n+ℓ(z) ds̃ dλ dz.

(6.1)

Since X = X0X (0) we can decompose the integral over X as∫
X (k)\X (A)

=

∫
X0(k)\X0(A)

∫
X (0)(k)\X (0)(A)

.

Then we obtain an inner integral of the form∫
X (0)(k)\X (0)(A)

∫
S̃(k)\S̃(A)

φ(zλ0λ
(0)s̃δℓg)Ψ

−1
S (s̃)Ψ−1

n+ℓ(z) ds̃dλ
(0)
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or ∫
X (0)(k)\X (0)(A)

∫
S̃(k)\S̃(A)

[
φ(zλ0λ

(0)s̃δℓg)Ψ
−1
n+ℓ(z)

]
Ψ−1
S (s̃) ds̃dλ(0).

We would now like to perform a root exchange on this integral. To this end, let J =
{s(Iℓ; 0, 0, 0, 0;x, y) ∈ H} ⊃ δℓUGδ

−1
ℓ and J0 = J ∩ S = δℓUGδ

−1
ℓ . Now in the setting

of §6.1, set C = S̃, Y = X (0), and X = J so that B = S̃X (0), D = S̃J = Un+ℓ, and

A = S̃X (0)J . The authors of [21] verify that these satisfy (1) – (6) of §6.1. Applying
Proposition 6.1 to this integral then gives∫

X (0)(k)\X (0)(A)

∫
S̃(k)\S̃(A)

[
φ(zλ0λ

(0)s̃δℓg)Ψ
−1
n+ℓ(z)

]
Ψ−1
S (s̃) ds̃dλ(0)

=

∫
X (0)(A)

∫
Un+ℓ(k)\Un+ℓ(A)

[
φ(uzλ0λ

(0)δℓg)Ψ
−1
n+ℓ(z)

]
Ψ−1
n+ℓ(u) dudλ

(0)

=

∫
X (0)(A)

∫
Un+ℓ(k)\Un+ℓ(A)

φ(uzλ0λ
(0)δℓg)Ψ

−1
n+ℓ(zu) dudλ

(0)

with convergence of

∫
X (0)(A)

∣∣∣∣∣∣∣
∫

Un+ℓ(k)\Un+ℓ(A)

φ(uzλ0λ
(0)δℓg)Ψ

−1
n+ℓ(zu) du

∣∣∣∣∣∣∣ dλ(0)
uniformly on compact subsets.

Moreover, by Corollary 6.2 there are smooth automorphic functions φ1, . . . , φr of uniform
moderate growth on H(A) and Schwartz functions ϕ1, . . . , ϕr on X (0)(A) such that∫

Un+ℓ(k)\Un+ℓ(A)

φ(uzλ0λ
(0)δℓg)Ψ

−1
n+ℓ(zu) du

=

r∑
i=1

ϕi(zλ0λ
(0)δℓg)

∫
Un+ℓ(k)\Un+ℓ(A)

φi(uzλ0λ
(0)δℓg)Ψ

−1
n+ℓ(zu) du.

If we insert this in the result of our root exchange we have∫
X (0)(A)

∫
Un+ℓ(k)\Un+ℓ(A)

φ(uzλ0λ
(0)δℓg)Ψ

−1
n+ℓ(zu) dudλ

(0)

=

∫
X (0)(A)

 r∑
i=1

ϕi(zλ0λ
(0)δℓg)

∫
Un+ℓ(k)\Un+ℓ(A)

φi(uzλ0λ
(0)δℓg)Ψ

−1
n+ℓ(zu) du

 dλ(0)

=

∫
Un+ℓ(k)\Un+ℓ(A)

 r∑
i=1

∫
X (0)(A)

ϕi(zλ0λ
(0)δℓg)φi(uzλ0λ

(0)δℓg)Ψ
−1
n+ℓ(zu) dλ

(0)

 du
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so if we set

φ0(uλ0zδℓg) =

r∑
i=1

∫
X (0)(A)

ϕi(zλ0λ
(0)δℓg)φi(uzλ

(0)λ0zδℓg) dλ
(0),

then we have ∫
Un+ℓ(k)\Un+ℓ(A)

φ0(uzλ0δℓg)Ψ
−1
n+ℓ(zu) du.

If we return now to (6.1), noting the decomposition of integration right after (6.1), and
insert this we have(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =

∫
Zℓ(k)\Zℓ(A)

∫
X0(k)\X0(A)

∫
Un+ℓ(k)\Un+ℓ(A)

φ0(uzλ0δℓg)Ψ
−1
n+ℓ(zu) du dλ0 dz.

We next use the decompositions X0 = X1X (1) and Zℓ = Zℓ−1Z
(1)
ℓ , where

Z
(1)
ℓ =

{(
Iℓ−1 ∗
0 1

)}
⊂ Zℓ.

To this end, we write λ0 = λ1λ
(1) and, with abuse of notation, z = zℓ = zℓ−1z

(1) = zz(1)

and decompose our integrals as∫
X0(k)\X0(A)

=

∫
X1(k)\X1(A)

∫
X (1)(k)\X (1)(A)

and ∫
Zℓ(k)\Zℓ(A)

=

∫
Zℓ−1(k)\Zℓ−1(A)

∫
Z

(1)
ℓ (k)\Z(1)

ℓ (A)

.

For h ∈ H(A) set

I1(φ0,Ψn+ℓ)(h) =∫
X (1)(k)\X (1)(A)

∫
Z

(1)
ℓ (k)\Z(1)

ℓ (A)

∫
Un+ℓ(k)\Un+ℓ(A)

φ0(uz
(1)λ(1)h)Ψ−1

n+ℓ(uz
(1)) du dz(1) dλ(1)

so that(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =

∫
Zℓ−1(k)\Zℓ−1(A)

∫
X1(k)\X1(A)

I1(φ0,Ψn+ℓ)(zλ1δℓg)Ψ
−1
n+ℓ(z) dλ1 dz.

At this point, we apply another root exchange (or swap in the languate of [23]) in I1. In
the language of Section 6.1 we set

C = Un+ℓZ
(1) Y = X (1) X =


In x

Iℓ−1

1

∧
ψC = Ψn+ℓ|C B = CY D = CX = U1

n+ℓ.
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Applying this to I1(φ0,Ψn+ℓ) gives

I1(φ0,Ψn+ℓ)(h) =

∫
X (1)(A)

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ0(u
1λ(1)h)Ψ−1

n+ℓ(u
1) du1 dλ(1).

We insert this into the above formula for (φ(Nℓ,Ψℓ))(UG,1)(g) and interchange the order of
integration to obtain(

φ(Nℓ,Ψℓ)
)(UG,1)

(g) =

∫
X (1)(A)

∫
Zℓ−1(k)\Zℓ−1(A)

∫
X1(k)\X1(A)

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ0(u
1λ1zλ

(1))Ψ−1
n+ℓ(u

1z) du1 dλ1 dz dλ
(1).

We next apply Corollary 6.2 (essentially Dixmier–Malliavin [17]) to write∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ0

(
u1(λ1zλ

(1)δℓg)
)
Ψ−1(u1z) du

=

r∑
I=1

ϕ0,i(λ1zλ
(1)δℓg)

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ0,i

(
u1λ1zλ

(1)δℓg
)
Ψ−1
n+ℓ(u

1z) du1.

Note that the φ0,i are smooth and of uniform moderate growth (in fact in W (φ)) and the
ϕ0,i are Schwartz functions. If we let

φ1

(
u1λ1zh

)
=

r∑
I=1

∫
X (1)(A)

φ0,i

(
u1λ1zλ

(1)h
)
ϕ0,i

(
λ1zλ

(1)h
)
dλ(1),

then by Corollary 6.2 we have∫
X (1)(A)

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ0

(
u1(λ1zλ

(1)δℓg)
)
Ψ−1(u1z) du dλ(1)

=

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ1(u
1(λ1zδℓg))Ψ

−1
n+ℓ(u

1z) du1

and so

(φ(Nℓ,Ψℓ))(UG,1)(g) =

∫
Zℓ−1(k)\Zℓ−1(A)

∫
X1(k)\X1(A)

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ1(u
1λ1zδℓg)Ψ

−1
n+ℓ(u

1z) du1 dλ1 dz.

Remark 6.2. In [21] they keep this integral, as well as the original integral involving φ. Then
this would be

(φ(Nℓ,Ψℓ))(UG,1)(g) =

∫
X (1)(A)

∫
X (0)(A)

∫
Zℓ−1(k)\Zℓ−1(A)

∫
X1(k)\X1(A)

∫
U1

n+ℓ(k)\U
1
n+ℓ(A)

φ(u1λ1zλ
(0)λ(1)δℓg)Ψ

−1(u1z) du1 dλ1 dz dλ
(0) dλ(1).

They perform φ 7→ φ0 7→ φ1 to obtain convergence and they want the original integral with
φ and the integrations over the X (i) to obtain an Euler product for decomposable data (i.e.,
φ decomposable) and need the full adelic integrals over the X (i).
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We next do an induction to either remove the various Xi integrations or replace them with
full adelic integrations over the X (i).

