SOME TWO-ADIC DOUBLE COSETS

MAHDI ASGARI AND DAN BARBASCH

The Iwahori-Hecke algebras are important tools in the study of representations of p-adic groups among other things (cf. [Bu]). One often considers the algebra of complex valued functions that are bi-invariant under an Iwahori subgroup. However, it also desirable to consider such algebras for "deeper" compact open subgroups. This is particularly interesting, and often overlooked, for the dyadic fields (p=2). The dyadic case is particularly important for Representation Theory of non-linear covers of linear algebraic groups (cf. [AB]). In this short note we consider a related combinatorial question (cf. Questions 1 and 2 below) for the special linear group.

Let $\mathbb{F} = \mathbb{Q}_2$ denote the two-adic local field and let $\mathcal{O} = \mathbb{Z}_2$ be its ring of integers, containing the unique maximal ideal $\mathcal{P} = \varpi \mathcal{O}$, generated by the fixed uniformizer $\varpi = 2$.

Let $G = \mathrm{SL}_n(\mathbb{F})$, the special linear group of $n \times n$ matrices with entries in \mathbb{F} and determinant 1. As usual, we let T denote the diagonal matrices, U^+ the unipotent upper triangular matrices, and U^- the unipotent lower triangular matrices in SL_n . The roots of G (in the usual Bourbaki notation) will be denoted by $\Phi = \Phi^+ \sqcup \Phi^-$, with Φ^+ the positive roots and $\Phi^- = -\Phi^+$ the negative roots. Also, let $\mathcal{W} \cong \mathcal{S}_n$ denote the Weyl group of G.

For an intger $m \geq 0$, let $U_m^+ = U^+(\mathcal{P}^m)$ and $U_m^- = U^-(\mathcal{P}^m)$. Moreover, let $T_0 = T(\mathcal{O}^{\times})$. The standard *Iwahori subgroup* of G will be denoted by \mathcal{I} . In other words, \mathcal{I} is the subgroup of $\mathrm{SL}_n(\mathcal{O})$ generated by T_0 , U_0^+ and U_1^- . Also, let \mathcal{I} denote the subgroup generated by T_0 , U_0^+ and U_2^- . In other words, \mathcal{I} , resp. \mathcal{I} , is the subgroup of matrices in $\mathrm{SL}_n(\mathcal{O})$ that are unipotent upper triangular when reduced modulo \mathcal{P} , resp., \mathcal{P}^2 .

In this short note, we would like to consider the following.

Question 1. How many distinct \mathcal{J} -double cosets are there in \mathcal{I} ?

And more generally:

Question 2. For $w \in W$ how many distinct \mathcal{J} -double cosets are there in $\mathcal{I}w\mathcal{I}$?

In other words, we would like to compute the cardinality of $\mathcal{J}\setminus \mathcal{I}w\mathcal{I}/\mathcal{J}$. As is well known, these types of questions are related to the study of dyadic Iwahori-Hecke algebras for "deeper" subgroups of the Iwahori, such as the group \mathcal{J} . The answer turns out to be a bit more straightforward to state for for w=1 (cf. Theorem 3) than it is for a general Weyl element w (cf. Theorem 13).

We consider the case of w = 1 first.

Theorem 3. Let $\mathbb{F} = \mathbb{Q}_2 \supset \mathcal{O} = \mathbb{Z}_2 \supset \mathcal{P} = \varpi \mathcal{O}$ and let $G = \operatorname{SL}_n(\mathbb{F}) \supset \mathcal{I} \supset \mathcal{J}$, as above. Then \mathcal{I} is a disjoint union of B(n) distinct \mathcal{J} -double cosets. Here, B(n) denotes the n-th Bell number, i.e., the number of partitions of the set $\{1, 2, \ldots, n\}$. (See Remark 4 for more details about B(n).)

