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Abstract. We explicate the combinatorial/geometric ingredients of Arthur’s proof of the convergence and

polynomiality, in a truncation parameter, of his non-invariant trace formula. Starting with a fan in a real,
finite dimensional, vector space and a collection of functions, one for each cone in the fan, we introduce a

combinatorial truncated function with respect to a polytope normal to the fan and prove the analogues of
Arthur’s results on the convergence and polynomiality of the integral of this truncated function over the

vector space. The convergence statements clarify the important role of certain combinatorial subsets that

appear in Arthur’s work and provide a crucial partition that amounts to a so-called nearest face partition.
The polynomiality statements can be thought of as far reaching extensions of the Ehrhart polynomial.

Our proof of polynomiality relies on the Lawrence-Varchenko conical decomposition and readily implies an

extension of the well-known combinatorial lemma of Langlands. The Khovanskii-Pukhlikov virtual polytopes
are an important ingredient here. Finally, we give some geometric interpretations of our combinatorial

truncation on toric varieties as a measure and a Lefschetz number.

1. Introduction

The Arthur Trace Formula is a vast generalization of the Selberg Trace Formula to arbitrary rank reductive
groups. The first incarnation of Arthur’s trace formula, the non-invariant trace formula, relies on two
crucial ingredients: the integral of a truncated kernel (of a compactly supported test function) is absolutely
convergent and the integral depends polynomially on the truncation parameter (which he has to assume is
sufficiently regular). The purpose of this work is to prove two general, purely combinatorial, statements
about polytopes, one on convergence and the other on polynomiality of certain integrals. These statements
essentially capture, and generalize, the combinatorial aspects of Arthur’s corresponding results (cf. [Ar78]
and [Ar81]), isolating them from the analytic aspects that use reduction theory and other techniques. The
long term hope for our project, of which this work is a first step, is to aim at applications of the Arthur
Trace Formula to more general test functions [Hoff08, FL11, FLM11, FL16].

We also give interpretations of our combinatorial results in terms of the geometry of toric varieties. We
hope the present paper would shed light on the combinatorics behind Arthur’s trace formula and its simi-
larity with certain concepts appearing in toric geometry. The connection between polyhedral combinatorics
appearing in Arthur’s trace formula and in toric varieties is not quite transparent yet. In this regard we
mention the articles of Kottwitz [Kot05] and Finis-Lapid [FL11] which may be relevant.

We now briefly recall the trace formula before explaining a summary of our results and proofs.

Arthur’s non-invariant trace formula. For a finite group G the character of a representation of G (or
any conjugation invariant function on G for that matter) can be written uniquely as a linear combination of
characteristic functions of different conjugacy classes, as well as, a linear combination of traces of irreducible
representations. The equality of these two decompositions is a special case of the Frobenius Reciprocity
which plays an important role in representation theory of finite groups. This is the prototype of many trace
formulas in representation theory.

Arthur gave a far reaching trace formula for arbitrary reductive groups defined over number fields. A
main problem is that in this generality the integral representing the trace diverges. Arthur introduces an
operation of truncation to modify this integral so that it becomes convergent.

The (non-invariant) Arthur Trace Formula (ATF) is an equality of two distributions

Jgeom(f) = Jspec(f), f ∈ C∞c (G(A)1). (1.1)
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Here G is a connected reductive linear algebraic group defined over Q (or any number field) whose ring
of adeles we denote by A and G(A)1 consists of those x ∈ G(A) satisfying |χ(x)|A = 1 for all rational
characters χ of G. Both the geometric and the spectral distributions on the two sides of (1.1) are equal
to the integral over G(Q)\G(A)1 of a modified kernel kT (x) = kT (x, f) at a certain value T = T0 of a
suitably regular truncation parameter T belonging to the positive Weyl chamber of G with respect to a fixed
minimal parabolic subgroup. The space G(Q)\G(A)1 is in general finite volume (with respect to the Haar
measure on G), but only compact when G has no proper parabolic subgroups. While the trace formula in the
case of compact quotient was well understood, already the development of the trace formula in the case of
SL(2,Z)\SL(2,R) led A. Selberg to his celebrated Selberg Trace Formula. However, Arthur realized that the
presence of proper parabolic subgroups in a more general group G makes the integral of the kernel function
divergent. As a result, he introduced the modified kernel kT (x). Two major properties of the modified kernel
(see [Ar78] and [Ar81]) are the following:

(1)
∫

G(Q)\G(A)1

|kT (x)| dx <∞ for suitably regular truncation parameter T .

(2) The function T 7→ JT (f) =
∫

G(Q)\G(A)1

kT (x) dx is a polynomial function of T .

As the truncation parameter T goes further away from the origin, the integral of kT (x) gets closer to the (di-
vergent) integral representing the trace. Among other things, the proofs involve quite intricate combinatorics
of convex polytopes and convex cones. Expanding the modified kernel geometrically (via conjugacy classes)
and spectrally (via automorphic representations) then provides the two sides of (the truncated analog of)
the identity (1.1).

In the function field case one also has an analogue of the ATF and the truncation parameter T . In
particular, we mention the work of G. Laumon [Lau96, Lau97] where he develops the trace formula for
certain class of test functions for which the modified kernel kT (·) turns out to be equal to the usual kernel
k(·). This makes the question of polynomiality obvious since the resulting polynomials would simply be
constant. However, the convergence question still remains and indeed a similar argument as Arthur’s in the
number field case applies.

Main results. We introduce a notion of combinatorial truncation and prove two main results on its con-
vergence and polynomiality. The idea for our results is to start with a complex-valued function on a finite
dimensional real vector space whose integral over the vector space is possibly divergent. We then “trun-
cate” this function by subtracting some other functions around some neighborhoods of infinity to arrive at a
“truncated function” whose integral over the vector space is absolutely convergent. The “neighborhoods of
infinity” are with respect to a toric compactification of V (in the sense of Sections 5.1 and 5.3) whose data
is encoded in a polytope and its normal fan. We then prove that the integral of the truncated function, as
a function of the polytope, is indeed a polynomial function.

To explain our results we introduce some notation and refer to Sections 2.1 and 2.2 for further details on
convex cones and polytopes. We first explain our convergence results.

Let V ∼= Rn be an n-dimensional real vector space. We fix an inner product 〈·, ·〉 on V and use it to
identify V with its dual V ∗. Fix a full dimensional, complete, simplicial fan Σ in V and fix a polytope
∆ ∈ P(Σ), the set of polytopes with normal fan Σ. There is a one-to-one correspondence between the cones
in Σ and the faces of ∆. For σ ∈ Σ, we let T−∆,σ denote the outward looking tangent cone of ∆ at the face

corresponding to σ (see Section 2.2 and Figures 3–4.)
Suppose a function K0 : V → C is given with

∫
V

K0(x) dx possibly divergent. In fact, let K0 be a member

of a collection of functions Kσ : V → C, one for each σ ∈ Σ. We will assume that Kσ is invariant in the
direction of Span(σ), i.e., Kσ(x+ y) = Kσ(x) for x ∈ V and y ∈ Span(σ).

Associated with the collection (Kσ)σ∈Σ and the polytope ∆ we define the truncated function

k∆(x) =
∑
σ∈Σ

(−1)dimσKσ(x)1T−∆,σ(x), (1.2)

where 1 denotes the characteristic function. We think of k∆(x) as a “truncation” of K0 by means of the
polytope ∆ and the functions Kσ for non-zero cones σ ∈ Σ.
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Figure 1. Left: a complete simplicial fan in V = R2; we have labeled three cones in the
fan. Right: a polygon normal to the fan and regions obtained by drawing the outward face
cones; the function k∆ in the shaded region is given by K0 −K1 −K2 +K12.

Note that the function k∆(x) and K0(x) coincide for x ∈ ∆. In fact, if all the Kσ are identically equal
to 1, by the classical Brianchon-Gram theorem (cf. Theorem 2.10), the function k∆(x) coincides with the
characteristic function of ∆.

One of our main results gives a sufficient condition for k∆(x) to be absolutely integrable on V (see Theorem
3.18 and also Theorem 3.20).

For σ2 � σ1 in Σ, let

Kσ1,σ2(x) =
∑

σ2�τ�σ1

(−1)dim τKτ (x).

Also let polyhedral regions Rσ2
σ1

and Sσ2
σ1

be as in Definition 3.10, i.e., Sσ2
σ1

is the cone in Span(σ1) defined
via the edge vectors and facet normals of σ1 and σ2 as in Definition 3.10(a) (or equivalently (3.13)) and
Rσ2
σ1

= Qσ1
+ Sσ2

σ1
, where Qσ1

is the face of ∆ associated with the cone σ ∈ Σ.

Theorem (Convergence). Assume that the fan Σ above is acute (cf. Definition 3.3). With the notation as
above, suppose for any σ2 � σ1, the function Kσ1,σ2 is rapidly decreasing on the shifted neighborhoods of
Sσ1
σ2

. (See Theorem 3.20 for the precise definition.) Then for any polytope ∆ ∈ P(Σ), the integral

JΣ(∆) =

∫
V

k∆(x) dx

is absolutely convergent.

We note that the conditions on Kσ1,σ2
in the theorem are “local” with respect to the fan Σ in the sense

that for each σ ∈ Σ we only need to check a condition about σ and the functions Kτ , τ � σ (and independent
of other cones in the fan and their associated functions).

We also remark that the assumption that the fan Σ is acute is crucial; without it, the convergence result
may fail as we show in Example 3.21 where we consider obtuse cones.

Next, we discuss our result on polynomiality. The set P(Σ) of polytopes with normal fan Σ is closed under
multiplication by positive scalars and the Minkowski sum. Hence it makes sense to talk about a polynomial
function on P(Σ). In fact, if Σ(1) denotes the set of one dimensional cones in Σ, then a polytope ∆ ∈ P(Σ)
has a unique representation as

∆ = {x ∈ V : 〈x, vρ〉 > aρ,∀ρ ∈ Σ(1)},
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where vρ denotes the unit vector along ρ. The numbers (aρ)ρ∈Σ(1) are called the support numbers of ∆ and
can be considered as coordinates on P(Σ) (see Section 2.3). Our main polynomiality result (cf. Theorem
4.1) states that the integral of k∆(x) depends polynomially on ∆ ∈ P(Σ).

Theorem (Polynomiality). The function

∆ 7→ JΣ(∆)

is a polynomial on P(Σ), i.e., a polynomial in the support numbers of ∆.

We remark that if all the Kσ are identically equal to 1, then JΣ(∆) coincides with the volume of ∆. Thus
our Polynomiality Theorem is a vast generalization of the classical fact that ∆ 7→ vol(∆) is a polynomial
function. The assumption that each Kσ is invariant in the direction of Span(σ) is obviously crucial in the
proof of the Polynomiality Theorem. For example, one can consider examples where Kσ are not necessarily
constant, but rather they are asymptotic to a constant in the direction of Span(σ). Then one can still have
convergence of JΣ(∆) by our more general Theorem 3.18 on convergence, while JΣ(∆) would clearly not be
a polynomial function.