6.2.1. The Induction. For 1 ≤ i < ℓ set

Zℓ−i =

{
zℓ−i =

(
z

Ii

)
∈ Zℓ

}
⊂ H.

Assume, by induction, that for 1 ≤ i ≤ ℓ− 2 we have:

(i)
(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =

∫
X (i,...,1,0)(A)

∫
Zℓ−i(k)\Zℓ−i(A)

∫
Xi(k)\Xi(A)

∫
Ui

n+ℓ(k)\U
i
n+ℓ(A)

φ
(
uiλizℓ−iλ

(′)δℓg
)
Ψ−1(uizℓ−i) du

i dλi dzℓ−i dλ
(′),

where λ(′) ∈ X (i,...,1,0) = X (i)X (i−1) · · · X (1)X (0) and dλ(′) = dλ(i) · · · dλ(0), and

(ii)
(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =

∫
Zℓ−i(k)\Zℓ−i(A)

∫
Xi(k)\Xi(A)

∫
Ui

n+ℓ(k)\U
i
n+ℓ(A)

φi
(
uiλizℓ−iδℓg

)
Ψ−1
n+ℓ(u

izℓ−i) du
i dλi dzℓ−i.

with φi ∈W (φ).

We then repeat the above process to obtain the next step, formulas [21, (7.29)–(7.30)]. For
i = ℓ− 2 these formulas give

(i)
(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =

∫
X (A)

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φ
(
uℓ−1λδℓg

)
Ψ−1(uℓ−1) duℓ−1 dλ,

and

(ii)
(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
uℓ−1δℓg

)
Ψ−1
n+ℓ(u

ℓ−1) duℓ−1.

Lemma 6.4. Let p ∈ P 1
n−1,1(A) ⊂ GLn(A). (This is the notation of [21] for the mirabolic

subgroup of GLn.) Then∫
X (A)

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φ
(
uℓ−1p̂λδℓg

)
Ψ−1(uℓ−1) duℓ−1 dλ

=

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
uℓ−1p̂δℓg

)
Ψ−1
n+ℓ(u

ℓ−1) duℓ−1.

Proof. The proof proceeds in the same way as in [21]. □

Remark 6.3. In their derivation, the authors of [21] only keep track of
(
φ(Nℓ,Ψℓ)

)(UG,1)
(e)

and so g does not appear in their formulas.
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For x ∈ An let nℓ(x) =

(
In x

1

)∧

∈ Nn+ℓ(A). Set

ϕg(x) =

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
uℓ−1nℓ(x)δℓg

)
Ψ−1
n+ℓ(u

ℓ−1) du

so that

ϕg(0) =
(
φ(Nℓ,Ψℓ)

)(UG,1)

(g).

This is a smooth function on An which is left invariant under kn. We can write its Fourier
expansion along kn\An and then evaluate at x = 0. The general character of An which is
trivial on kn is of the form ψ(tη · x) for η ∈ kn. By abelian Fourier analysis

ϕg(x) =
∑
η∈kn

aη(ϕg)ψ(
tη · x)

where

aη(ϕg) =

∫
kn\An

ϕg(x)ψ
−1(tη · x) dx

The zero Fourier coefficient. The Fourier coefficient corresponding to the trivial char-
acter η = 0 is:

a0(ϕg) =

∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
uℓ−1nℓ(x)δℓg

)
Ψ−1
n+ℓ(u

ℓ−1) du dx.

Note that {nℓ(x) | x ∈ An} · U ℓ−1
n+ℓ = U ℓn+ℓ ≃ Nℓ ⋉ Un, where we view Nℓ as being in the

GSpin part of the Levi subgroup of Pn ≃ (GLn × GSpin) ⋉ Un, and Ψn+ℓ on U
ℓ−1
n+ℓ equals

ψℓ on Nℓ, so that this 0-Fourier coefficient gives∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
uℓ−1nℓ(x)δℓg

)
Ψ−1
n+ℓ(u

ℓ−1) du dx =
(
φ
(Un,1)
ℓ−1

)(Nℓ,ψℓ)

(δℓg).

The non-zero Fourier coefficients. If η ̸= 0, then we can write tη = (0, . . . , 0, 1)γ where
γ ∈ P 1

n−1(k)\GLn(k) with P
1
n−1,1 = StabGLn

(0, . . . , 0, 1) is the mirabolic subgroup of GLn.
We can manipulate this Fourier coefficient into

aη(ϕg) =

∫
kn\An

ϕg(nℓ(x))ψ
−1(tη · x) dx

=

∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
uℓ−1nℓ(x)δℓg

)
Ψ−1
n+ℓ(u

ℓ−1nℓ(γx)) du dx.

Since φℓ−1 is still automorphic, it is left invariant under γ̂ since γ ∈ GLn(k). Then

φℓ−1 (unℓ(x)δℓg) = φℓ−1 (γ̂unℓ(x)δℓg) = φℓ−1

(
γ̂uγ̂−1γ̂nℓ(x)δℓg

)
= φℓ−1

(
γ̂uγ̂−1nℓ(γx)γ̂δℓg

)
.
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So the η-Fourier coefficient of ϕg is then

aη(ϕg) =

∫
kn\An

ϕg(nℓ(x))ψ
−1(tη · x) dx

=

∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1

(
γ̂uγ̂−1nℓ(γx)γ̂δℓg

)
Ψ−1
n+ℓ(unℓ(γx)) du dx.

Now perform a change of variables u 7→ γ̂−1uγ̂ and x 7→ γ−1x to obtain that the η-Fourier
coefficient of ϕg is given by

aη(ϕg) =

∫
kn\An

ϕg(nℓ(x))ψ
−1(tη · x) dx

=

∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1 (unℓ(x)γ̂δℓg)Ψ
−1
n+ℓ(unℓ(x)) du dx.

We once again write {nℓ(x) | x ∈ An} · U ℓ−1
n+ℓ = U ℓn+ℓ and this becomes

aη(ϕg) =

∫
kn\An

ϕg(nℓ(x))ψ
−1(tη · x) dx =

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φℓ−1 (uγ̂δℓg)Ψ
−1
n+ℓ(u) du dx,

where tη = (0, . . . , 0, 1)γ

If we now combine these expressions, we have

(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) = ϕg(0) =
∑
η

aη(ϕg)

=
(
φ
(Un,1)
ℓ−1

)(Nℓ,ψℓ)

(δℓg) +
∑

γ∈P 1
n−1,1(k)\GLn(k)

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φℓ−1 (uγ̂δℓg)Ψ
−1
n+ℓ(u) du dx.

We need to work in the above form for convergence (see the above remark). In order to
prove our integrals are Eulerian, we need to express this in terms of our original cusp form φ.
This happens Fourier coefficient by Fourier coefficient. For a non-trivial Fourier coefficient
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we have

aη(ϕg) =

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φℓ−1 (uγ̂δℓg)Ψ
−1
n+ℓ(u) du

=

∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φℓ−1 (unℓ(x)γ̂δℓg)Ψ
−1
n+ℓ(unℓ(x)) du dx

=

∫
kn\An

∫
X (A)

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φ (unℓ(x)γ̂λδℓg)Ψ
−1
n+ℓ(unℓ(x)) du dλ dx

=

∫
X (A)

∫
kn\An

∫
Uℓ−1

n+ℓ(k)\U
ℓ−1
n+ℓ(A)

φ (unℓ(x)γ̂λδℓg)Ψ
−1
n+ℓ(unℓ(x)) du dx dλ

=

∫
X (A)

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φ (uγ̂λδℓg)Ψ
−1
n+ℓ(u) du dx dλ

and the authors of [21] go to great lengths to justify the exchange of the integral over kn\An
and that over X (A). Along the way, in the successive interchanges, they use

• Ψ−1
n+ℓ([x, λ]) = Ψn+ℓ([x

−1, λ]) for x ∈ X(A) where X =


In 0 x

1 0
1

∧

∈ Nn+ℓ


• γ̂[x, λ] = [x, λ]γ̂

• γ̂xγ̂−1 ∈ U ℓn+ℓ(A)

• Ψn+ℓ(γ̂xγ̂
−1) = 1.

These all involve either unipotent matrices of lifts of elements of GLn and remain valid in
the GSpin context.

Similarly, for the 0-Fourier coefficient they show(
φ
(Un,1)
ℓ−1

)(Nℓ,ψℓ)

(δℓg) =

∫
X (A)

(
φ(Un,1)

)(Nℓ,ψℓ)

(λδℓg) dλ.