1

Remark 4 (Bell and Stirling Numbers). For an integer $n \geq 0$, the n-th Bell number B(n) (named after Eric T. Bell) is defined to be the number of all possible partitions of the set $[n] = \{1, 2, \ldots, n\}$, or equivalently, the number of equivalence relations on [n]. For example, B(0) = B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, B(5) = 52, etc. In fact, an elementary counting argument shows that the Bell numbers satisfy the recurrence relation

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k). \tag{5}$$

We also recall the *Stirling number of the second kind* S(n,k), which denotes the number of partitions of [n] into k non-empty parts. For $n \ge 1$ we clearly have

$$B(n) = \sum_{k=1}^{n} S(n, k).$$
 (6)

See [St, (1.94a)–(1.94f)] for further basic formulas for the Bell and Stirling numbers.

Proof of Theorem 3. Using the usual notation, for $a \in \mathbb{F}$ and $i \neq j$, let us write $x_{ij}(a)$ for the root group associated with the root $\epsilon_i - \epsilon_j$ of SL_n . In other words, $x_{ij}(a)$ is the element of G with 1's on the diagonal, a as the (i,j)-entry, and zeros everywhere else. For i > j let us write $y_{ij} = x_{ij}(\varpi)$. Also, for any subset $S \subseteq \Phi^- = \{(i,j) : n \geq i > j \geq 1\}$, where Φ^- is equipped with a fixed total order, the choice of which will not matter, write

$$y_S = \prod_{(i,j) \in S} y_{ij}$$
 (in the fixed order).

Finally, write

$$\mathcal{Y} = \{ y_S : S \subseteq \Phi^- \}. \tag{7}$$

Since we have the Iwahori factorizations

$$\mathcal{I} = U^{-}(\mathcal{P})T(\mathcal{O}^{\times})U^{+}(\mathcal{O})$$
 and $\mathcal{J} = U^{-}(\mathcal{P}^{2})T(\mathcal{O}^{\times})U^{+}(\mathcal{O}),$

for $g=u^-tu^+\in\mathcal{I}$, we have $\mathcal{J}g\mathcal{J}=\mathcal{J}u^-\mathcal{J}$ and we clearly have a possibly non-disjoint union

$$\mathcal{I} = \bigcup_{y \in \mathcal{Y}} \mathcal{J}y\mathcal{J}. \tag{8}$$

We need to turn this into a disjoint union and count the number of double cosets that survive.

Multiplying $y = y_S$ on the left or the right by elements in T_0 or U_2^- does not change the double coset $\mathcal{J}y\mathcal{J}$. Next, we consider the effect of multiplication by elements in U_0^+ . Notice that U_1^-/U_2^- is in bijection with the $y_S \in \mathcal{Y}$ as in (7) and, for i > j and i' > j', the commutators $[y_{ij}, y_{i'j'}] \in U_2^-$. Hence the order of the terms in y_S does not matter and we have $U_1^-/U_2^- \cong U^-(\mathbb{F}_2)$, where $\mathbb{F}_2 = \{0, 1\}$.

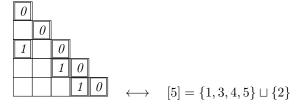
Reducing modulo \mathcal{P}^2 we must consider the effect of multiplying an element of $U^-(\mathbb{F}_2)$ on the left or the right with $x_{ij}(1)$ for $1 \leq i < j \leq n$. An element $u \in U^-(\mathbb{F}_2)$ can be uniquely represented by a unipotent lower triangular, equivalently strictly lower triangular, matrix with entries in \mathbb{F}_2 and

- multiplication of u on the left by $x_{ij}(1)$ with i < j amounts to adding row j to row i (keeping the entries on or above the diagonal zero), and
- multiplication of u on the right by $x_{ij}(1)$ with i < j amounts to adding column i to column j (keeping the entries on or above the diagonal zero).

The number of \mathcal{J} -double cosets in \mathcal{I} is equal to the number of equivalence classes of the equivalence relation on $U^-(\mathbb{F}_2)$ defined by these row and and column operations. Each class may be uniquely represented by its reduced "echelon" form, which is a strictly lower triangular $n \times n$ matrix with each row and each column containing at most a single 1. In other words, we would like to find the number of *rook placements* in a strictly lower triangular $n \times n$ board.

The number of such representatives is the same as the number of partitions of [n], i.e., B(n). While we prove a more general version of this below we give a direct proof for this particular case. It is enough to observe that the number of placements of k rooks in the strictly lower triangular board is equal to S(n, n-k). The bijection between the rook placements and partitions is given as follows. The strictly lower triangular board has a 1 in entry (i,j) (with i>j) if and only if i and j appear in the same part of the corresponding partition. Now, a placement with k entries 1 gives a partition with n-k parts and hence the number of such placements is equal to S(n, n-k). Our claim follows from (6).