The strategy to prove our Convergence Theorem is as follows. Recall that the truncated function k∆(x)
in (1.2) is defined as an alternating sum over various outward tangent cones T−∆,σ. In Lemma 3.15 we prove a

certain double partition of the tangent cones T−∆,σ in terms of certain natural subsets that appear, associated
with pairs of cones in Σ, with the smaller cone being a face of σ and the large one having σ as a face. In
the double partition the inner partition essentially amounts to the special case where σ is a full dimensional
cone in Σ while the outer partition amounts to a “nearest face partition” (cf. Section 2.4). This allows us to
repackage the various terms appearing in k∆ into a sum of certain alternating sums Kσ1,σ2

associated with
pairs of cones σ2 � σ1 in Σ. As a result, we reduce the question of the absolute convergence of the integral
of k∆(x) over V to that of absolute convergence of Kσ1,σ2

on the sets we obtain out of the partition. This
already gives our first, and more general, convergence result (cf. Theorem 3.18). We then go on to show that
the two conditions in the above convergence theorem guarantee the convergence of the integral of Kσ1,σ2 on
the required sets.

The regions we mentioned above seem to show up naturally in any treatment of convergence results,
including Arthur’s original proof of convergence of his (non-invariant) trace formula. When σ1 is full dimen-
sional (corresponding to a maximal parabolic subgroup in Arthur’s setting) and σ2 is the origin, the region
simply becomes the cone σ1 shifted to the vertex of ∆ corresponding to σ1. When σ2 is a non-zero face of
σ1, then the region is again another cone shifted to the vertex. This type of cone is precisely what Arthur
has, for example, in [Ar05, Figure 8.5]. For more general σ1 the regions are a sum (as a set) of a compact
face of ∆ and a somewhat simpler cone. For example, when dimV = 2 these regions look like stripes.

A key step in the proof of the Polynomiality Theorem is Lemma 4.9, which is a statement concerning the
polytope ∆ and a cone σ ∈ Σ. As far as we know this lemma is new and does not appear in Arthur’s work.
It simplifies and streamlines some of the combinatorial arguments in [Ar78, Ar81]. As a special case when
∆ = {0}, Lemma 4.9 also implies the Langlands combinatorial lemma (see [Ar05, Eqs. (8.10)–(8.11)] and
[GKM97, Appendix]).

When σ is full dimensional and the vertex of ∆ corresponding to σ lies in σ, Lemma 4.9 gives a decompo-
sition of the characteristic function of the polytope ∆∩σ in terms of certain cones with apexes at the vertices
of this polytope. We obtain Lemma 4.9 as a corollary of the Lawrence-Varchenko conical decomposition of
a polytope (Theorem 2.14). In fact, we need a more general version of this decomposition that applies to
virtual polytopes (Theorem 2.21). The arguments in this section rely on some key concepts and results from
[KP93a, KP93b] (which we review in Section 2.6). We would like to point out that the proof of polynomiality
shows that JΣ(∆) is a linear combination of volumes of certain virtual polytopes Γ∆,σ, σ ∈ Σ.

In the interest of making the connections with poset theory and Möbius inversion more transparent, we
show that the Langlands combinatorial lemma can be interpreted as a formula for the inverse of a certain
element in the incidence algebra of the poset of faces of a polyhedral cone (see Corollary 4.11).

Finally, we point out that Arthur’s truncation parameter T determines a polytope which is the convex
hull of the Weyl group orbit of T . Thus, Arthur’s combinatorics is concerned with Weyl group invariant
polytopes with a vertex in each Weyl chamber. In this paper we generalize the combinatorics to arbitrary
simple polytopes.
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It follows from the the proof of polynomiality that

JΣ(0) =
∑

σ2�σ2,dimσ1=n

∫
S
σ2
σ1

Kσ1,σ2
(x)dx.

and that, in the case of a Weyl fan Σ and a Weyl group invariant ∆, the top degree homogeneous part of
the polynomial JΣ(∆) is a constant multiple of the volume of ∆.

The simplest example. Let Σ be the complete fan in V = R consisting of the origin σ0 = {0}, the negative
half-line σ− and the positive half-line σ+. Let ∆ ⊂ V ∗ ∼= V = R be the line segment [a, b]. Let K0, K−,
K+ be functions on V corresponding to σ0, σ−, σ+ respectively. From definition one computes that the
truncated function k∆(x) is given by

k∆(x) =


K0 −K−, x < a,

K0, a ≤ x ≤ b,
K0 −K+, x > b.

The assumption in Theorem 4.1 that Kσ is constant along Span(σ) implies that K− and K+ are constant
functions. Moreover, the condition that

∫
V

k∆(x)dx is absolutely convergent means that |K0(x) −K−| and

|K0(x)−K+| are integrable. We have

JΣ(∆) =

∫
R
k∆(x) dx =

∫ 0

−∞
(K0(x)−K−) dx+

∫ ∞
0

(K0(x)−K+) dx+

∫ 0

a

K− dx+

∫ b

0

K+ dx.

Note that
∫ 0

−∞(K0(x)−K−) dx and
∫∞

0
(K0(x)−K+) dx are constants independent of a and b (whose sum we

denote by the constant c) and K− and K+ are constants. Hence, JΣ(∆) = c+(−a)K−+bK+, a polynomial
of degree 1 in a and b.

Figure 2.

It is easy to see that if K+ or K− is not a constant function, then the resulting JΣ(a, b) may not be a
polynomial in a and b. For example let K0 = K+ = K− = ex. Then K0 −K+ = K0 −K+− = 0, so the

conditions of convergence are satisfied and in fact we have JΣ(a, b) =
∫ b
a
exdx = eb − ea, which is clearly not

a polynomial in a and b.

Another simple example: Brianchon-Gram. If Kσ ≡ 1 for all the cones σ, then k∆ becomes the
characteristic function of the polytope ∆ by the Brianchon-Gram Theorem (cf. Theorem 2.10) and, as we
mentioned earlier, our polynomiality result recovers the fact that the volume function ∆ 7→ vol(∆) is a
polynomial function. See Example 4.3 for details.

Discrete versions of the results. Replacing integration with summation, we obtain discrete versions of
the above theorems. Given free abelian groups M and N of rank n with a perfect Z-pairing to identify them,
we let V = NR = N ⊗Z R and V ∗ = MR = M ⊗Z R. Then V and V ∗ are a pair of dual n-dimensional real
vector spaces as above.

We take a fan Σ in V = NR which is rational, i.e. all its cones are generated by rational vectors with
respect to N ⊂ NR. We denote by P(Σ,M) the set of polytopes with normal fan Σ whose vertices lie in M .
It is closed under the Minkowski sum. The discrete version of our convergence and polynomiality results (cf.
Theorems 3.23 and 4.2) are as follows.
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Theorem (Convergence, discrete version). With notation as above, suppose for any σ2 � σ1 in Σ, the
function Kσ1,σ2 is rapidly decreasing on any shifted neighborhood of the cone Sσ1

σ2
. Then for any polytope

∆ ∈ P(Σ,M), the series

SΣ(∆,M) =
∑
x∈M

k∆(x)dx

is absolutely convergent.

Theorem (Polynomiality, discrete version). The function

∆ 7→ SΣ(∆,M)

is a polynomial on P(Σ,M).

We remark that if Kσ ≡ 1 for all nonzero cones σ in Σ, then SΣ(∆,M) coincides with the number
of lattice points in ∆. Thus the above theorem is a far reaching generalization of the classical fact that
∆ 7→ |∆ ∩M | is a polynomial function (Ehrhart polynomial, see Theorem 2.5). It is interesting to explore
whether some well-known polynomials appearing in combinatorics and representation theory, e.g. in the
theory of symmetric polynomials, are instances of the polynomial JΣ(∆) or SΣ(∆,M).

Relation with toric varieties. Convex lattice polytopes are well-studied in combinatorial algebraic ge-
ometry in relation to the geometry of toric varieties. In particular, there is a dictionary between algebraic
geometric notions on toric varieties and convex geometric notions about lattice polytopes (see [Fu93, CLS11]).
For example the Riemann-Roch theorem for toric varieties gives beautiful formulas relating the number of
lattice points in a polytope and its volume as well as volumes of its faces (see [KP93a, KP93b] and [BV97]).

A complete (rational) fan Σ in NR determines a complete toric variety XΣ over C. It is an equivariant
compactification of the algebraic torus TN ∼= (C∗)n. The polytope ∆ ∈ P(Σ) determines a TN -linearized
ample line bundle L∆ on XΣ (see Section 5).

In Section 5.2 we recall the well-known fact that the Brianchon-Gram Theorem can be regarded as the
computation of the equivariant Euler characteristic of an ample toric line bundle.

In Section 6 we give two interpretations of the function k∆(x) in terms of the toric variety XΣ. In Section
6 we interpret it as a “truncated” measure on the toric variety XΣ obtained by truncating a measure ω0

on the open torus orbit X0 ⊂ XΣ using the measures ωσ on the torus orbits Oσ ⊂ XΣ (at infinity). Each

tangent cone T−∆,σ determines an open neighborhood Ũ∆,σ of the torus orbit closure Oσ. The interpretation

of the tangent cones T−∆,σ as neighborhoods Ũ∆,σ justifies the assumption that the fan is acute: under the

acute assumption the neighborhood Ũ∆,σ contains the orbit closure Oσ.
In Section 6.2 we observe that computation of equivariant Euler characteristic of an ample toric line bundle

has uncanny resembelences to the definition of truncated function k∆(x) and hence to Arthur’s construction
of the modified kernel kT (x). This leads to an interpretation of our combinatorial truncation as a Lefschetz
number for computing the trace of the induced linear map of a morphism on the sheaf cohomologies of a
toric variety.

We point out that the similarity between the definition of kT (x) and the Brianchon-Gram theorem about
polytopes has been observed by Bill Casselman in [Cass04].

The polynomiality of the number of lattice points in a polytope is related to the polynomiality of the
Euler characteristic which is an immediate consequence of the Riemann-Roch Theorem. From this point
of view, it is probable that our Polynomiality Theorem (Theorem 4.2) is a special case of a more general
Riemann-Roch type theorem.