Note that since φ is assumed to be cuspidal, the first unipotent period φ(Un,1) ≡ 0 since Un
is the unipotent radical of the maximal parabolic subgroup Pn. Hence this contribution to(
φ(Nℓ,Ψℓ)

)(UG,1)
(g) vanishes. Hence(

φ(Nℓ,Ψℓ)
)(UG,1)

(g) =
∑

γ∈P 1
n−1,1(k)\GLn(k)

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φℓ−1 (uγ̂δℓg)Ψ
−1
n+ℓ(u) du dx

=
∑

γ∈P 1
n−1,1(k)\GLn(k)

∫
X (A)

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φ (uγ̂λδℓg)Ψ
−1
n+ℓ(u) du dx dλ.

To proceed, they further Fourier expand φ or φℓ−1 along the ideas of Piatetski-Shapiro and
Shalika.
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• If f is an automorphic form on GLn, to obtain its Fourier expansion, first restrict to
the mirabolic P 1

n−1,1 and expand along its unipotent radical Un−1 = U(P 1
n−1,1) ≃

An−1.

• For each such Fourier coefficient, which can now be viewed as a function on

P 1
n−2,1(k)\P 1

n−2,1(A),

expand along the unipotent radical of P 1
n−2,1 ≃ An−2.

• Continue inductively until one obtains the sum of the Whittaker function over
Zn(k)\GLn(k).

To this end, set

nℓ+1(x) =

(
In−1 x

1

)∧

∈ Nn+ℓ(A), x ∈ An−1

and let

ϕ1,γ̂,g(x) =

∫
Uℓ

n+ℓ(k)\U
ℓ
n+ℓ(A)

φℓ−1 (unℓ+1(x)γ̂δℓg)Ψ
−1
n+ℓ(u) du.

Then, exactly as before, when we write the Fourier expansion of ϕ1,γ̂,g(x) in x and evaluate
at x = 0 we obtain

ϕ1,γ̂,g(0) =
∑

γ′∈P 1
n−2,1(k)\GLn−1(k)

∫
Uℓ+1

n+ℓ(k)\U
ℓ+1
n+ℓ(A)

φℓ−1

(
uγ̂′γ̂δℓg

)
Ψ−1
n+ℓ(u) du

+
(
φ
(Un−1,1)
ℓ−1

)(Nℓ+1,Ψℓ+1)

(γ̂δℓg) .

If, following [21], we denote

P 1,...,1
n−i,1,...,1(k) =

{(
g x

z

)
∈ GLn(k) : z ∈ Zi(k)

}
then, as above, this gives(

φ(Nℓ,Ψℓ)
)(UG,1)

(g) =
∑

γ∈P 1,1
n−2,1,1(k)\GLn(k)

∫
Uℓ+1

n+ℓ(k)\U
ℓ+1
n+ℓ(A)

φℓ−1 (uγ̂δℓg)Ψ
−1
n+ℓ(u) du

+
∑

γ∈P 1
n−1(k)\GLn(k)

(
φ
(Un−1,1)
ℓ−1

)(Nℓ+1,ψℓ+1)

(γ̂δℓg).

If we, as above, write this in terms of our original φ, so again interchanging a number of
integrals, this becomes(

φ(Nℓ,Ψℓ)
)(UG,1)

(g) =
∑

γ∈P 1,1
n−2,1,1(k)\GLn(k)

∫
X (A)

∫
Uℓ+1

n+ℓ(k)\U
ℓ+1
n+ℓ(A)

φ (uγ̂λδℓg)Ψ
−1
n+ℓ(u) du dλ

+
∑

γ∈P 1
n−1(k)\GLn(k)

∫
X (A)

(
φ(Un−1,1)

)(Nℓ+1,ψℓ+1)

(γ̂λδℓg) dλ.
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Once again, by the cuspidality of φ, we see φ(Un−1,1) ≡ 0 and so we have(
φ(Nℓ,Ψℓ)

)(UG,1)

(g) =
∑

γ∈P 1,1
n−2,1,1(k)\GLn(k)

∫
X (A)

∫
Uℓ+1

n+ℓ(k)\U
ℓ+1
n+ℓ(A)

φ (uγ̂λδℓg)Ψ
−1
n+ℓ(u) du dλ.

Continuing in this fashion inductively, we arrive at the statement of Proposition 5.2.

7. Euler Product Expansion

As a consequence of Theorems 4.2 and 5.1 we can now obtain an Euler product expansion
for the global integrals therein, which will in turn allow us to relate the integrals to the
generic Rankin-Selberg L-functions for GSpin×GL (with arbitrary rank and including the
quasi-split forms).

Recall that A = Ak and we have the embedding G = Gn′ ↪→ H = Hm′ in all cases. We can
summarize the various cases from Sections 4 and 5 in the table below. In each case, we also
indicate the Rankin-Selberg L-function the integral will produce (see below).

case A: Sec.5 integrals case B: Sec.4 integrals

odd

G = GSpin2n ↪−→ H = GSpin2m+1 G = GSpin2n+1 ↪−→ H = GSpin2m
m ≥ n, (ℓ = m− n) m > n, (ℓ = m− n− 1)

L(s, π × τ) for H ×GLn L(s, π × τ) for G×GLm
(G split, H split) (G split, H split)

even

G = GSpin2n+1 ↪−→ H = GSpin2m G = GSpin2n ↪−→ H = GSpin2m+1

m > n, (ℓ = m− n− 1) m ≥ n, (ℓ = m− n)
L(s, π × τ) for H ×GLn L(s, π × τ) for G×GLm
(G split, H quasi-split) (G quasi-split, H split)

Remark 7.1. When we do the so-called “unramified computation” later, following the ideas
of Soudry [34, §12] there will be a certain duality, to be made more precise later, between
the diagonal entries of this table. The case of GSpin2a+1 ×GLb will be related to the case
of GSpin2b×GLa. In the local setting, both will give a Rankin-Selberg L-function of degree
2ab (in q−s). We will discuss this in Section 8.

Remark 7.2. We note, as it is pointed out in [18, page 58], that when H = SO2m+1, Method
A with m = n gives the SO2m+1 × GLm case while Method B when G = SO2n+1 with
m = n + 1 gives SO2n+1 × GLn+1. On the other hand, when H = SO2m, Method A with
n = m−1 gives the SO2m×GLm−1 case while Method B when G = SO2n with m = n gives
the SO2n ×GLn case. These are consistent with our choice of names for (case A) and (case
B). In [18, Part B], Gelbart and Piatetski-Shapiro write down the details of the first and
the last of these four cases. (They also include their Method C that treats the symplectic
groups and remark that they could also be applied to Spin groups.)



RANKIN-SELBERG L-FUNCTIONS FOR GSpin × GL GROUPS 39

Our goal in this section is to factor the right hand sides of the basic identities in Theorems
4.2 and 5.1 as products of local zeta integrals (over all the places of k). Given that the
adelic domains of integration factor over the places of k, we need to show that we may
choose the data in the integrands that also factor and that the resulting local zeta integrals
converge absolutely in some right half plane, not depending on the place of k, and that the
Euler product converges in that half plane. Fortunately, the same proofs as in the case of
special orthogonal groups in [34] and [24] work without the need for much modification; the
existence of the nontrivial center in the general spin groups makes little difference for the
purposes of the results in this section. Therefore, we only briefly review the steps below.

Let π = ⊗vπv be an irreducible, cuspidal, globally ψ-generic, automorphic representation
of G(A) in (case B), resp. of H(A) in (case A). Choose a decomposable φ ∈ Vπ so that the
corresponding Whittaker function Wφ =Wψ

φ in the Whittaker model W(π, ψ) is a product
of local Whittaker functions

Wφ(x) =
∏
v

Wv(xv),

with each Wv a nonzero function in the local Whittaker model W(πv, ψv). In fact, since
W(π, ψ) ̸= {0} by assumption, the map φ 7→Wφ is an isomorphism onto

⊗′
vW(πv, ψv).

Similarly, let τ = ⊗τv be an irreducible, cuspidal, automorphic representation of GLm(A)
in (case B), resp. of GLn(A) in (case A), and assume that fs in (4.2), resp. (5.1), is a
decomposable section. When we apply the GL-Whittaker coefficient on τ with respect to
the character ψ−1 to it, we can write

f (Zm,ψ)
s (y) =

∏
v

fv,s(yv; Im), (case B),

resp.

f (Zn,ψn)
s (y) =

∏
v

fv,s(yv; In), (case A).

Here fs,v is a K-finite holomorphic section in ρτv,s taking values in the local Whittaker
model W(τv, ψ

−1
v ) of τv. For a fixed yv we denote the corresponding Whittaker function in

the Whittaker model of τv by x 7→ fτv,s(yv;x).

We choose a finite set S of places of k, containing all the places at infinity, outside of which
all data are unramified. For v ̸∈ S, we take Wv =W 0

v to be the unique Whittaker function
such that its value at the identity element is 1 and take the function x 7→ fτv,s(I;x) be the
unique spherical and normalized Whittaker function in the corresponding Whittaker model
of τv. Again, denote this unique section by f0v,s.

Theorem 7.1. Let L(φ, fs) be as in Theorem 4.2, resp. Theorem 5.1.