Example 9. Let n = 5 and k = 3. Here is an example of a "rook placement" with 1's in positions (3,1), (4,3), and (5,4), and its corresponding 2-partition of [5]:



The number of placements with three entries 1 is S(5,2) = 15, the number of partitions of [5] into two parts.

Next, we consider the non-trivial Weyl elements. We first review some combinatorial background. We refer to [St, §2.3–2.4] for the details.

A board is a subset $B \subseteq [n] \times [n]$. For a fixed B, let r_k denote the number of k-subsets of B such that no two elements have a common coordinate. Equivalently, r_k is the number of ways to place k non-attacking rooks on B. The rook polynomial of B is

$$r_B(x) = \sum_k r_k x^k. (10)$$

Given $0 < b_1 \le \cdots \le b_m$, the Ferrers board of shape (b_1, \ldots, b_m) is the board

$$B = \{(i, j) : 1 \le i \le m, 1 \le j \le b_i\}.$$

(While $b_i = 0$ is allowed for the following theorem, we will not need it for our purposes.) Note that B is a reflection and rotation of the Young diagram of the partition $\lambda = (b_m, \ldots, b_1)$. We will use the following result from Stanley's book.

Theorem 11 ([St, 2.4.1]). Let $\sum r_k x^k$ be the rook polynomial of the Ferrers board B of shape (b_1, \ldots, b_m) . Set $s_i = b_i - i + 1$. Then

$$\sum_{k} r_k \cdot (x)_{m-k} = \prod_{i=1}^{m} (x + s_i).$$
 (12)

Here, $(x)_{\ell} = x(x-1)\cdots(x-\ell+1)$ for $\ell \geq 1$, and $(x)_0 = 1$ by convention.

To each $w \in \mathcal{W}$ we associate a Ferrers board (equivalently a Young diagram) as follows. For $1 \leq j \leq n$ let $b'_j = \#\{i : i > j \text{ and } w(i) > w(j)\}$. Rearrange the non-zero b'_j 's into a non-decreasing sequence (b_1, \ldots, b_m) and let B_w denote the associated Ferrers board.

Theorem 13. Let $\mathbb{F} = \mathbb{Q}_2 \supset \mathcal{O} = \mathbb{Z}_2 \supset \mathcal{P} = \varpi \mathcal{O}$ and let $G = \mathrm{SL}_n(\mathbb{F}) \supset \mathcal{I} \supset \mathcal{J}$, as before. Assume that w is an element of the Weyl group \mathcal{W} and let B_w denote the Ferrers board associated with w as above. Then the number of distinct \mathcal{J} -double cosets in $\mathcal{I}w\mathcal{I}$ is

$$r_{B_w}(1) = \sum_k r_k,$$

where $r_{B_w}(x)$ is the rook polynomial of B_w as in (10). The values of r_k may be found from (12).

In particular, when w = 1 the associated Ferrers board is given by (1, 2, ..., n-1). Then $r_k = S(n, n-k)$, $r_B(1) = B(n)$ and we recover Theorem 3.

Proof. Let $1 \neq w \in \mathcal{W}$. Similar to (8), we have a possibly non-disjoint union

$$\mathcal{I}w\mathcal{I} = \bigcup_{y_L, y_R \in \mathcal{Y}} \mathcal{J} y_L w y_R \mathcal{J}, \tag{14}$$

with \mathcal{Y} as in (7). Define

$$S_R(w) = \{(i, j) : i > j \text{ and } w(i) > w(j)\}, \text{ and } S_L(w) = S_R(w^{-1}).$$

Observe that if $(i,j) \notin S_R(w)$, then $wy_{ij}w^{-1} \in U_1^+$ so $\mathcal{J}wy_{ij}\mathcal{J} = \mathcal{J}w\mathcal{J}$. Similarly, if $(i,j) \notin S_L(w)$, then $\mathcal{J}y_{ij}w\mathcal{J} = \mathcal{J}w\mathcal{J}$. Therefore, we may reduce (14) to

$$\mathcal{I}w\mathcal{I} = \bigcup_{\substack{y_L \in Y_L(w) \\ y_R \in Y_R(w)}} \mathcal{J} y_L w y_R \mathcal{J}, \tag{15}$$

where $Y_L(w) = \{y_S : S \subseteq S_L(w)\}$ and $Y_R(w) = \{y_S : S \subseteq S_R(w)\}$. Notice that (15) may still be a non-disjoint union.