Relation with Arthur’s work. As we mentioned above, Arthur’s development of his non-invariant trace
formula is based on the two crucial results that the integral of kT (x) = kT (x, f) on G(Q)\G(A)1 is absolutely
convergent for T ∈ a+

P sufficiently regular and f ∈ C∞c (G(A)) and it is a polynomial of T . We recall that

kT (x, f) =
∑
P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx) τ̂P (HP (δx)− T ) . (1.3)

Here, the outer sum is over the standard parabolic subgroups P of G (containing a fixed minimal parabolic
subgroup P0), HP : G(A) −→ aP is the Harish-Chandra map, and τ̂P (·) is the characteristic function of
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t ∈ aP : $(t) > 0, $ ∈ ∆̂P

}
, where ∆̂P consists of weights $α for simple roots α corresponding to P . (We

refer to [Ar05] for any unexplained notation.)
If we take Σ to be the Weyl fan of the group G, then the parabolic subgroups of G correspond to the

cones in Σ and the choice of a minimal parabolic subgroup corresponds to a choice of full dimensional cone
in Σ with the standard parabolic subgroups corresponding to the faces of this full dimensional cone. The
other cones in Σ then correspond to the Weyl conjugates of the standard parabolic subgroups and this
correspondence between cones and parabolic subgroups is order reversing with respect to inclusion.

The Weyl fan Σ is a full dimensional, complete, simplicial fan that satisfies the acute assumption. The
similarity between (1.2) and (1.3) is clear. This suggests that there is a corresponding family of functions
(Kσ)σ∈Σ defined using the KP functions. We can then use the analytic arguments already in Arthur’s work
to verify the assumptions of our convergence and polynomiality theorems. As a consequence, we would
recover Arthur’s results making the combinatorial/geometric ingredients of his proofs more streamlined, at
least in our view. We will write the details, using Reduction Theory, in our next paper on this subject where
we apply our results to both the geometric and spectral expansions.

Moreover, we expect that one can extend the geometric interpretations of truncation (e.g. as a Lef-
schetz number) in Section 6 to Arthur’s set up by replacing the toric variety XΣ by Mumford’s toroidal
compactification of a reductive algebraic group G (see [KKMS73, Chapter IV, §1]).

Acknowledgements. We would like to thank James Arthur, William Casselman, Mark Goresky, Thomas
Hales, Erez Lapid, Werner Müller, and Tian An Wong for useful correspondences and conversations. The
second author was partially supported by NSF grant DMS-1601303 and a Simons Collaboration Grant.

2. Preliminaries

We review some basic notions from the theory of polyhedral cones and fix some notations along the way.
We refer to [CLS11, §1.2] for further details.

2.1. Cones and fans. Let V be a finite dimensional real vector space of dimension n and let V ∗ denote its
dual. Recall that a (closed convex) polyhedral cone in V is a set of the form

σ = Cone(W ) =

{∑
w∈W

aww : aw > 0

}
⊆ V

with W a finite subset of V . Equivalently, there is a finite subset B of V ∗ such that

σ =
⋂
b∈B

{x ∈ V : b(x) > 0} .

We say that σ is generated by W . Also, we write Cone(∅) = {0}. The dimension of σ is the dimension of its
linear span. The dual cone σ∨ is defined as

σ∨ := {y ∈ V ∗ : y(x) > 0 for all x ∈ σ} .
Dual cones enjoy the property that if σ is a polyhedral cone in V , then σ∨ is a polyhedral cone in V ∗ and
σ∨∨ = σ.

For a face τ of σ (denoted τ � σ) define its dual face

τ∗ = {y ∈ σ∨ : y(x) = 0 for all x ∈ τ}
= σ∨ ∩ τ⊥.

Then τ∗ is a face of σ∨, τ∗∗ = τ , τ ↔ τ∗ is an inclusion-reversing bijection between faces of σ and those of
σ∨, and dim τ + dim τ∗ = n. One dimensional cones, i.e. half-lines, are called rays. A face τ of σ is called a
facet if dim τ = dimσ − 1 and its linear span is referred to as a wall of σ. An edge is a face of dimension 1.

Define the relative interior σ◦ of σ to be the interior of σ in its span. One then checks that x ∈ σ◦ if and
only if y(x) > 0 for all y ∈ σ∨ \ σ⊥. A polyhedral cone σ in V is strongly convex if the origin is a face. This
is the case if and only if σ contains no positive dimensional subspace of V if and only if σ ∩ (−σ) = {0}
if and only if dimσ∨ = n. A strongly convex polyhedral cone σ ⊆ V is called simplicial if it is generated
by linearly independent vectors. We note that the dual of a simplicial cone of maximal dimension is again
simplicial.
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For y ∈ V ∗, we set

Hy := {x ∈ V : y(x) = 0} ⊆ V
and define the closed, resp. open, spaces

H+
y := {x ∈ V : y(x) > 0} ⊆ V and H−y := {x ∈ V : y(x) < 0} ⊆ V.

When y 6= 0, Hy is a hyperplane and H+
y and H−y are half-spaces in V . When y = 0, we have Hy = H−y = V

while H+
y is empty. If σ ⊆ H+

y for y 6= 0, we say Hy is a supporting hyperplane and H+
y , resp. H−y , is an

inward, resp. outward, supporting half-space of σ. (When y = 0, we automatically have σ ⊆ H+
0 = H0 = V .)

Note that Hy is a supporting hyperplane of σ if and only if y ∈ σ∨ \ {0}. If y1, y2, . . . , yr generate σ∨, then
σ = H+

y1
∩ · · · ∩H+

yr . Thus, every polyhedral cone is an intersection of finitely many closed half-spaces.
A fan Σ in V is a finite collection of cones σ ⊆ V satisfying the following three properties: (a) every

σ ∈ Σ is a strongly convex polyhedral cone, (b) for all σ ∈ Σ, each face of σ also belongs to Σ, and (c) for
all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each. The set of r-dimensional cones of Σ is denoted by
Σ(r). The support of Σ is defined by

|Σ| :=
⋃
σ∈Σ

σ ⊆ V.

If |Σ| = V , then Σ is called a complete fan. A simplicial fan is a fan all whose cones are simplicial. Every
fan can be refined into a simplicial fan.

Finally, for σ ∈ Σ we let Σ/σ denote the fan in V/ Span(σ) consisting of all the images of the cones σ′ � σ.
If we fix an inner product on V then V/ Span(σ) can be identified with σ⊥ and Σ/σ consists of projections
of σ′ � σ onto σ⊥.

2.2. Polytopes. A polytope is a set in V ∗ of the form

P = Conv(S) =

{∑
u∈S

λuu : λu > 0,
∑
u∈S

λu = 1

}
,

where S is a finite subset of V ∗. We say P is the convex hull of S. The dimension, dimP , of a polytope P
is the dimension of the smallest affine subspace of V ∗ containing P . Given x ∈ V \ {0} and r ∈ R we have
the affine hyperplane

Hx,r := {y ∈ V ∗ : y(x) = r}
and the closed half-spaces

H+
x,r := {y ∈ V ∗ : y(x) > r} and H−x,r := {y ∈ V ∗ : y(x) < r} .

A subset Q ⊆ P is a face of P , denoted by Q � P , if there is x ∈ V \ {0} and there is r ∈ R with

Q = Hx,r ∩ P and P ⊆ H+
x,r.

We then say that Hx,r is a supporting affine hyperplane. The polytope P is regarded as a face of itself and
faces of P of dimensions 0, 1, and (dimP − 1) are called vertices, edges, and facets, respectively.

A polytope P ⊆ V ∗ can be written as a finite intersection of closed half-spaces and an intersection

P =

s⋂
i=1

H+
xi,ri

is a polytope provided that it is bounded. In general, an intersection of finitely many closed half-spaces is
called a polyhedron and could be unbounded. When dimP = dimV ∗ (i.e., full dimensional polytope) for
each facet F we have a unique supporting affine hyperplane and corresponding closed half-space given by

HF = Hu+
F ,aF

=
{
y ∈ V ∗ : y(u+

F ) = aF
}

and H+
F = H+

u+
F ,aF

=
{
y ∈ V ∗ : y(u+

F ) > aF
}
,

where (u+
F , aF ) ∈ V × R is unique up to multiplication by a positive real number. We call u+

F an inward-
pointing facet normal of the facet F . Hence,

P =
⋂

F facet

H+
F =

{
y ∈ V ∗ : y(u+

F ) > aF for all proper facets F ≺ P
}
. (2.1)
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Figure 3. Inward and outward tangent cones at a vertex (left inward, right outward)

Figure 4. Inward and outward tangent cones at an edge (left inward, right outward)

This is the so-called facet representation of P . We also have a similar representation with outward-pointing
facet normals u−F = −u+

F . When the facet normals u±F are assumed to be unit vectors, we may call the aF
the support numbers of P .

Let Q be a face of P and define the inward, resp. outward, tangent cone T+
P,Q, resp. T−P,Q, via

T+
P,Q :=

{
y ∈ V ∗ : y(u+

F ) > aF for all facets F ⊃ Q
}
, (2.2)

resp. T−P,Q :=
{
y ∈ V ∗ : y(u+

F ) < aF for all facets F ⊃ Q
}

(2.3)

=
{
y ∈ V ∗ : y(u−F ) > aF for all facets F ⊃ Q

}
.

See Figures 3 and 4 for illustrations of inward and outward tangent cones of a quadrilateral at a vertex and
at an edge, respectively.

A polytope P ⊆ V ∗ of dimension d is called a d-simplex (or just a simplex ) if it has d + 1 vertices,
simplicial if every facet is a simplex, and simple if every vertex is the intersection of precisely d facets.

Given a polytope P = Conv(S), its multiple rP = Conv(rS) is also a polytope for any r > 0. The
Minkowski sum P1 +P2 = {y1 + y2 : yi ∈ Pi} of two polytopes P1 = Conv(S1) and P2 = Conv(S2) is again a
polytope and we have the distributive law rP + sP = (r + s)P . The set P(V ∗) of polytopes in V ∗ together
with Minkowski sum is a cancellative semigroup. The following theorem is originally due to Minkowski.

Theorem 2.4 (Volume polynomial). The map P 7→ voln(P ) is a polynomial function on P(V ∗) in the
following sense: let P1, . . . , Pr be polytopes in V ∗. For any λ1, . . . , λr > 0 we can form the polytope

∑
i λiPi.

Then the function (λ1, . . . , λr) 7→ voln(
∑
i λiPi) is the restriction of a homogeneous polynomial on Rr to the

positive orthant Rr>0.
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Figure 5. A polygon and its normal fan. Note that in our convention we use outward facet
normals to define the cones in the normal fan.

There is also a discrete analogue of Theorem 2.4 which is harder and more subtle to prove. It is a
generalization of the notion of Ehrhart polynomial. Let M ∼= Zn be a full rank lattice in V ∗ ∼= Rn. Let
P(M) denote the collection of lattice polytopes with respect to M , that is, all polytopes in V ∗ whose vertices
belong to M . The set P(M) is closed under the Minkowski sum and multiplication by positive integers.

Theorem 2.5 (Ehrhart polynomial). The map P 7→ |P ∩M | is a polynomial map on P(M).

More generally, the polynomiality property holds for any valuation (also called finitely additive measure).
A function Φ : P(M)→ R>0 is called a valuation if for all P1, P2 ∈ P(M) the following hold:

(1) Φ is monotone with respect to inclusion, i.e. Φ(P1) ≤ Φ(P2) provided that P1 ⊂ P2;
(2) Φ(P1 ∪ P2) = Φ(P1) + Φ(P2)− Φ(P1 ∩ P2).