(i) With a choice of data as above, for Re(s) ≫ 0 we have

L(φ, fs) =
∏
v

Lv(Wv, fv,s),
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where the local factor is given by

Lv(Wv, fv,s) = (7.3)

∫
NG(kv)ZG(kv)\G(kv)

Wv(g)
∫

Nℓ(kv)∩β−1Pm(kv)β\Nℓ(kv)

fv,s (βug; Im)Ψℓ,v(u)
−1 du dg, (caseB),

∫
NG(kv)ZG(kv)\G(kv)

fv,s(g; In)
∫

X (kv)

Wv(λδℓg) dλ dg, (caseA).

(7.4)

Here, each local factor Lv converges absolutely in a fixed right half plane independent
of the v and continues to a meromorphic function on the complex plane.

(ii) When v is finite, we can choose the data Wv and fv,s such that Lv(Wv, fv,s) is
identically 1 as a function of s.

(iii) When v is infinite, given s0 ∈ C we can choose the data Wv and fv,s such that
Lv(Wψv

v , fv,s) is holomorphic and nonzero in a neighborhood of s0.

Proof. As we mentioned already the proof follows exactly as in the case of special orthogonal
groups and the existence of the large center in the case of the general spin groups does not
make much of a difference for this proof.

For (i) one starts out by estimating the Whittaker functions Wv(g) in (case B). For the
non-archimedean v this is done exactly as in [34, §2] by estimating the Whittaker function
by a “gauge”, originally introduced by Jacquet, Piatetski-Shapiro, and Shalika in the case
of the general linear groups. These estimates result in the convergence of the local integrals
for Re(s) ≥ s0, with s0 ∈ R only depending on the groups and the embeddings, and not the
place v as in [34, §4] for the non-archimedean v.

For the archimedean places v again we follow Sourdy as in [34, §3] for the estimates, where
one also appeals to results of Dixmier and Malliavin [17]. The convergence then follows as in
[34, §5] for the archimedean v. While Soudry focuses on the odd case in [34] the even case is
also covered in [24]. The analogous results for (case A) are already covered by Ginzburg [20]
and also reviewed by [24] in the even case. Since in the case of the general spin groups we
already divide by the center in the domains of the integrals, no modifications in the above
proofs are necessary and we can conclude (i).

We should note here that the results we cite above show that region of convergence of the
local integrals depend only on the representations, and not on the data Wv and fv,s. The
dependence on the local representations is through their exponents which can be uniformly
bounded. Therefore, when Re(s) is sufficiently large we have convergence that is valid for
all v. Similarly part (ii) proceeds as in [34, §6].

Also, part (iii) follows as in [34, §7]. We need to choose K-finite data and show that the
integral admits meromorphic continuation which is continuous in the input data. Here, the
argument of [35] applies to (case A) and (case B) where we can follow [27, p. 402] in the
spit case. The non-split, quasi-split case for the special orthogonal groups (and for GSpin
groups) has not been yet appeared in a published paper and, as in the SO case in [27], we
assume it for the GSpin groups. □
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8. The Unramified Computations

In this section we compute the local zeta integrals for “unramified data”. This local analysis
allows us to relate Lv(s,Wv, fv,s) in Theorem 7.1 to the local L-functions when v ̸∈ S,
Wv =W 0

v and fv,s = f0v,s and is usually referred to as the “unramfied computation”.

In the split case with n equal, or nearly equal to m, the unramfied computation was already
done for the odd and even special orthogonal groups in [18, Appendix]. More precisely,
Gelbart, Piatetski-Shapiro, and Rallis worked out the cases of SO2n+1 × GLn and SO2n ×
GLn−1 in (case A) and the cases of SO2n+1×GLn+1 and SO2n×GLn in (case B), even though
the emphasis in [18, Appendix] is on the first and last of these four cases. Their method
combines the Casselman-Shalika formula with a decomposition of the symmetric algebra
of polynomials defined on complex matrices of appropriate size on which the (connected
components) of the Langlands duals of the special orthogonal group and the general linear
group act. They then show that the local zeta integral with unramified data is a quotient
of L-functions, by explicitly calculating the integral and the local L-functions as series
in q−s, where q, as usual, denotes the cardinality of the residue field of the local non-
Archimedean field. For the symmetric algebra decomposition they invoke some results of
Ton-That [38, 39].

The unramified computation in the case of SO2n+1 × GLm with m ≤ n was then carried
out by Ginzburg in [20] as well as the case of SO2n×GLm with m ≤ n− 1, where he uses a
certain inductive argument to reduced the proof for the more general m to those of m = n
or m = n− 1 in the odd and even cases, respectively.

Instead of extending Ginzburg’s inductive argument to the general spin groups, we have
followed the original approach of Gelbart, Piatetski-Shapiro, and Rallis mentioned above in
(case A). This is possible because Ton-That’s results on the decomposition of the symmetric
algebra are fortunately available for m ≤ n, resp. m ≤ n− 1, in the odd, resp. even, cases
(and not just m = n and m = n−1 respectively, which is what was used in [18, Appendix]).

However, in (case B) when the rank of the general linear group is larger than the rank of
the SO groups the decomposition of the symmetric algebra becomes too complicated to be
helpful. Soudry [34, §12] then showed how to deal with the case of SO2n+1 × GLm with
m > n by relating the local Rankin-Selberg L-functions in this case to that of SO2m×GLn,
where we already have the (case A) results. E. Kaplan has also extended Soudry’s method
to the case of SO2n ×GLm with m ≥ n as well as considering the quasi-split forms of SO2n

[24]. Kaplan also suggests modifications of the method in [25]. Both Soudry and Kaplan
use a certain uniqueness result that is fortunately now available for the general spin groups
as well thanks to [28]. This allows us to apply Soudry’s ideas in (case B) for the general
spin groups.

As mentioned, we consider the unramified computation for the general spin groups, both
when the rank of the general spin group is larger and when it is smaller than the rank of the
general linear group, following the above works. We also consider the quasi-split case in the
even case, following [24, §3.2.1] where a similar argument is given for the quasi-split even
special orthogonal groups. Given that the method of proof is somewhat different in (case
A) and (case B) as we just explained, we state the results in two separate theorems below
(cf. Theorem 8.1 and Theorem 8.2) even though the statements end up being similar.

For this section only, we let F denote a non-Archimedean local field of characteristic zero
with ring of integers OF and the cardinality of the residue field q = pf . We also fix a
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uniformizer ϖ ∈ OF . The usual p-adic absolute value on F is denoted by | · | = | · |F , with
|ϖ| = q−1. Also, let ψ denote an additive character of F which is unramified, i.e., it is
trivial on OF , but non-trivial on ϖ

−1O.

Recall that we have G = GSpinn′ ↪→ H = GSpinm′ . In (case A) we have either n′ = 2n,
m′ = 2m + 1, and n ≤ m, (odd case) or n′ = 2n + 1, m′ = 2m, and n < m (even case).
In the latter case, H may be quasi-split. Let (π, Vπ) denote an unramified globally ψ-
generic representation of H(F ) and let (τ, Vτ ) be an unramified representation of GLn(F ).
(By unramified we mean a representation which has fixed vectors under the action of the
maximal compact subgroup H(OF ), resp. GLn(OF ). Such a representation is then induced
from an unramified quasi-character of the torus.) The representation τ is determined by its
Frobenius-Hecke or Satake parameter tτ , a semi-simple conjugacy class in GLn(C). Similarly,
let tπ denote the parameter of π, a semi-simple conjugacy class in the Langlands dual
LH. We may take LH ∼= GSp2m(C) when m′ = 2m + 1. When m′ = 2n, we have
LH ∼= GSO2m(C)×Gal(F/F ) when H is split and LH ∼= GSO2m(C)⋊Gal(F/F ) when H
is quasi-split non-split; cf. §2.2.4(B) and (C).

Similarly, in (case B) we let (π, Vπ) denote an unramified globally ψ-generic representation of
G(F ) and let (τ, Vτ ) be an unramified representation of GLm(F ), with n′ = 2n+1, m′ = 2m,
and m > n (odd case), or n′ = 2n, m′ = 2m+1, and m ≥ n (even case). Now, tτ is a semi-
simple conjugacy class in GLm(C) and tπ is a semi-simple conjugacy class in LG. Again,
we may take LG ∼= GSp2n(C) when n′ = 2n+ 1 and we have LG = GSO2n(C)×Gal(F/F )
if n′ = 2n with G split and LG = GSO2n(C) ⋊ Gal(F/F ) if n′ = 2n with G quasi-split
non-split; cf. §2.2.4(B) and (C).

We fix a Haar measure on the additive group F with the volume of OF equal to 1. We can
then use this measure to fix a left Haar measure on G(F ) and H(F ) in such a way that

Vol(uα(OF )) = Vol ({uα(x) : x ∈ F, |x| ≤ 1}) = 1, (8.1)

for all roots α in G and H. Here, the image of uα is the root group associated with α in
the ambient reductive group. In particular, we will have Vol(KG) = Vol(TG ∩KG) = 1 and
similarly for H. Here, KG, resp., KH , denotes the (fixed choice of a) maximal compact in
G(F ), resp., H(F ), and TG, reps. TH , denotes the (fixed) maximal torus in G, resp., H.