Next, observe that any $y_L \in Y_L(w)$ may be moved across w to some $y_R \in Y_L(w)$ modulo U_2^- and vice versa. A similar argument as in the proof of Theorem 3 shows that each double coset $\mathcal{J} y_L w y_R \mathcal{J}$ is determined by strictly lower triangular matrices u_L and u_R with u_R having \mathbb{F}_2 -entries in positions in $S_R(w)$ and u_L having \mathbb{F}_2 -entries in positions belonging to $S_L(w)$. The "row moves" from before now modify u_L while the "column moves" modify u_R . We may also move u_L and u_R across w. After applying the row/column moves to simplify each u_L and u_R as much as possible, we may move u_L across w to arrive at a double coset $\mathcal{J}wu_R\mathcal{J}$, with u_R having entries in the positions belonging to $S_R(w)$. (We may also choose to move u_R across w and arrive at a double coset of the form $\mathcal{J}u_Lw\mathcal{J}$.) Consequently, J-double coset in $\mathcal{I}w\mathcal{I}$ is determined by strictly lower triangular matrix with \mathbb{F}_2 entries in positions belonging to $S_R(w)$ where at most a single 1 may appear in each row and each column. This is precisely the number of "rook placements" on the Ferrers board B_w defined above. (Had we chosen to go with u_L we would have the Ferrers board $B_{w^{-1}}$ here.) The number of rook placements on B_w containing k non-zero entries is r_k and the total number of J-double cosets is therefore $\sum_k r_k$. The values of r_k , and their sum, may then be calculated using Theorem 11.

We also point out that when w=1, the above argument works. We simply have

$$S_L = S_R = \{(i, j) : i > j\}$$

and y_L and y_R coalesce into a single term. The Ferrers board for w=1 is the full strictly lower triangular board. Then $r_k=S(n,n-k)$ and $\sum_k r_k=B(n)$.

Remark 16. We could write down a full list of representative for the \mathcal{J} -double cosets in $\mathcal{I}w\mathcal{I}$ using the rook placements of B_w .

Example 17. Let n = 5. Take $w \in W$ to be the cycle (2543) $\in S_5$. Then $S_R(w)$ consists of the following strictly lower triangular entries:

In our earlier notation, we have $(b'_1, b'_2, b'_3, b'_4) = (4, 0, 2, 1)$, $(b_1, b_2, b_3) = (1, 2, 4)$ (and m = 3). The Ferrers board B_w is the following.

To find the number of double cosets $\sum_{k} r_k$ we proceed as follows. Recall that $s_i = b_i - i + 1$ so $(s_1, s_2, s_3) = (1, 1, 2)$. Theorem 11 in this case gives

$$r_0 x(x-1)(x-2) + r_1 x(x-1) + r_2 x + r_3 = (x+1)^2 (x+2),$$

 $which\ implies\ that$

$$r_0 = 1$$
, $r_1 = 7$, $r_2 = 10$, $r_3 = 2$

and

$$\# (\mathcal{J} \setminus \mathcal{I} w \mathcal{I} / \mathcal{J}) = 1 + 7 + 10 + 2 = 20.$$

References

- [AB] M. Asgari and D. Barbasch. On Some Dyadic Hecke Algebras for Double Covers (tentative title). In Preparation.
- [Bu] D. Bump. Hecke Algebras. Lecture notes, 2010. Available (under Lectures and Web Resources) at math.stanford.edu/~bump/.
- [St] R. Stanley. Enumerative Combinatorics. Volume 1. Cambridge Stud. Adv. Math., 49, Cambridge University Press, 2012.

OKLAHOMA STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, STILLWATER, OK, USA $Email\ address$: mahdi.asgari@okstate.edu

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY, USA. Email address: dmb14@cornell.edu