We say Φ is Zn-invariant if Φ(m + P ) = Φ(P ) for all P ∈ P(M) and m ∈ M . The following is a beautiful
result of P. McMullen [Mc77]. It generalizes Theorem 2.5.

Theorem 2.6. Let Φ be a Zn-invariant valuation on P(M). Then Φ is a polynomial function.

Remark 2.7. When Φ(P ) = |P ∩ M | one recovers Theorem 2.5. Fix a point a ∈ V . Theorem 2.6, in
particular, implies that the function defined by Φa(P ) = |P ∩ (a+M)| is also a polynomial.

2.3. Normal fan. For Q � P , let

σQ := Cone
(
u−F : facets F ⊃ Q

)
.

Given a full dimensional polytope P ⊆ V ∗, the cones σQ fit together to form the normal fan of P in V given
by

ΣP = {σQ : Q � P} .
Note that we have used outward facet normals u−F to define the normal fan. (Some authors use inward facet

normals u+
F instead.)

Let P(Σ) be the collection of all convex polytopes whose normal fan is Σ. This set is closed under
Minkowski sum of polytopes and multiplication by positive scalars. For P ∈ P(Σ) we have an inclusion-
reversing bijection

Q = Qσ ←→ σ = σQ (2.8)

between the set of faces of P and the set of cones in the normal fan Σ. In particular, the facets F of P
correspond to rays ρ ∈ Σ(1). For a ray ρ ∈ Σ(1) we set aρ = aF , where F is the facet corresponding to ρ
and aF are the support numbers of P , see (2.1). The map P 7→ (aρ)ρ∈Σ(1) gives an embedding of P(Σ) into
Rs, where s = |Σ(1)|. The image is a full dimensional (open) convex polyhedral cone.

Let P be a full dimensional polytope with normal fan ΣP . Let Q � P be a face with corresponding cone
σQ ∈ ΣP . Then the normal fan ΣQ (of the polytope Q) is the fan ΣP /σQ (defined at the end of Section 2.1).
It consists of the images of the cones σ′ � σQ in the quotient vector space V/ Span(σQ).
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Figure 6. Nearest face partition for a polygon illustrating polyhedral regions V QP and WQ
P

corresponding to an edge Q.

2.4. Nearest face partition. Fix an inner product 〈·, ·〉 on V . Let P ⊂ V be a convex polyhedron. To P

we can associate a partition of V into polyhedral regions V QP as follows. For each face Q � P let

V QP = {x ∈ V : the minimum distance from x to P is attained at a point in the relative interior of Q} .
The following is straightforward to verify.

Proposition 2.9. (1) For each face Q � P , the set V QP is a polyhedron.
(2) We have a disjoint union

V =
⊔
Q�P

V QP .

We can modify the V QP to obtain a slightly different partition
{
WQ
P : Q � P

}
. For each face Q � P let

WQ
P = V QP \ (

⋃
Q′�Q

V Q
′

P ),

where V QP denotes the closure of V QP . The polyhedra WQ
P and V QP have the same relative interior but they

are different on the boundary.

We refer to both
{
V QP : Q � P

}
and

{
WQ
P : Q � P

}
as the nearest face partition of V with respect to

the polyhedron P . We note that if in particular P = σ is a cone (with apex at the origin) then the closure
of the parts in the partition with respect to σ in fact form a complete fan in V . In practice we will also use
the nearest face partition to partition a polyhedron inside V .

2.5. Conical decomposition theorems. We end this section by recalling two beautiful formulas which
represent the characteristic function of a polytope as an alternating sum of characteristic functions of cones.
For a nice overview of these decompositions and related topics we refer the reader to [BHS09].

Brianchon-Gram theorem. The first conical decomposition theorem we discuss is the Brianchon-Gram the-
orem. It is named after C. J. Brianchon and J. P. Gram who independently proved the n = 3 case in 1837
and 1874, respectively ([B37] and [G1874]). It is the mother of all cone decompositions! See [Hass05, Section
1.1] and references therein. Also see [Ag06].

Theorem 2.10 (Brianchon-Gram). Let P be a polytope in V ∗. We have the following equality, where 1
denotes characteristic function

1P =
∑
Q�P

(−1)dimQ1T+
P,Q

. (2.11)
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Proof. For a point y ∈ P , the right hand side computes the Euler characteristic of P and hence is equal to
1 since P is contractible. For y /∈ P , we have to subtract the Euler characteristic of the sub-complex that is
visible from y which is again contractible, actually shellable. �

Alternatively, one can formulate Brianchon-Gram in terms of outward looking tangent cones.

Theorem 2.12 (Brianchon-Gram, alternative version). Let P be a polytope in V ∗. We have the following
equality:

1P =
∑
Q�P

(−1)n−dimQ1T−P,Q
. (2.13)

The above version of the Brianchon-Gram formula looks similar to Arthur’s definition of the modified
kernel kT (x), as was observed in [Cass04]. See Figures 7 and 8 for illustrations of (2.11) and (2.13).

Figure 7. Illustration of the Brianchon-Gram theorem (inward looking tangent cones) for a triangle

Figure 8. Illustration of the Brianchon-Gram theorem (alternative version, outward look-
ing tangent cones) for a triangle

Lawrence-Varchenko theorem. The second conical decomposition due to Lawrence [Law91] and Varchenko
[Vr87] represents the characteristic function of a polytope as an alternating sum of characteristic functions
of certain cones associated to vertices of the polytope. It is a predecessor to the work of Khovanskii-
Pukhlikov [KP93a, KP93b] and Brion-Vergne [BV97]. It is related to Morse theory on polytopes as well
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as equivariant cohomology of toric varieties. The Lawrence-Varchenko theorem follows immediately from
Khovanskii-Pukhlikov results as well, see [KP93b, Section 3.2].

Let P ⊂ V be a simple polytope and let v be a vertex of P . Let w1, . . . wr be edge vectors of P at the
vertex v. Fix a dual vector ξ ∈ V ∗ such that 〈wi, ξ〉 6= 0, for all i. We define vectors w′1, . . . , w

′
r as follows:

w′i =

{
wi, if 〈wi, ξ〉 > 0,

−wi, otherwise.

Finally, define the polarized tangent cone T ξP,v with apex at v by

T ξP,v =

{
r∑
i=1

λiw
′
i :

λi > 0 if w′i = wi
λi > 0 if w′i = −wi

}
.

Theorem 2.14 (Lawrence-Varchenko). With notation as above, we have the following:

1P =
∑
v

(−1)nv1T ξP,v
, (2.15)

where the sum is over all the vertices v of P , and nv = |{i : w′i = −wi}|.

See Figure 9 for an illustration of (2.15)

Figure 9. Illustration of the Lawrence-Varchenko theorem for a quadrangle

2.6. Khovanskii-Pukhlikov virtual polytopes and convex chains. This is a summary of some ideas
and results from [KP93a, KP93b] that we will need later. As before V ∼= Rn denotes an n-dimensional real
vector space.

Recall that P(V ∗) denotes the set of polytopes in the dual space V ∗. The set P(V ∗) is equipped with
the operations of Minkowski sum and multiplication by positive scalars. One knows that P(V ∗) together
with the Minkowski sum is a cancellative semigroup and hence it can be extended to a real vector space
V(V ∗) consisting of formal differences P1 − P2, Pi ∈ P(V ∗), where for polytopes P1, P2, P

′
1, P

′
2, we have

P1 − P2 = P ′1 − P ′2 if and only if P1 + P ′2 = P ′1 + P2.

Definition 2.16 (Virtual polytope). The elements of V(V ∗) are called virtual polytopes (see [KP93a]).
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We note that V(V ∗) is an infinite dimensional vector space.
Let Σ be a complete fan in V . Recall that P(Σ) denotes the set of all polytopes in V ∗ whose normal fan

is Σ. The set P(Σ) is closed under Minkowski sum and multiplication by positive scalars. We denote by
V(Σ) the subspace of V(V ∗) spanned by P(Σ). The elements of V(Σ) are called virtual polytopes with normal
fan Σ. Generalizing the facet representation of a polytope P ∈ P(Σ), i.e. representation as an intersection
of half-spaces H+

u+
ρ ,aρ

, ρ ∈ Σ(1), each virtual polytope in V(Σ) is represented by a collection of oriented

hyperplanes Huρ,aρ , ρ ∈ Σ(1). Note that any choice of the support numbers aρ yields a virtual polytope
(even if the intersection of the corresponding half-spaces is empty). See Figures 10 and 11 for illustrations
of a usual and virtual quadrangle with the same normal fan.

Figure 10. A usual quadrangle with its normal fan

Figure 11. A virtual quadrangle with the same normal fan

Remark 2.17. The notion of volume of a polytope extends to virtual polytopes via Theorem 2.4. For a
virtual polytope P ∈ V(V ∗) we defined voln(P ) to be the value of the volume polynomial at P . Similarly,
the notion of the number of lattice points in a polytope extends to virtual polytopes as well. Let M ⊂ V ∗

be a full rank lattice. Let V(M) denote the collection lattice virtual polytopes with respect to M , i.e., all
virtual polytopes whose vertices are in M . In other words, V(M) is the subgroup of V(V ∗) generated by
lattice polytopes in P(M). By Theorem 2.5 there exists a (unique) polynomial F on V(V ∗) such that for
any lattice polytope P ∈ P(V ∗) we have F (P ) = |P ∩M |. For a virtual lattice polytope P ∈ V(M) we define
the number of lattice points in P to be F (P ). The same applies to any valuation on the space of polytopes
(see [KP93a]; also see Theorem 2.6 and the paragraph before it for the definition of a valuation).

Each polytope P ∈ P(V ∗) is determined by its characteristic function 1P : V ∗ → {0, 1}. We would like
to extend the assignment P 7→ 1P to virtual polytopes. The natural extension of the set of characteristic
functions of convex polytopes (to a vector space) is the set of convex chains (defined by Khovanskii and
Pukhlikov).

Definition 2.18 (Convex chain). A convex chain Z is a finite linear combination (with real coefficients) of
characteristic functions of convex polytopes in V ∗, that is, Z =

∑
i λi1∆i

, where the ∆i are convex polytopes



COMBINATORICS OF TRACE FORMULA 15

in V ∗ and λi ∈ R. We denote the set of convex chains by Z(V ∗). It is an infinite dimensional vector space
with addition and scalar multiplication of functions.

Moreover, generally one can consider the characteristic functions of convex polyhedral cones.

Definition 2.19 (Conical convex chain). A conical convex chain C is a finite linear combination (with real
coefficients) of characteristic functions of shifted convex cones in V ∗, that is, C =

∑
i λi1ai+Ci , where the

Ci are convex polyhedral cones in V ∗ (with apex at the origin), ai ∈ V ∗ and λi ∈ R. We denote the set of
convex conical chains by CZ(V ∗).