We now review some preliminary facts that help us relate the local integrals of Theorem 7.1
to the local L-functions. In the local setting, the local field F will always be the completion
of the number field k at a non-Archimedean place v of k and the local representations π and
τ above will be the component at v of the corresponding global representations bearing the
same names in Sections 4 and 5.

8.1. Symmetric Algebra Decompositions. We next recall some preliminary facts about
the decomposition of a symmetric algebra that is needed for our results. Note that this anal-
ysis is only feasible in (case A) with both parities. Indeed, it is precisely the complications
with the analysis of the symmetric algebra decompositions in (case B) that will force us to
use an alternative method in that case, as we will see below.

We refer to [38, 39] for the details. While the results of Ton-that are proved for the case
when the rank of the classical group is larger than or equal to the rank of GL, Gelbart,
Piatetski-Shapiro and Rallis only used them in the case of equal (or almost equal) ranks in
[18, Appendix]. We should add that Ton-that’s results are for the non-similitude situation.
We will use [38] with m ≥ n when m′ = 2m + 1 and [39] with m > n when m′ = 2m and
make the necessary adjustments in the calculations for the similitude situation.
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Assume that m ≥ n. Let E = Cn×2m denote the space of n× 2m complex matrices. Then

ĜLn = GLn(C) acts on E on the left and Ĥ = GSp2m(C), resp., GSO2m(C), acts on E on
the right. Let S(E∗) denote the symmetric algebra of complex-valued polynomial functions

on E. It becomes a
(
Ĥ × ĜLn

)
-module via

((g1, g2) · P ) (X) = P
(
tg2Xg1

)
, X ∈ E,P ∈ S(E∗), g1 ∈ Ĥ, g2 ∈ GLn(C). (8.2)

Our goal is to decompose this module in a way that is useful for our setting. Recall that the

group Ĥ = GSp2m(C), resp., GSO2m(C), is defined as in [6, §2.3], i.e., it is the connected
component of the group {

g ∈ GL2m(C) : tgJg = µ(g)J
}
, (8.3)

where the 2m× 2m matrix J is defined via

J =


1

. .
.

1
−1

. .
.

−1

 , resp., J =


1

. .
.

1
1

. .
.

1

 , (8.4)

and µ denotes the similitude character. (Notice that the algebraic group defined in (8.3) is
connected for the former J, but it has two connected components for the latter J, cf. [6,
§2.3].)

Next, we introduce two subalgebras I(E∗) and H(E∗) of S(E∗) such that

S(E∗) ∼= I(E∗)⊗H(E∗) (8.5)

as
(
Ĥ × ĜLn

)
-modules. We let I(E∗) be the subalgebra of all Sp2n(C)-, resp., SO2n(C)-

invariant polynomials in S(E∗). Equivalently, I(E∗) is the algebra of polynomials on the
space {

Y = X J tX : X ∈ E
}
,

where J is as in (8.4). The action of GLn(C) on the space of polynomials of degree i in
I(E∗) is given by

Symi
(
∧2(g2)

)
, g2 ∈ GLn(C), or

Symi
(
Sym2(g2)

)
, g2 ∈ GLn(C), (8.6)

respectively, while the action of Ĥ = GSp2m(C), resp., GSO2m(C), is given simply by

µ(g1)
i, g1 ∈ Ĥ, (8.7)

in both cases.

Similarly, H(E∗) denotes the subspace of S(E∗) consisting of Sp2m(C)-, resp., SO2m(C)-
harmonic polynomials. Equivalently, H(E∗) is isomorphic, as Sp2m(C)-, resp., SO2m(C)-
module, to the symmetric algebra of polynomials on the space{

X ∈ E : X J tX = 0
}
.

Let
δ = (k1, k2, . . . , kn) ∈ Zn (8.8)

with k1 ≥ k2 ≥ . . . kn ≥ 0. For such a “dominant” δ we define

δ̄ = (k1, . . . , kn, 0, . . . , 0) ∈ Zm. (8.9)
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LetH(E∗, δ) be the subspace ofH(E∗) consisting of polynomials transforming under GLn(C)
according to the irreducible finite-dimensional representation

ρ
GLn(C)
δ (g2), g2 ∈ GLn(C),

of highest weight δ. Then, as an Ĥ-module, H(E∗, δ) is equivalent to the representation

ρĤ(δ̄;tr δ)(g1), g1 ∈ Ĥ,

where

ρĤ(δ̄;tr δ)(g1) =


µ(g1)

tr δ · ρSp2m(C)
δ̄

(g1) , if g1 ∈ GSp2m(C),

µ(g1)
tr δ · ρSO2m(C)

δ̄
(g1) , if g1 ∈ GSO2m(C),

(8.10)

with

g1 = µ(g1)
−1/2g1 ∈ Sp2m(C), resp., SO2m(C). (8.11)

We recall here that an irreducible finite-dimensional representation of Ĥ = GSp2m(C), resp.,
GSO2m(C), is given as

ρ((k1,k2,...,km),k0)(g) = µ(g)k0 · ρ(k1,k2,...,km) (ḡ) , g ∈ Ĥ,

where (k1, k2, . . . , km) ∈ Zm satisfies k1 ≥ . . . kn ≥ 0, k0 ∈ Z, and ρ(k1,k2,...,km) denotes the
irreducible finite-dimensional representation of Sp2m(C), resp., SO2m(C), of highest weight
(k1, . . . , kn). It follows that

tr Symr (g1 ⊗ g2) = (8.12)

∑
2i+j=r

tr Symi(∧2g2)µ(g1)
i

∑
tr δ=j

δ dominant

µ(g1)
jχ

Sp2m(C)
δ̄

(g1)χ
ĜLn

δ (g2), if Ĥ = GSp2m(C),

∑
2i+j=r

tr Symi(Sym2g2)µ(g1)
i

∑
tr δ=j

δ dominant

µ(g1)
jχ

SO2m(C)
δ̄

(g1)χ
ĜLn

δ (g2), if Ĥ = GSO2m(C).

8.2. The Casselman-Shalika Formula. The Casselman-Shalika formula [14] evaluates
the normalized spherical Whittaker function of an unramified representation of a connected
reductive group. Here, normalized means that we choose the Whittaker function to have
the value 1 at the identity as we explained in Section 7. For a split group one can combine
the formula with the Weyl character formula (for the dual group) to arrive at the form we
state below, as can be found, for example, in [8, §3]. When the group is a quasi-split general
spin group, we modify the formula accordingly.

Consider an irreducible, admissible, unramified representation π of the F -points of a split,
connected, reductive group G (over F ), with a fixed Borel B = TUG, where T is a maximal
torus and UG is the unipotent radical of B. Let χ be an unramified character of UG and
let W 0 ∈ W(π, χ) denote a normalized spherical Whittaker function. Then, W 0 is right
KG-invariant and satisfies W (1) = 1. Hence, it is completely determined by its values
on T (F ) = TG(F ) and in fact, as we will recall below, by the dominant elements t in
T (F )/T (OF ). Here, dominant means that |α(t)| ≤ 1 for all simple roots α.

Moreover, there is a parametrization of the irreducible representations of the complex dual

group Ĝ by the dominant elements t in T (F )/T (OF ). Let tλ be such a dominant element
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and assume that it corresponds to the representation whose character χλ has highest weight
vector λ. Then the Casselman-Shalika formula can be stated as

W 0(tλ) = δG(tλ)
1/2χĜλ (tπ), (8.13)

where δG denotes the modulus character of the standard Borel subgroup in G and tπ denotes
the semi-simple conjugacy class in the complex dual group parametrizing π. See [37, Prop.
1] for another example of the formulation (8.13).

We recall the explicit form of the tπ for the groups of interest to us. Let π = IndGBG
(µ),

where µ is a character of TG(F ). When G = GLm, we have µ = χ1 ⊗ · · · ⊗ χm, with χi
unramified quasi-characters of F×. Similarly, when G = GSpin2n+1 or GSpin2n (split),
we have µ = χ0 ⊗ χ1 ⊗ · · ·χn. Here, χ0 is the pullback of the central character of π to
e∗0(GL1(F )). Then, a representative tπ for the semi-simple conjugacy class in the dual
group corresponding to π is given by

tπ =


diag (χ1(ϖ), . . . , χm(ϖ)) ∈ GLm(C) if G = GLm,

diag
(
χ1(ϖ), . . . , χn(ϖ), χ−1

n χ0(ϖ), . . . , χ−1
1 χ0(ϖ)

)
∈ GSp2n(C) if G = GSpin2n+1,

diag
(
χ1(ϖ), . . . , χn(ϖ), χ−1

n χ0(ϖ), . . . , χ−1
1 χ0(ϖ)

)
∈ GSO2n(C) if G = GSpin2n.

(8.14)

Next, assume that G = GSpina2n with a a non-square in F× is quasi-split, but not split over
F . Let E = F (

√
a) be a quadratic extension of F over which G splits, cf. §2.2.4(C). Then

TG(F ) = F× ×
(
F×)n−1 ×GSpina2(F )

with GSpina2(F ) =
(
ResE/F GL1

)
(F ) = E×. The unramified character µ of TG(F ) can

be written as µ = χ0 ⊗ χ1 ⊗ · · ·χn−1 ⊗ χ ◦ NormE/F , and we may identify tπ ∈ LG ∼=
GSO2n(C)⋊Gal(E/F ) with

tπ = diag

(
χ1(ϖ), . . . , χn−1(ϖ),

(
α βa
β α

)
, χ−1

n−1χ0(ϖ), . . . , χ−1
1 χ0(ϖ)

)
∈ GL2n(C),

with α2 − aβ2 = χ0(ϖ).

We also let

t′π = diag
(
χ1(ϖ), . . . , χn−1(ϖ), χ−1

n−1χ0(ϖ), . . . , χ−1
1 χ0(ϖ)

)
∈ GSp2(n−1)(C). (8.15)

Then, the analog of the Casselman-Shalika formula for G becomes

W 0(tλ) = δG(tλ)
1/2χ

GSp2(n−1)

λ (t′π). (8.16)

8.3. Local Identity. We now state and prove the main results of this section: the compu-
tation of the integrals with unramified data.

Let ω denote the character of F× such that π(e∗0(λ)) = ω(λ) IdVπ
with e∗0 is as in Section 2.

For s ∈ C consider the representation τs = τ |det |s ⊗ ω−1 of M(F ) ∼= GLn(F )×GL1(F ) in
(case A), resp., of M(F ) ∼= GLm(F )×GL1(F ) in (case B), and define ρs, a representation
of G(F ), resp., H(F ), similar to the global setting in (5.1), resp., (4.2), as follows:

ρs =


Ind

G(F )
Pn(F ) (τs) , (case A),

Ind
H(F )
Pm(F ) (τs) , (case B).

(8.17)
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Let W 0
π be the unique spherical and normalized Whittaker function in the ψ-Whittaker

model of π. Also, let f0s be unramified and normalized so that the vector-valued function
b → f0s (e, b), taking values in the ψ−1-Whittaker model of τ , is the normalized Whittaker
function of the general linear group. Here, e denotes the identity element of G(F ) or H(F )
as appropriate.

Similar to the global situation, for Re(s) ≫ 0, we set

ξ(W 0
π , f

0
s ) =

∫
NG(F )ZG(F )\G(F )

f0s (g; In)
∫

X (F )

W 0
π (λδℓg) dλ dg, (caseA),

∫
NG(F )ZG(F )\G(F )

W 0
π (g)

∫
Nℓ(F )∩β−1Pm(F )β\Nℓ(F )

f0s (βug; Im)Ψℓ(u)
−1 du dg, (caseB),

(8.18)

where β is as in Theorem 4.2 and δℓ is as in Theorem 5.1.

As we mentioned before, there is a significant difference in the way unramified computation
is carried out in (case A) versus (case B), due to the feasibility of the symmetric algebra de-
compositions. Therefore, we consider these two cases separately even though the statements
of the results are similar. We first consider (case A).

Theorem 8.1. Let π be an irreducible, admissible, unramified, globally ψ-generic repre-
sentation of H(F ) where H = GSpin2m+1 referred to as the (odd case), or H = GSpin2m,
possibly non-split quasi-split, referred to as the (even case). Assume that n ≤ m in the (odd
case), or n < m in the (even case). Let τ be an irreducible, admissible, unramified, globally
ψ−1-generic representation of GLn(F ) as above. Choose W 0

π and f0s as before. With the
Haar measures normalized as in (8.1), we have

ξ(W 0
π , f

0
s ) =



L(s, π × τ)

L (2s, τ,∧2 ⊗ ω)
, (case A), odd,

L(s, π × τ)

L
(
2s, τ, Sym2 ⊗ ω

) , (case A), even, split,

L(s, π × τ)

L (2s, τ,∧2 ⊗ ω)
, (case A), even, quasi-split.

(8.19)

(Refer to the table in Section 7 for the details of the cases.)

Proof. Recall that we have the embeddings

G = GSpin2n ↪→ H = GSpin2m+1, n ≤ m, (case A–odd),

G = GSpin2n+1 ↪→ H =

{
GSpin2m, split,

GSpina2m, quasi-split non-split,
n < m, (case A–even).

The above embeddings induce embeddings at the level of F -points. By the Iwasawa decom-
position, we have

G(F ) = NG(F )TG(F )KG = NG(F )ZG(F )T1(F )KG(F ), (8.20)
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where KG is the maximal compact subgroup of G(F ), ZG(F ) denotes the connected com-
ponent of the center of G(F ), and

T1 =
{
t = e∗1(t1) · · · e∗n(tn) : ti ∈ F×} . (8.21)

Below we will also employ t to denote the image of t under the embedding of G(F ) into

H(F ) as well as the element


t1

t2
. . .

tn

 ∈ GLn(F ), i.e., we are using t to denote

the related elements in GLn(F ), G(F ) and H(F ). Given these identifications, we may write

f0s (t; In) = δ
1/2
Pn

(t) | det t |s W 0
τ (t) (8.22)

where W 0
τ (t) is the normalized spherical Whittaker function in the ψ−1-Whittaker model of

τ (a representation of GLn(F )).

The integrand on the right hand side of (8.18) is invariant under multiplying g on the right
by an element in KG and a central element on the left. Given our normalization of the Haar
measures, this means that the integral reduces to∫

T1(F )

W 0
τ (t) | t1t2 . . . tn |s+u δ−1

G (t)

∫
X (F )

W 0
π (λδℓt) dλ dt, (8.23)

where

u =


n−2
2 , odd case,

n−1
2 , even case,

(8.24)

and δG denotes the modulus function of the Borel subgroup of G(F ) (restricted to T1).

Next, we dispose of the integration over X (F ). Here, we can argue as in [20, p. 176] or [34,
p. 98]. For each t we have W 0

π (λδℓt) = 0 unless λ ∈ X (OF ) ⊂ KH . This follows from the
facts that δℓ ∈ KH , that W 0

π is right KH invariant, and that δℓt normalizes X (F ), leading,
by (5.2), to a change of variables dλ→ |det t|−ℓdλ. where, as in Section 5,

ℓ =


m− n, odd case,

m− n− 1, even case.

(8.25)

Therefore, our integral reduces to

ζ(s,W 0
π ,W

0
τ ) =

∫
T1(F )

W 0
π (t)W

0
τ (t)|t1t2 . . . tn|s+u−ℓ δ−1

G (t) dt. (8.26)

We are reduced to proving that

L(2s, τ,∧2 ⊗ ω) · ζ(s,W 0
π ,W

0
τ ) = L(s, π × τ) (8.27)

in the odd case,
L(2s, τ, Sym2 ⊗ ω) · ζ(s,W 0

π ,W
0
τ ) = L(s, π × τ) (8.28)

in the even split case, and

L(2s, τ,∧2 ⊗ ω) · ζ(s,W 0
π ,W

0
τ ) = L(s, π × τ) (8.29)

in the even quasi-split case.
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We prove the two sides of (8.27), resp., (8.28) and (8.29), have equal coefficients when
expanded as power series in q−s. We start by expanding ζ(s,W 0

π ,W
0
τ ).

By [14, Lemma 5.1] we have W 0
π (t) ≡ 0 unless

|α(t)| ≤ 1 (8.30)

for all simple roots α of H, and W 0
τ (t) ≡ 0 unless

|α(t)| ≤ 1 (8.31)

for all simple roots α of G appearing in the Levi Mn. Therefore, (8.30) implies that

ord(t1) ≥ · · · ≥ ord(tn) ≥ 0 (8.32)

while (8.31) implies that

ord(t1) ≥ · · · ≥ ord(tn). (8.33)

Notice the crucial fact that the last inequality in (8.32) holds because of the structure of
the root system of H (both odd and even case), and the fact that n ≤ m in the odd case
and n < m in the even case (and that tn+1 = · · · = tm = 1, i.e., they do not appear).