A remarkable construction in [KP93a] is a “convolution” operation ∗ on Z(V ∗) which makes it a commu-
tative algebra (together with addition and scalar multiplication of functions). It has the property that for
any two polytopes P1, P2 we have

1P1 ∗ 1P2 = 1P1+P2 .

In particular, the identity element for the ∗ operation is 1{0}, the characteristic function of the origin.
For a polytope P , it is shown in [KP93a] that the inverse (with respect to ∗) of 1P is the convex chain

(−1)dimP1P◦ , where P ◦ denotes the relative interior of P . In other words,

1P ∗ (−1)dimP1P◦ = 1{0}.

One verifies that

(−1)dimP1P◦ =
∑
Q�P

(−1)dimQ1Q

and hence (−1)dimP1P◦ is indeed a convex chain. It follows that

ι : P1 − P2 7→ 1P1 ∗ (−1)dimP21P◦2 =
∑
Q�P2

(−1)dimQ1P1+Q (2.20)

defines a natural embedding of the group of virtual polytopes (with Minkowski sum) into the semigroup of
convex chains (with convolution ∗). We refer to the righthand side of (2.20) as the convex chain associated
to or characteristic function of the virtual polytope P1 − P2. In fact, it is shown in [KP93a] that the image
of ι coincides with the set of ∗-invertible convex chains.

We can talk about vertices of a virtual polytope. For a virtual polytope P ∈ V(Σ), the vertices are in
one-to-one correspondence with the full dimensional cones in Σ. Similarly, the notion of a tangent cone of
a polytope extends to virtual polytopes. The tangent cones of P ∈ V(Σ) are in one-to-one correspondence
with σ ∈ Σ.

There is a generalization of the Brianchon-Gram theorem to convex chains (see [KP93a, §4, Proposition
2]). The Lawrence-Varchenko theorem also extends to simple virtual polytopes.

Theorem 2.21 (Lawrence-Varchenko for virtual polytopes). Let P be a virtual polytope in V ∗ and let
π : V ∗ → R the corresponding convex chain. Then

π =
∑
v

(−1)nv1T ξP,v
, (2.22)

where the sum is over all the vertices v of P and T ξP,v and nv are as in Theorem 2.14.

See Figure 12 for an illustration of (2.22).
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Figure 12. Illustration of the Lawrence-Varchenko theorem for a virtual quadrangle

2.7. Incidence algebra of a poset and Möbius inversion. For a nice reference about incidence algebra
and Möbius inversion see [St12, Sections 3.6 and 3.7]. Let P be a finite poset with partial oder ≺. Let R

be a commutative ring with 1 which we take as the ring of scalars. Let P̃ = {(τ, σ) : τ � σ} ⊂ P × P be

the collection of all intervals in P. Let I(P) = {F : P̃ → R} be the set of functions from P̃ to R. Clearly
I = I(P) is an abelian group with addition of functions. One defines a convolution operation ∗ on I as
follows. For F,G ∈ I define F ∗G ∈ I by

(F ∗G)(τ, σ) =
∑

τ�τ ′�σ

F (τ, τ ′)G(τ ′, σ).

It can be verified that (I,+, ∗) is an algebra over R, called incidence algebra of the poset P. In general, I(P)
is not commutative.

The identity (for the convolution operation ∗) is the function δ defined by

δ(τ, σ) =

{
1 τ = σ

0 τ 6= σ
.

A distinguished element of the incidence algebra is the constant function ζ(τ, σ) = 1, for any interval
τ � σ. The Möbius inversion formula states that the function ζ is invertible and its inverse is the Möbius
function µ. For general poset P the Möbius function is constructed/defined inductively but in specific
examples it can be defined/computed explicitly.

Example 2.23 (Poset of subsets of a finite set). Let P be the poset of all subset of {1, . . . , d} ordered by
inclusion. It can be shown that Möbius function in this case is given by

µ(I, J) = (−1)|I|−|J|, J ⊂ I,

and the Möbius inversion formula recovers the inclusion-exclusion principle.

The following is the main example of a poset that we will be concerned with in the paper.

Example 2.24 (Poset of faces of a convex polyhedral cone). Let P be the poset of all faces of a given convex
polyhedral cone C ⊂ Rn. If σ is simplicial of dimension d, then this poset is the same as the poset of all
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subsets of {1, . . . , d} above. It can be shown that the Möbius function in this case is given by

µ(τ, σ) = (−1)dimσ−dim τ , τ � σ.

3. Convergence

In this section we give some combinatorial/geometric results that contain the combinatorial ingredients of
Arthur’s result on the convergence and polynomiality (in a truncation parameter T ) of his truncated trace
JT (f) in his non-invariant trace formula. See [Ar78, §7] and [Ar81, §2] as well as the survey [Ar05, §§8–9].

We continue to denote the n-dimensional real vector space we fixed in Section 2 by V . We choose an inner
product 〈·, ·〉 on V and use it to identify V with its dual. Our results in this section depend on the choice of
this inner product. In particular, we view the dual cone σ∨ as a subset of V itself,

σ∨ := {x ∈ V : 〈x, y〉 > 0, for all y ∈ σ} .

Our starting point is a full dimensional, complete, simplicial, fan Σ in V . Let ∆ ∈ P(Σ) be a convex
polytope whose normal fan is Σ. Suppose that we are given a collection of continuous functions

Kσ : V −→ C, σ ∈ Σ. (3.1)

To this data we associate the truncated function k∆ : V −→ C defined by

k∆(x) =
∑
σ∈Σ

(−1)dimσ Kσ(x) 1T−∆,σ
(x), (3.2)

where T−∆,σ = T−∆,Qσ is the outward tangent cone, as in (2.3), of the face Qσ of ∆ that stands in bijection

with σ as in (2.8). The main result of this section is to prove that if the functions Kσ satisfy certain
assumptions, then the integral of k∆ over V is absolutely convergent. In particular, these assumptions hold
when the functions Kσ satisfy certain growth conditions as we explain below. The latter is the setting in
which Arthur’s trace formula appears.

For a cone σ ∈ Σ let W (σ) = {wi ∈ V : i ∈ I} be a set of unit edge vectors of σ. We also let B(σ) =
{bi ∈ V : i ∈ I} denote the set of unit, inward, facet normals in Span(σ) to the facets of σ. Note that the bi
form a basis of Span(σ) dual to the wi, i.e.,

〈wi, bj〉 = δi,j , i, j ∈ I.

When σ is full dimensional B(σ) is the set of edge vectors of the dual cone σ∨.

Definition 3.3 (Acute cone and acute fan). We say that a convex cone σ in V is acute if σ ⊆ σ∨. We call
the fan Σ acute if all its cones are acute.

Notice that our definition of acute allows for right angles. We also remark that the notion of acute depends
on the inner product we have chosen in V . Indeed the acute assumption will be crucial for the convergence
results below to hold as Example 3.21 shows.

Observe that

σ is acute ⇐⇒ 〈wi, wj〉 > 0, i, j ∈ I. (3.4)

It follows from Definition 3.3 that if σ is acute, then for x ∈ Span(σ)

〈x, bi〉 > 0 for all i ∈ I =⇒ 〈x,wi〉 > 0 for all i ∈ I. (3.5)

Next, fix a pair of cones σ2 � σ1 in Σ. Write W (σ1) = {wi ∈ V : i ∈ I1} and B(σ1) = {bi ∈ V : i ∈ I1} as
above. Then W (σ2) = {wi : i ∈ I2} for some I2 ⊆ I1 and the set {bj : j ∈ I1 \ I2} consists of vectors normal
to σ2. (However, B(σ2) is not {bj : j ∈ I2} as the latter depends on σ1.)

Define

Cσ1
= C0

σ1
:= {x ∈ Span(σ1) : 〈x, bj〉 > 0, for all j ∈ I1} (3.6)

and similarly define

Ĉσ1
= Ĉ0

σ1
:= {x ∈ Span(σ1) : 〈x,wi〉 > 0, for all i ∈ I1} . (3.7)

More generally, we define

Cσ2
σ1

:= {x ∈ Span(σ1) : 〈x, bj〉 > 0, for all j ∈ I1 \ I2} . (3.8)
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and
Ĉσ2
σ1

:= {x ∈ Span(σ1) : 〈x,wi〉 > 0, for all i ∈ I1 \ I2} . (3.9)

Next, we define the following subsets of V which play a crucial role in our results.

Definition 3.10. Let Σ be a full dimensional, complete, simplicial, acute fan in V . Assume that σ2 � σ1

are two cones in Σ with unit edge vectors indexed by I2 ⊂ I1 as above.

(a) Define Sσ2
σ1

to be the set of x ∈ Span(σ1)∩σ∨1 such that the face of σ1 that is nearest to x is the cone
generated by {wi : i ∈ I1 \ I2}. Also let 1Sσ2

σ1
denote its characteristic function. (See Section 2.4.)

(b) Define the “shifted” subset

Rσ2
σ1

:= Qσ1 + Sσ2
σ1

=
{
x0 + x ∈ V : x0 ∈ Qσ1 and x ∈ Sσ2

σ1

}
. (3.11)

We also note that while the subsets Sσ2
σ1

may have smaller dimensions, the subsets Rσ2
σ1

, when non-empty,
are always full dimensional because the dimension of Qσ1

(as an affine space) and that of Sσ2
σ1

add up to
n = dimV .

As Lemma 3.12 below shows the Sσ2
σ1

are the analogues of the subsets appearing in [Ar78, LEMMA 6.1]
which also appear to play a similar crucial role in Arthur’s results on convergence and polynomiality.

Lemma 3.12. With σ2 � σ1 in Σ, the vectors wi and bi, and I2 ⊂ I1 as above we have

Sσ2
σ1

=

x ∈ Span(σ1) :
〈x, bj〉 > 0, j ∈ I1 \ I2
〈x, bj〉 6 0, j ∈ I2
〈x,wi〉 > 0, i ∈ I1

 (3.13)

Proof. Write τ = Cone (wi : i ∈ I1 \ I2). Fix x ∈ Span(σ1)∩ σ∨1 . Now x belongs to Sσ2
σ1

if and only if among
all the faces of σ1 the face τ is the unique face that is nearest to x. Note that the distances to the faces of
σ1 are controlled by the normal vectors bj and for τ to be the unique nearest face, we must have 〈x, bj〉 > 0
for j ∈ I1 \ I2 while 〈x, bj〉 6 0 for j ∈ I2. This implies that x ∈ Sσ2

σ1
satisfies the first two sets of inequalities

on the right hand side of (3.13). Also, x satisfies the third set of inequalities on the right hand side of (3.13)
by (3.5) because x ∈ σ∨1 , a cone whose edge vectors are the bi’s.

Next, assume that x belongs to the right hand side of (3.13). The first two sets of inequalities imply that
σ2 is the unique nearest face of σ1 to x and the third set of inequalities means that x ∈ σ∨1 . �

Remark 3.14. Even though we start with simplicial cones σ2 � σ1 the cone Sσ2
σ1

may not be simplicial. As

an example, consider V = R3 and let w1 = e1, w2 = e2, w3 = e1 + e2 + e3. Take σ2 = Cone(w3) � σ1 =
Cone(w1, w2, w3). We then have b1 = e1 − e3, b2 = e2 − e3, b3 = e3. A simple calculation then shows that
Sσ2
σ1

= Cone(w1, w2, b1, b2) which is not simplicial.

The following is a type of double nearest face partition that will help us prove our convergence results.

Lemma 3.15. Let Σ be a full dimensional, complete, simplicial, fan in V which is assumed to be acute. Let
∆ ∈ P(Σ) be a convex polytope whose normal fan is Σ. Then for any σ ∈ Σ the outward tangent cone T−∆,σ
has the partition

T−∆,σ =
⊔

{σ1∈Σ :σ�σ1}

⊔
{σ2∈Σ:σ2�σ}

Rσ2
σ1
. (3.16)

Proof. Consider the inner disjoint union in (3.16) first. Fix σ1 in Σ with σ � σ1. Write W (σ1) =
{wi ∈ V : i ∈ I1} and assume that I2 ⊆ I ⊆ I1 are such that W (σ) = {wi ∈ V : i ∈ I} and similarly for
W (σ2). Also, write B(σ1) = {bj ∈ V : j ∈ I1}. Choose I2 ⊆ I ⊆ I1 as above. Notice that bj is normal to σ
for j ∈ I1 \ I and bj is normal to σ2 for j ∈ I1 \ I2.

Simply considering all the subsets of I we see that

Aσσ1
:=

⊔
σ2:σ2�σ�σ1

Rσ2
σ1

=

{
x ∈ V :

〈x− q, bi〉 > 0, i ∈ I1 \ I,
〈x− q, wi〉 > 0 i ∈ I1,

for some q ∈ Qσ1

}
.

This is because for q ∈ Qσ1
the set q + Sσ2

σ1
is, by (3.13), given by

〈x− q, bi〉 > 0, i ∈ I1 \ I2 = (I1 \ I) t (I \ I2),
〈x− q, bi〉 6 0, i ∈ I2,
〈x− q, wi〉 > 0, i ∈ I1.
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In the disjoint union over all subsets I2 of I corresponding to the faces σ2 of σ the first set of inequalities
for i ∈ I1 \ I are common for all the subsets I2 and the remaining inequalities along with the second set of
inequalities cover all possible signs for 〈x− q, bi〉 for all i ∈ I. Moreover, we have 〈x− q, wi〉 > 0 for i ∈ I1.
This proves our claim about the inner union and, in fact, already proves the lemma for the case when σ is
full dimensional since we only have the inner union in that case.

Next, we consider the outer union. The assertion of the lemma now amounts to a nearest face partition.
The set T−∆,σ consists of x ∈ V satisfying 〈x − q, wi〉 > 0, i ∈ I for every q ∈ Qσ. Fix one such x. There
is a unique face Qσ1

of ∆ with σ � σ1 such that the distance from x to Qσ1
is smallest among all the

faces contained in Qσ. Note that the distances are controlled by the normal vectors bj and for the smallest
distance to occur for the face Qσ1

of Qσ, we must have 〈x− q, bj〉 > 0 for j ∈ I1 \ I and 〈x− q, bj〉 6 0 for
j ∈ I0 \ I1 for any I0 ⊃ I with σ0 ∈ Σ for some q ∈ Qσ1 . Therefore, among the Aσσ′1

with σ � σ′1, only Aσσ1

contains x. Hence, (3.16) holds. �

Let us also fix the following notation. For σ2 � σ1 in Σ, define the functions

Kσ1,σ2
(x) =

∑
{τ∈Σ :σ2�τ�σ1}

(−1)dim(τ)Kτ (x), x ∈ V. (3.17)

We are now prepared to state our first convergence result.

Theorem 3.18 (Absolute Convergence). Let Σ be a full dimensional, complete, simplicial, fan in V which
is assumed to be acute. Let ∆ ∈ P(Σ) be a simple full dimensional polytope in V whose normal fan is Σ.
Suppose that a collection of functions (Kσ)σ∈Σ is given as in (3.1) and k∆ is defined as in (3.2).

For each pair σ2 � σ1 in Σ, assume that the function Kσ1,σ2 is absolutely integrable on the set Rσ2
σ1

. Then

JΣ(∆) :=

∫
V

k∆(x) dx (3.19)

is absolutely convergent. Recall that Rσ2
σ1

is defined by (3.11) and Kσ1,σ2
by (3.17).

Proof. Recall that k∆(x) is defined in terms of outward tangent cones T−∆,σ. It follows from Lemma 3.15
that

k∆(x) =
∑
σ∈Σ

(−1)dim(σ)Kσ(x) 1T−∆,σ
(x)

=
∑
σ∈Σ

(−1)dim(σ)Kσ(x)

 ∑
σ1:σ�σ1

∑
σ2:σ2�σ

1Rσ2
σ1

(x)


=

∑
σ2�σ1

Kσ1,σ2(x)1Rσ2
σ1

(x).

Hence, ∫
V

|k∆(x)| dx 6
∑

{σ1,σ2∈Σ :σ2�σ1}

∫
R
σ2
σ1

|Kσ1,σ2
(x)| dx

and each of the integrals on the right hand side is finite by assumption. Therefore, the integral on the left
hand side is finite. �

A special case of Theorem 3.18 is particularly suitable for applications to Arthur’s non-invariant trace
formula. To state it we review the following standard notions of growth.

Let σ be a cone in V . A function K : V → C is said to be of order N in σ if there is a constant C = CK,N
such that

|K(x)| ≤ C |x|N

for x in σ with |x| sufficiently large. In other words, K(x) = O(|x|N ) as x tends to ∞ in σ. We say K is
rapidly decreasing on σ if for every N > 0 we have K(x) = O(|x|−N ) as x tends to ∞ in σ.
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Theorem 3.20. Let Σ be a full dimensional, complete, simplicial, fan in V which is assumed to be acute and
let (Kσ)σ∈Σ be a collection of continuous functions as in (3.1). Assume that the following two assumptions
are satisfied:

(i) For all σ ∈ Σ the function Kσ is constant in the direction of Span(σ) (i.e., a function on σ⊥).
(ii) For all pairs of cones σ2 � σ1 in Σ with the subset Sσ2

σ1
non-empty, the function Kσ1,σ2 is of order

N = −(n1 +ε) for some ε > 0 in every shifted neighborhood B(y, δ)+Sσ2
σ1

for all y ∈ V where B(y, δ)
is a (small) ball in V of positive radius δ around y, and n1 = dimσ1. In particular, this condition
is satisfied if Kσ1,σ2

is rapidly decreasing on the shifted neighborhoods.

Then for ∆ ∈ P(Σ) the integral (3.19) defining JΣ(∆) converges absolutely.

Proof. By Theorem 3.18 it is enough to prove that the two assumptions in the statement imply that∫
R
σ2
σ1

|Kσ1,σ2
(x)| dx <∞

for all pairs σ2 � σ1 in Σ.
We may replace the domain of integration by its closure. Also recall that the closure of Rσ2

σ1
is equal to

closure of Qσ1
, which is compact, plus the closure of Sσ2

σ1
, which can be given by making all the inequalities

in (3.13) non-strict. Note that Sσ2
σ1

is a cone, even though it may be non-simplicial.
To estimate the integral above, we apply Fubini’s theorem to break the integral as three iterated integrals,

an integral over Qσ1 , an integral over A = σ⊥2 ∩ Span(σ1), and a third integral in the direction of σ2.
Note that Span(σ2) does not intersect Sσ2

σ1
because for any x ∈ Span(σ2) the third set of inequalities

in (3.12) for i ∈ I2 and (3.5) imply that x can not satisfy the second set of inequalities in (3.12). This
observation and our first assumption imply that the contribution of the integral over σ2 is bounded, up to
a constant, by the product of the integrand with |x|n2 , where n2 = dimσ2. Hence, the integral above is
bounded, up to a constant, by ∫

Qσ1

∫
A

|Kσ1,σ2
(x)| |x|n2dx.

Next, using the second assumption and the fact that Qσ1
is compact, we may cover the domain of integration

by a finite number of shifted neighborhoods. Therefore, up to a constant, the integral over A, which is a
cone of dimension n1 − n2 is bounded by ∫

A

|x|N+n2 dx.

The volume element on A involves |x|dimA−1 and dimA = n1 − n2 which implies that the original integral
is convergent if N + n2 + (n1 − n2 − 1) + 1 = −ε > 0 which is clear. This proves the theorem. �

We will give several examples of the convergence theorems later in Section 4. At the moment we mention
the following example, which shows that the acute assumption in our convergence results is crucial.

Example 3.21. Consider the complete fan Σ in V = R2 pictured in Figure 13. In addition to zero, Σ
contains three one dimensional cones σx, σy, σz, as well as three two dimensional cones σxy, σxz, and σyz.
Also, let ∆ be a polytope whose normal fan is Σ as indicated.

For convenience, let us write z = x+ y. Define the collection of functions (Kσ)σ∈Σ as follows.

• Kxy = Kxz = Kyz = 1;

• Kx = Kx(y) = 1 + e−|y|; Ky = Ky(x) = 1 + e−|x|; Kz = Kz(x, y) = 1 + e−|z|;

• K0 = K0(x, y) = e−|z| + e−|x| + e−|y|.

In Figure 14 we have indicated all the non-empty Rσ2
σ1

. The truncated function k∆ is the sum of the functions
in the various regions indicated. A simple calculation shows that there are four regions where the integral of
|k∆| is divergent. These regions are precisely those that are not of the form Rσ2

σ1
in this example, while on

the other regions the hypotheses of Theorem 3.20 clearly hold. As it is evident from this example, the crucial
Lemma 3.15 fails which leads to the failure of Theorem 3.20 without the acute assumption.
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Figure 13. An example of an obtuse fan, it is the normal fan of a right triangle.

Figure 14. The regions Rσ2
σ1

and their corresponding Kσ1,σ2
functions

We also prove the following lemma for later use in Section 4. Let τ be a cone in Σ. Recall from Section
2.3 that Σ/τ denotes the fan consisting of all the images of the cones σ � τ in the quotient vector space
V/ Span(τ) ∼= τ⊥. For σ � τ , let us denote the image of σ in V/ Span(τ) by σ̄. Note that by assumption,
for any σ � τ , the function Kσ is constant along Span(τ) and hence induces a well-defined function K̄σ̄ on
V/ Span(τ).

Lemma 3.22. Suppose the conditions in Theorem 3.20 for convergence are satisfied for the Kσ, σ ∈ Σ.
Then for any τ ∈ Σ, these conditions are also satisfied for the K̄σ̄, σ̄ ∈ Σ/τ , and hence JΣ/τ (0) is convergent
as well.