For δ as in (8.8) and δ̄ as in (8.9), set

ϖδ = e∗1(ϖ
k1) · · · e∗n(ϖkn) ∈ T1(F ) ⊂ G(F ) (8.34)

and write ϖδ̄ for its image in the maximal torus of H(F ) under the embedding. We will
also use ϖδ to denote the diagonal element in GLn(F ). Also, write

tr δ = tr δ̄ = k1 + k2 + · · ·+ km. (8.35)

Our integral then reduces to

ζ(s,W 0
π ,W

0
τ ) =

∑
δ=(k1,··· ,kn)

dominant

W 0
π (ϖ

δ̄)W 0
τ (ϖ

δ)δ−1
G (ϖδ)q−(s+u−ℓ) tr δ, (8.36)

with u as in (8.24) and ℓ as in (8.25). Using the Casselman-Shalika formulas (8.13) in the
split case and (8.16) in the quasi-split case, we have

W 0
τ (ϖ

δ) = δ
1/2
GLn

(ϖδ)χĜLn

δ (tτ ) (8.37)

and

W 0
π (ϖ

δ̄) = δ
1/2
H (ϖδ̄) ·



χ
GSp2m

(δ̄;tr δ)
(tπ), odd, split

χGSO2m

(δ̄;tr δ)
(tπ), even, split

χ
GSp2(m−1)

(δ̄;tr δ)
(t′π), even, quasi-split

(8.38)

with t′π as in (8.15). Also, by (8.11), the right hand sides of (8.38) are equal to

δ
1/2
H (ϖδ̄) ·



µ(tπ)
tr δχ

Sp2m

δ̄
(t̄π), odd, split,

µ(tπ)
tr δχSO2m

δ̄
(t̄π), even, split,

µ(t′π)
tr δχ

Sp2(m−1)

δ̄
(t̄′π), even, quasi-split.

(8.39)

(Note that by (8.15) we know that µ(tπ) = µ(t′π) in the even, quasi-split case.)
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For t ∈ T1(F ) as in (8.21) (where tn+1 = · · · = tm = 1) we see from the root data that

δG(t) =


∣∣t2n−2
1 t2n−4

2 · · · t0n
∣∣ , odd case,

∣∣t2n−1
1 t2n−3

2 · · · t1n
∣∣ , even case,

δH(t) =


∣∣t2m−1
1 t2m−3

2 · · · t2m−2n+1
n

∣∣ , odd case,

∣∣t2m−2
1 t2m−4

2 · · · t2m−2n
n

∣∣ , even case,

and

δGLn
(t) =

∣∣tn−1
1 tn−3

2 · · · t1−nn

∣∣ .
Therefore, for t as in (8.21)

δG(t) = δ
1/2
H (t) · δ1/2GLn

(t) ·


|t1 · · · tn|

3n−2m−2
2 , odd case,

|t1 · · · tn|
3n−2m+1

2 , even case.

(8.40)

Substituting in (8.36) we get

ζ(s,W 0
π ,W

0
τ ) =



∑
δ=(k1,··· ,kn)

dominant

µ(tπ)
tr δχ

Sp2m(C)
δ̄

(t̄π)χ
ĜLn

δ (tτ )q
−s tr δ, odd, split,

∑
δ=(k1,··· ,kn)

dominant

µ(tπ)
tr δχ

SO2m(C)
δ̄

(t̄π)χ
ĜLn

δ (tτ )q
−s tr δ, even, split,

∑
δ=(k1,··· ,kn)

dominant

µ(t′π)
tr δχ

Sp2(m−1)(C)
δ̄

(t̄′π)χ
ĜLn

δ (tτ )q
−s tr δ, even, quasi-split.

(8.41)

Next, recall the well-known identity

det(I −AX)−1 =

∞∑
r=0

tr (Symr(A))Xr, (8.42)

where A is an arbitrary square complex matrix andX is a sufficiently small complex variable.
Applying this identity to A =

(
ω(ϖ) ∧2 (tτ )

)
, resp., A =

(
ω(ϖ)Sym2(tτ )

)
, we obtain

L(2s, τ, R⊗ ω) = det
(
I − ω(ϖ)(Rtτ )q

−2s
)−1

(8.43)

=

∞∑
i=0

tr
(
Symi (ω(ϖ)Rtτ )

)
q−2is

=

∞∑
i=0

ω(ϖ)i tr Symi (Rtτ ) q
−2is

where

R =


∧2 odd case,

Sym2 even, split case,

∧2 even, quasi-split case.

(8.44)
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Multiplying (8.41) by (8.43), we see that the left hand side of (8.27), resp., (8.28), (8.29),
is equal to

∞∑
r=0

 ∑
2i+j=r

tr Symi
(
∧2tτ

)
ω(ϖ)i

∑
tr δ=j

δ dominant

µ(tπ)
jχ

Sp2m(C)
δ̄

(t̄π)χ
ĜLn

δ (tτ )

 q−sr (8.45)

in the odd case, to

∞∑
r=0

 ∑
2i+j=r

tr Symi
(
Sym2tτ

)
ω(ϖ)i

∑
tr δ=j

δ dominant

µ(tπ)
jχ

SO2m(C)
δ̄

(t̄π)χ
ĜLn

δ (tτ )

 q−sr (8.46)

in the even, split case, and to

∞∑
r=0

 ∑
2i+j=r

tr Symi
(
∧2tτ

)
ω(ϖ)i

∑
tr δ=j

δ dominant

µ(tπ)
jχ

Sp2(m−1)(C)
δ̄

(t̄′π)χ
ĜLn

δ (tτ )

 q−sr (8.47)

in the even, quasi-split case.

On the other hand, the right hand sides of (8.27), resp., (8.28), (8.28), are

L(s, π × τ) = det
(
I − (tπ ⊗ tτ )q

−s)−1
=

∞∑
r=0

tr Symr (tπ ⊗ tτ ) q
−sr (8.48)

and it is enough to verify that tr Symr (tπ ⊗ tτ ) is equal to the expression in brackets in
(8.45) in the odd case, in (8.46) in the even split case, and in (8.47) in the even, quasi-
split case. We do this with the help of our earlier discussion of the symmetric algebra
decompositions in Section 8.1. Noting that µ(tπ) = ωπ(ϖ) = ω(ϖ), the equation (8.12)
finishes the proof. □

Next we consider (case B).

Theorem 8.2. Let π be an irreducible, admissible, unramified, globally ψ-generic repre-
sentation of G(F ) where G = GSpin2n+1 referred to as the (odd case), or G = GSpin2n,
split or non-split quasi-split, referred to as the (even case). Assume that m > n in the odd
case or m ≥ n in the even case. Let τ be an irreducible, admissible, unramified, globally
ψ−1-generic representation of GLm(F ) as above. Also, choose W 0 and f0s as before. With
the Haar measures normalized as in (8.1), we have

ξ(W 0
π , f

0
s ) =



L(s, π × τ)

L (2s, τ,∧2 ⊗ ω)
, (case B), odd,

L(s, π × τ)

L
(
2s, τ, Sym2 ⊗ ω

) , (case B), even, split.

L(s, π × τ)

L (2(s), τ,∧2 ⊗ ω)
, (case B), even, quasi-split.

(8.49)

Here, ξ(W 0
π , f

0
s ) is as in (case B) of (8.18). (Again refer to the table in Section 7 for the

details of the cases.)
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Proof. The proof in the non-split quasi-split case is a little more involved than the split case
so we present them separately, indicating the extra issues in that case. In the split cases, we
follow Soudry’s technique for the odd special orthogonal groups [34, §12] and its adaptation
to the even special orthogonal case by Kaplan [24, §3.2.3].

The split cases. We first deal with the odd case. The even split case will be similar, as we
explain below. Since π is in general a quotient of a full parabolically induced representation
from an unramified representation of the Siegel Levi, we may assume that

π = Ind
G(F )

P̄n(F )
(σ ⊗ ω)

with σ an unramified representation of GLn(F ) and ω = ωπ the central character of π. Here,
P̄n =MnN̄n denotes the opposite of the Siegel parabolic Pn (cf. 3.2.2).

Let ϕ be a function in Vπ and assume that for g ∈ G(F ), ϕ(g) takes values in W(σ ⊗ ω, ψ).
As a function of g it is smooth and

ϕ(a0ȳg) = |det a0|−n/2ϕ(g)

for ȳ ∈ N̄n(F ) and a0 ∈ GLn(F ) considered as the factor in the Siegel Levi of G(F ).
Consider

Wϕ(g) =

∫
Nn(F )

ϕ(yg)ψ−1
n (y) dy, (8.50)

with ψn obtained from ψ as in Section 4 (with everything local now). We formally have

Wϕ(ug) = ψn(u)Wϕ(g), u ∈ Nn(F ), g ∈ G(F ).

However, the integral (8.50) may not converge absolutely. To remedy this problem, we
replace σ by

σζ = σ ⊗ | det ·|−ζ

for Re(ζ) ≫ 0. Replacing σ by σζ and taking a holomorphic section ϕζ instead of ϕ, we see
just as in [34] that the integral defining Wϕζ

converges absolutely for Re(ζ) large enough
and has a continuation to a holomorphic function on the whole plane. This is seen exactly
as in the case of special orthogonal groups by noting that the integral (8.50) always has a
principal value and if ϕζ is a standard section, this principal value is a polynomial in q−ζ .
Thus, for Re(ζ) large enough,Wϕζ

(g) is a polynomial in q−ζ which provides the holomorphic
continuation (cf. [34, §12]).