Proof. This is an immediate corollary of the following two observations. Let τ � σ2 � σ1. Then we have
that (1) the cone S σ̄1

σ̄2
(as in the proof of Theorem 3.18) coincides with the image of Sσ1

σ2
in V/ Span(τ); (2)

the function Kσ̄1,σ̄2 (as in the statement of Theorem 3.18) is rapidly decreasing on a shifted neighborhood
S σ̄1
σ̄2

because Kσ1,σ2 is rapidly decreasing on a shifted neighborhood of Sσ1
σ2

. �

Finally, we give a discrete version of Theorem 3.20. As usual let N and M be dual lattices and let
V = NR = N ⊗R and V ∗ = MR = M ⊗R be the corresponding vector spaces respectively. We fix a perfect
pairing N ×N → Z and use it to identify N and M as well as NR and MR.

Theorem 3.23. With notation and assumptions as in Theorem 3.20, the sum

SΣ(∆,M) =
∑
m∈M

k∆(m),

is absolutely convergent.
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Proof. In the proof of Theorem 3.20 replace all integrals
∫
A

f(x)dx with sums
∑

m∈A∩M
f(m). �

We should note that the discrete analogue of Lemma 3.22 also holds with the same proof.

4. Polynomiality

In this section we prove the following theorems.

Theorem 4.1 (Polynomiality). Let Σ be a full dimensional, complete, simplicial, fan in V which is assumed
to be acute. Let (Kσ)σ∈Σ be a collection of continuous functions satisfying assumptions (i) and (ii) in
Theorem 3.20. Then

JΣ(∆) =

∫
V

k∆(x)dx

is a polynomial function on P(Σ), i.e., a polynomial in the support numbers of ∆.

We also prove a discrete version of the above polynomiality result. Let N and M be dual lattices with
V = NR and V ∗ = MR the corresponding vector spaces. We fix a perfect Z-pairing N × N → Z and use
it to identify N and M . Recall that P(Σ,M) denotes the collection of polytopes with normal fan Σ whose
vertices lie in M .

Theorem 4.2. Let the notations and assumptions be as in Theorem 4.1. Then

SΣ(∆) =
∑
m∈M

k∆(m)

is a polynomial function on P(Σ,M).

A key step in the proof of Theorem 4.1 is a combinatorial lemma (Lemma 4.9) which we deduce as a
corollary of the Lawrence-Varchenko conical decomposition (Theorem 2.21). The notion of a virtual polytope
naturally appears here (see Section 2.6). The proof of Theorem 4.2 is slight modification of the proof of
Theorem 4.1. We give the proofs in Section 4.2 below after some preparation. Let us give some examples
first.

Example 4.3 (Brianchon-Gram). Let Σ be a simplicial fan in V with ∆ ∈ P(Σ) a polytope normal to Σ.
Let Kσ ≡ 1, ∀σ ∈ Σ. The combinatorial truncation k∆ in this case is given by

k∆ =
∑
σ∈Σ

(−1)dim(σ)1C−∆,σ
.

By the Brianchon-Gram theorem (Theorem 2.12), we have

k∆ = 1∆.

For any pair of cones σ1 � σ2 in Σ we have

Kσ1,σ2 =
∑

{τ∈Σ :σ2⊆τ⊆σ1}

(−1)dim(τ) = 0

by the binomial identity
∑n
k=0(−1)k

(
n
k

)
= 0. Thus, the conditions in Theorem 3.20 are satisfied. Moreover,

the Kσ are constant and hence the assumptions in the polynomiality theorem are also satisfied. Thus we
recover the polynomiality of the volume function ∆ 7→ vol(∆) (see Theorem 2.4).

Example 4.4 (Rectangle). We consider the fan Σ in V = R2 as in Figure 15, consisting of one dimensional
cones σx and σy and their opposites, and two dimensional cone σxy the other three quadrants. We also have
the cone {0}. The fan Σ is normal to the rectangle ∆ with support numbers T1, T2, T

′
1, T

′
2 as indicated.
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Figure 15.

Let f(x, y) be an absolutely integrable function on R2 with f++ denoting the value of its integral over the
first quadrant. Similarly let the values of its integral over the other quadrants be denoted by f+−, f−+, f−−.
Also, let g(x) and h(y) be absolutely integrable functions on R with their integrals over [0,∞) denoted by g+

and h+ and their integrals over (−∞, 0] denoted by g− and h−, respectively. Finally, let k denote a constant.
We assign the following functions to the cones in Σ:

• K0(x, y) = f(x, y) + g(x) + h(y) + k,
• Kσ±x(x, y) = h(y) + k,
• Kσ±y (x, y) = g(x) + k, and
• Kσ(x, y) = k for all two dimensional cones σ in Σ.

Notice that the conditions (i) and (ii) of Theorem 3.20 are clearly satisfied.
Let us calculate JΣ(∆). Because of the symmetry in this example, it is enough to consider a quarter of

the picture. We have∫ T1

0

∫ T2

0

(f(x, y) + g(x) + h(y) + k) dy dx+

∫ T1

0

∫ ∞
T2

(f(x, y) + h(y)) dy dx

+

∫ ∞
T1

∫ T2

0

(f(x, y) + g(x)) dy dx+

∫ ∞
T1

∫ ∞
T2

f(x, y) dy dx

= f++ + g+T2 + h+T1 + kT1T2,

which is a polynomial of degree 2 in T1 and T2. Adding similar contributions from the other three quadrants
we arrive at

JΣ(∆) = k (T1 + T ′1)(T2 + T ′2) + h+ T1 + g− T
′
1 + g+ T2 + g− T

′
2 + (f++ + f+− + f−+ + f−−).

4.1. An extension of Langlands combinatorial lemma. As before V is an n-dimensional real vector
space. We fix an inner product 〈·, ·〉 on V and identify V with its dual space V ∗. Let Σ be a full dimensional,
complete, simplicial, fan in V and let ∆ ∈ P(Σ) be a full dimensional simple polytope with normal fan Σ.
Since we identified V and V ∗, we take both Σ and ∆ to lie in V .

Let σ ∈ Σ be a cone. First we consider the case where σ is full dimensional. Let vσ be the corresponding
vertex of ∆. Let W = {w1, . . . , wn} (respectively B = {b1, . . . , bn}) be the set of edge vectors of σ (respec-
tively, of σ∨). Then the bi (respectively, the wj) are the inward facet normals to σ (respectively σ∨), and
the cone σ is given by inequalities as

σ = {x : 〈x, bi〉 > 0, i = 1, . . . , n} .

Also the inward-looking tangent cone T+
∆,σ at the vertex vσ is given by

T+
∆,σ = {x : 〈x,wi〉 6 〈vσ, wi〉, i = 1, . . . , n} .
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Figure 16. A three dimensional example where Γ∆,σ is a cube. A face τ (of σ) and its
corresponding dual face τ∗ (of σ∨) and the vertex vτ (of Γ∆,σ) are illustrated.

We consider the oriented hyperplanes corresponding to the union of these two sets of inequalities:

Hbi,0 = {x : 〈x, bi〉 = 0} , i = 1, . . . , n,

Hwi,〈vσ,w〉 = {x : 〈x,wi〉 = 〈vσ, w〉} , i = 1, . . . , n. (4.5)

If vσ lies in σ then the hyperplanes in (4.5) are the facets of the polytope ∆∩σ oriented outward. In general,
vσ may not lie in σ.

Definition 4.6. We denote the virtual polytope in V determined by the oriented hyperplanes in (4.5) by
Γ∆,σ. We denote the convex chain corresponding to Γ∆,σ by γ∆,σ.

See Section 2.6 for a review of the notions of virtual polytope and convex chain. Also see Figure 16 for
a three dimensional example of Γ∆,σ and Figure 17 for a pair of two dimensional examples of the virtual
polytope Γ∆,σ and its convex chain γ∆,σ.

In this section we consider the Lawrence-Varchenko conical decomposition for the virtual polytope Γ∆,σ

(Theorem 2.21). We will see that this recovers and extends some of the key combinatorial lemmas appearing
in Arthur’s work (e.g. [Ar81]). As a special case we immediately recover the Langlands combinatorial
lemma (see [Ar05, Section I.8, p. 46] and [GKM97, Appendix B]). In addition, we interpret the Langlands
combinatorial lemma as a formula for the inverse of a distinguished element in the incidence algebra of poset
of faces of σ (see Section 2.7).

Recall that for τ � σ, the largest face of σ∨ orthogonal to τ is denoted by τ∗ and we have dim τ+dim τ∗ = n
(Section 2.1). It follows that the intersection Span(τ)∩ (vσ + Span(τ∗)) is a single point which can be shown
to be a vertex vτ of Γ∆,σ. In fact, we will see below that τ 7→ vτ gives a one-to-one correspondence between
the faces of σ and the vertices of Γ∆,σ. The vertex corresponding to the zero dimensional face 0 is 0 itself.
On the other hand, the vertex corresponding to the whole σ is the vertex vσ of ∆.

For a face τ � σ let W (τ) ⊂ W (respectively B(τ) ⊂ B) be the subset of edge vectors of τ (respectively
τ∗). Thus

τ = {x ∈ σ : 〈x, b〉 = 0, b ∈ B(τ)}.
The vertex vτ is then the unique solution of the system of equations{

〈x,w〉 = 〈vσ, w〉, ∀w ∈W (τ),

〈x, b〉 = 0, ∀b ∈ B(τ).

And the inward tangent cone T+
Γ∆,σ,vτ

at the vertex vτ is given by the inequalities

T+
Γ∆,σ,vτ

=

{
x ∈ V :

〈x,w〉 6 〈vσ, w〉, ∀w ∈W (τ)
〈x, b〉 > 0, ∀b ∈ B(τ)

}
.

Thus the set of outward facet normals of Γ∆,σ at vτ is W (τ)∪−B(τ). In other words, the cone in the normal
fan of Γ∆,σ corresponding to the vertex vτ is generated by the set of vectors W (τ) ∪ −B(τ) (Section 2.3).

Consider the nearest face partition corresponding to σ (Section 2.4). That is, for each face τ let V τσ be
the set of points x ∈ V whose shortest distance to σ is attained at a point in the relative interior of τ . Since
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Figure 17. Two examples of the virtual polytopes Γ∆,σ. In the first example the vertex
vσ lies in the cone σ and Γ∆,σ is an actual polytope (a quadrangle). The convex chain γ∆,σ

is the characteristic function of the quadrangle. In the second example, vσ lies outside σ
and Γ∆,σ is a virtual quadrangle. The convex chain γ∆,σ is the function which has values 1
and −1 in the two shaded regions respectively.

σ is a cone, each V τσ is a full dimensional cone. Moreover, the closures of the cones V τσ , τ � σ, are the
maximal cones of a complete simplicial fan in V which we call the nearest face fan of σ. The following is
straightforward to verify.