Choose the vector ϕ0ζ = ϕ0σ,ζ that gives the normalized unramified Whittaker functionW 0
σ ∈

W(σ, ψ). It follows from the Casselman-Shalika formula [14] (see also [32, Remark 3.5.14])
that

W 0
π =Wϕ0

σ,ζ
(I)−1Wϕ0

σ,ζ
= L(1 + 2ζ, σ̂,Sym2 ⊗ ω)Wϕ0

σ,ζ
.

The proof now proceeds the same way as in [34, §12] and we briefly review the steps indi-
cating the points of difference with our case, which include the appearance of the twisted
versions of the symmetric and exterior square L-functions. We should also mention that
the local γ- and ϵ-factors enter in the steps, which we did not define earlier. However, these
factors, which are defined via applying intertwining operators to ρs, are defined for the
GSpin groups in [28].
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Using the above expression for W 0
π and proceeding as in [34, §12] we see that ξ(W 0, f0s ) is

equal to

L(1 + 2ζ, σ̂,Sym2 ⊗ ω)

γ(s− ζ, σ × τ, ψ−1)L(2s, τ,∧2 ⊗ ω)

times a double integral. This double integral can be manipulated just as in [34, pp. 97–
98] as the presence of the center in the GSpin case does not disturb those arguments.
As a result, the double integral is seen to represent the Rankin-Selberg convolution for
GSpin(2m)×GL(n) (as in (case A) we considered earlier), which is equal to

L(ζ1 + (s− 1/2), τ × σ̂ω)L(ζ1 − (s− 1/2), τ̂ × σ̂)

L(2ζ1, σ̂,Sym
2 ⊗ ω)

·

with ζ1 = ζ+ 1
2 . As we pointed out above, the only new phenomenon is the appearance of the

central character ω and the twisted symmetric square L-function in the above expression.
Therefore,

ξ(W 0, f0s ) =
L(s− ζ, σ × τ)L(s+ ζ, σ̂ω × τ)

L(2s, τ,∧2 ⊗ ω)
·

Finally, note that the above equalities are all in the sense of equality of rational functions
in q−s and q−ζ in their region of convergence and have analytic continuation to ζ = 0. As
such, since they are defined for ζ = 0, we may indeed substitute ζ = 0. Consequently we
obtain

ξ(W 0, f0s ) =
L(s, σ × τ)L(s, σ̂ω × τ)

L(2s, τ,∧2 ⊗ ω)
=

L(s, π × τ)

L(2s, τ,∧2 ⊗ ω)
·

This finishes the proof in the odd case. The even case proceeds in a similar way. The steps,
for the even special orthogonal groups, are detailed in [24, §3.2.3]. As above, the same steps
go through in the split general spin groups, except for the fact that again ω appears and
now twisted symmetric square L-function shows up. Again, similar to the above, we will
have

ξ(W 0, f0s ) =
L(s, π × τ)

L
(
2s, τ, Sym2 ⊗ ω

) ·
The non-split quasi-split case. It only remains to consider the case where G is non-split,
quasi-split, i.e., when G = GSpin∗2n = GSpina2n, as in Section 2.2.3, and H = GSpin2m+1

with m ≥ n. (Recall that a quasi-split GSpin2n+1 is already split, so covered above.) In
this case, the technique described above does not quite extend in a straightforward way
due to “the presence of the compact modulo center GSpin∗2 in the middle” so we need to
make some modifications in the proof. Here, we can follow the similar proof for the case of
non-split quasi-split even special orthogonal groups due to E. Kaplan in his thesis [24, §3.2.3
and §7.2.3] and in [26]. Essentially, we may assume the representation π of GSpin∗2n is (a
quotient of) an induced representation from GLn−1 × GSpin∗2 and Kaplan’s arguments go
through because the presence of the center in the general spin groups does not impact those
arguments. Along the way one also needs a local multiplicity at most one result [1, 30],
which fortunately for the case of GSpin2n × GLm with n ≤ m is now available due to the
work of E. Kaplan, J.-F. Lau and B. Liu [28, Theorem 3.3]. Similar results hold for the
case of GSpin2n+1 × GLm with n < m as in [34, §8.3], where it is worked out for the odd
special orthogonal groups, and similar to [28]. (There is typo in [34, §8.3] where (1.2.4)
is for ℓ < n in the notation of that paper.) To complete the proof in the case of special
orthogonal groups Kaplan uses a formal identity of power series [26, (4)] which follows from
[9], particularly its Appendix, and one would use an analog of that for GSpin groups. □



RANKIN-SELBERG L-FUNCTIONS FOR GSpin × GL GROUPS 53

9. Global L-functions

We now state the major consequence of the above discussions in the global setting, which
we need. We use the notation of the earlier sections.

Let G and H be as in (case A), resp. (case B), of the Table in Section 7. In (case A) consider
H ×GLn as the Levi of a maximal parabolic inside a larger GSpin group of the same type
and similarly in (case B) consider G × GLm as the Levi of a maximal parabolic inside the
larger GSpin group. This is the setup for the Langlands-Shahidi method and in the cases we
are considering the adjoint action of the dual of the Levi on the unipotent radical of the dual
parabolic decomposes into two irreducible components. The first component is the tensor
product representation, leading to the Rankin-Selberg L-functions. The second component,
ϱ, will be either the twisted symmetric square or the twisted exterior square representation
of the complex GLn ×GL1, resp. GLm ×GL1. To be more precise, we have

ϱ =


∧2 ⊗ ω, (case A) or (case B) , odd,

Sym2 ⊗ ω, (case A) or (case B), even, split,

∧2 ⊗ ω, (case A) or (case B), even, quasi-split,

(9.1)

where ω denotes the character on GL1.

Theorem 9.1. Let π be a unitary, cuspidal, globally generic, automorphic representation of
H(A) in (case A), resp. of G(A) in (case B), and let τ be a unitary, cuspidal representation
of GLn(A), resp. of GLm(A). Let ω be as in (4.1) (essentially the central character ωπ of
π). Let S be a sufficiently large finite set of places, including all the archimedean places,
such that for v ̸∈ S all data are unramified. Then we have

L(φ, fs) =
LS(s, π × τ)

L (2s, τ, ϱ)
·R(s), (9.2)

where, R(s) is a meromorphic function, which can be made holomorphic and nonzero in a
neighborhood of any given s = s0 for an appropriate choice of φ and fs as in (4.2) or (5.1).
Here, L(φ, fs) is as in Theorem 4.2 or Theorem 5.1, as appropriate, and ϱ is as in (9.1)

Proof. The theorem follows from Theorems 8.1 and 8.2 if we take R(s) to be equal to the
product of the local zeta integrals (7.3) over v ∈ S. The fact that R(s) is meromorphic is
clear. To show that it can be made holomorphic in the neighborhood of any point s = s0
the argument in [34, §§6-7] applies. The presence of the nontrivial center in the GSpin case
does not have an impact on those arguments. □

As a corollary we obtain the following result, which is the precise statement we already used
in an earlier work as [7, Prop. 4.9].

Proposition 9.2. Let π be globally generic unitary cuspidal automorphic representations
of GSpin2n+1(A) or GSpin2n(A) and let τ be a unitary cuspidal automorphic representation

of GLn(A), as above. If LS(s, π × τ) has a pole at s0 with Re(s0) ≥ 1, then for a choice of
fs the Eisenstein series E(h, fs) has a pole at s = s0.

Proof. This statement follows immediately from Theorem 9.1. Recall that any pole of
L(φ, fs) must come from a pole of the Eisenstein series that is used to define it. Moreover,
the twisted symmetric and twisted exterior square L-functions appearing on the right hand
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sides in Theorem 9.1 are holomorphic in Re(s) ≥ 1 so they can not cancel a possible pole of
L(s, π × τ).

We note that it follows from [15, Appendix] that the above argument holds for generic
representations with respect to an arbitrary ψ and any particular “standard” one that we
may have fixed. This issue is relevant when the some of our groups are not of adjoint type,
as here. See [15, Appendix] for more details. □
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Boston, Inc., Boston, MA, 1998.
[37] B. Tamir. On L-functions and intertwining operators for unitary groups. Israel J. Math., 73 (1991),

161–188.

[38] T. Ton-That. Lie group representations and harmonic polynomials of a matrix variable. Trans.
Amer. Math. Soc. 216 (1976), 1–46.

[39] T. Ton-That. On holomorphic representations of symplectic groups. Bull. Amer. Math. Soc. 81

(1975), no. 6, 1069–1072.
[40] P. Yan and Q. Zhang. Product of Rankin-Selberg convolutions and a new proof of Jacquet’s local

converse conjecture. Preprint. Available at arXiv:math.RT/2309.10445.

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078–1058, USA

Email address: asgari@math.okstate.edu

Department of Mathematics, Ohio State University, Columbus, OH 43210, USA

Email address: cogdell@math.osu.edu

Mathematics Department, Purdue University, West Lafayette, IN 47907, USA

Email address: shahidi@math.purdue.edu