Proposition 4.7. In the nearest face fan of σ, the cone corresponding to a face τ � σ is the convex cone
generated by the set of vectors W (τ) ∪ −B(τ).

Since the V τσ partition the whole space V , the above proposition shows that the union of the cones
generated by W (τ) ∪ −B(τ), τ � σ, is V . This then implies that the normal fan of Γ∆,σ coincides with
the nearest fan of σ. In particular, the vτ are all of the vertices of Γ∆,σ. In other words, τ 7→ vτ gives a
one-to-one correspondence between the faces of σ and the vertices of Γ∆,σ.

Now take a vector ξ in σ◦ ∩ (σ∨)◦, that is,

〈ξ, b〉 > 0, ∀b ∈ B,
〈ξ, w〉 > 0, ∀w ∈W.

Note that since σ 6= V , we know (σ◦)∨ + σ◦ 6= V and hence σ◦ ∩ (σ∨)◦ = ((σ◦)∨ + σ◦)∨ 6= ∅.
Let T ξΓ∆,σ,vτ

be the polarized tangent cone at the vertex vτ appearing in the Lawrence-Varchenko decom-

position of Γ∆,σ relative to the vector ξ (see Section 2.5). By construction, the edge vectors of T ξΓ∆,σ,vτ
are ±

the edge vectors of the tangent cone of Γ∆,σ at vτ so that the minimum of 〈ξ, ·〉 on T ξΓ∆,σ,vτ
is attained at the

vertex vτ . Since the inner product of ξ with any vector in W ∪B is positive, it follows that the set of inward

facet normals of T ξΓ∆,σ,vτ
is exactly W (τ) ∪B(τ). More precisely, T ξΓ∆,σ,vτ

is defined by the inequalities

T ξΓ∆,σ,vτ
=

{
x ∈ V :

〈x,w〉 > 〈vσ, w〉, ∀w ∈W (τ),
〈x, b〉 > 0, ∀b ∈ B(τ),

}
. (4.8)

On the other hand, let Cτσ be the inward looking tangent cone of σ at τ . It is the cone defined as

Cτσ = {x ∈ V : 〈x, b〉 > 0, ∀b ∈ B(τ)}.

It follows from (4.8) that T ξΓ∆,σ,vτ
can be written as

T ξΓ∆,σ,vτ
= Cτσ ∩ T−∆,τ .

If σ is not full dimensional, we can repeat the above, replacing ∆ with ∆ ∩ Span(σ). Then γ∆,σ is a
convex chain supported on Span(σ). We extend γ∆,σ to the whole V by requiring it to be constant along
σ⊥. Now applying the Lawrence-Varchenko theorem to the virtual polytope Γ∆,σ and the vector ξ as above
we obtain the following conical decomposition for Γ∆,σ.
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Lemma 4.9. With notation as above, let γ∆,σ be the convex chain associated to the virtual polytope Γ∆,σ.
We have

γ∆,σ =
∑
τ�σ

(−1)dim τ1Cτσ1T−∆,τ
. (4.10)

Proof. First, we note that the number nvτ of the edges flipped in the polarized tangent cone T ξΓ∆,σ,vτ
is

equal to |W (τ)| = dim τ . The above discussion then proves the case where σ is full dimensional. If σ is not
full dimensional, all the cones considered in the right hand side of (4.10) above should be extended in the
orthogonal direction σ⊥. This finishes the proof. �

Letting ∆ = {0} we recover a combinatorial lemma of Langlands.

Corollary 4.11 (Langlands combinatorial lemma). Let σ ⊂ V be a convex polyhedral cone. The following
identities hold. ∑

τ�τ ′�σ

(−1)dim τ+dim τ ′1Cτ′σ 1Cτ′∗
τ∗

=

{
1, if τ = σ,

0 if τ 6= σ
(4.12)

∑
τ�τ ′�σ

(−1)dim τ ′+dim τ1Cτ′τ 1Cτ′∗
σ∗

=

{
1, if τ = σ,

0, if τ 6= σ.
(4.13)

Alternatively, consider the incidence algebra of the poset of faces of σ with ring of scalars R being the
ring of all real-valued functions on V (see Section 2.7 and Example 2.24). Define the elements F , G of the
incidence algebra by

F (τ, τ ′) = (−1)dim τ1Cτ′τ ,

G(τ, τ ′) = (−1)dim τ1Cτ′∗
τ∗
.

Equations (4.12) and (4.13) state that F and G are inverses of each other in the incidence algebra, that is,

(F ∗G)(τ, σ) = (G ∗ F )(τ, σ) = δ(τ, σ). (4.14)

Proof. Firstly, to prove (4.12), we can assume without loss of generality that τ = 0. Equation (4.12) is then
an immediate consequence of (4.10) when we let ∆ = {0}. To obtain (4.13), we apply (4.12) to σ∨ in place
of σ. Finally, (4.14) is a rewriting of (4.12) and (4.13) using the language of incidence algebra. �

Corollary 4.15. With notation as before, we have

1T−∆,σ
=
∑
τ�σ

(−1)dim τ1Cτσ γ∆,τ . (4.16)

Proof. Let H and L be elements of the incidence algebra such that H(0, τ) = 1T−∆,σ
and L(0, τ) = γ∆,τ ,

∀τ � σ. Then (4.10) states that L(0, τ) = (H ∗ F )(0, τ). Convolution of both sides from right with G gives
(L ∗G)(0, τ) = H(0, τ), which is exactly (4.16). �

4.2. Proof of polynomiality.

Proof of Theorem 4.1. In the definition of JΣ(∆), we use Corollary 4.15 to write T−∆,σ as
∑
τ�σ

(−1)dim τ1Cτσ γ∆,τ .

We have

JΣ(∆) =

∫
V

∑
σ∈Σ

(−1)dimσKσ(x) 1T−∆,σ
(x)dx

=

∫
V

∑
σ∈Σ

(−1)dimσKσ(x)

 ∑
τ :τ�σ

(−1)dim τ1Cτσ (x) γ∆,τ (x)

 dx

=
∑
τ∈Σ

(−1)dim τ

∫
V

 ∑
σ:τ�σ

(−1)dimσKσ(x) 1Cτσ (x) γ∆,τ (x)

 dx
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Now we use the assumption that Kσ(x) is invariant along σ and γ∆,τ is invariant along τ⊥ (by definition of
γ∆,τ ) to write the above as

∑
τ

(−1)dim τ

∫
τ⊥

∑
σ:τ�σ

(−1)dimσKσ(x2) 1Cτσ (x2)dx2

 ·
 ∫

Span(τ)

γ∆,τ (x1)dx1

 .

Here x = x1 + x2 where x1 ∈ Span(τ) and x2 ∈ τ⊥, and dx1, dx2 are the Lebesgue measures on Span(τ),
τ⊥ respectively so that dx = dx1dx2. By Theorem 2.4 and Remark 2.17 we know that

vol(Γ∆,τ ) =

∫
Span(τ)

γ∆,τ (x1) dx1

is a polynomial in the support numbers of Γ∆,τ of degree dim τ . By definition (see (4.5)) these support
numbers either correspond to the bi in which case they are 0, or they correspond to the wi in which case
they are equal to the ai, the corresponding support numbers of ∆. It follows that vol(Γ∆,τ ) is a polynomial
in the support numbers of ∆ of degree dim τ . Recall that the normal fan of the face of ∆ corresponding to τ
is the fan Σ/τ consisting of all the images of the cones σ � τ in the quotient vector space V/ Span(τ) ∼= τ⊥.
One then observes that

∫
τ⊥

∑
σ:τ�σ

(−1)dimσKσ(x) 1Cτσ (x) dx2 is exactly JΣ/τ (0). In summary

JΣ(∆) =
∑
τ∈Σ

(−1)dim τJΣ/τ (0) vol(Γ∆,τ ).

This shows that JΣ(∆) is a linear combination of the polynomials vol(Γ∆,τ ) and hence is a polynomial itself.
It remains to show that JΣ/τ (0) is convergent. But this is the content of Lemma 3.22 and the proof is
finished. �

Proof of Theorem 4.2. In the proof of Theorem 4.1 replace any integral
∫
A

f(x)dx with a sum
∑

m∈A∩M
f(m).

In particular, replace vol with the number of lattice points. For τ ∈ Σ, let M1 = Span(τ) ∩ M and
M2 = τ⊥ ∩M . Note that it is possible that M1 + M2 6= M . Nevertheless M1 + M2 is a subgroup of finite
index in M . Let M ′ ⊂ M be a system of coset representatives for M/(M1 + M2). Then every m ∈ M can
be uniquely written as m′ + m1 + m2 where m′ ∈ M , mi ∈ Mi. Then similar to the proof of Theorem 4.1
we write

SΣ(∆,M) =
∑
m∈M

∑
σ∈Σ

(−1)dimσKσ(m) 1T−∆,σ
(m)

=
∑
m∈M

∑
σ∈Σ

(−1)dimσKσ(m)

 ∑
τ :τ�σ

(−1)dim τ1Cτσ (m) γ∆,τ (m)


=
∑
τ∈Σ

(−1)dim τ
∑
m∈M

 ∑
σ:τ�σ

(−1)dimσKσ(m) 1Cτσ (m) γ∆,τ (m)


=
∑
τ

(−1)dim τ
∑

m′∈M ′

 ∑
m2∈M2

∑
σ:τ�σ

(−1)dimσKσ(m′ +m2) 1Cτσ (m′ +m2)

 ·( ∑
m1∈M1

γ∆,τ (m′ +m1)

)
.

One shows that, for fixed m′ ∈M ′, the quantity
∑

m2∈M2

∑
σ:τ�σ

(−1)dimσKσ(m′+m2) is equal to SΣ/τ (0) with

respect to the functions Kσ(m′ + x) (instead of Kσ(x)). By the discrete version of Lemma 3.22, we know
that SΣ/τ (0) is convergent. Let us see that the other term

∑
m1∈M1

γ∆,τ (m′ + m1) depends polynomially on

∆. Let π : V → Span(τ) be the orthogonal projection. Since γ∆,τ is invariant in the τ⊥ direction we have
γ∆,τ (m′+m1) = γ∆,τ (π(m′) +m1). Now the polynomiality of

∑
m1∈M

γ∆,τ (π(m′) +m1) follows from Remark

2.17 (see also Theorem 2.6 and Remark 2.7). Thus SΣ(∆,M) is a finite sum (over m′ ∈M ′) of polynomials
and hence a polynomial itself. This finishes the proof. �
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5. Toric varieties

5.1. Background on toric varieties. In this section we review some basic facts about toric varieties.
Common references on toric varieties are [Fu93, CLS11]. Let T = TN ∼= (C∗)n be an algebraic torus of
dimension n over C, with character lattice M ∼= Zn and cocharacter lattice N ∼= Zn. We denote the
corresponding vector spaces N ⊗Z R and M ⊗Z R by NR and MR respectively. For m ∈ M we denote the
corresponding character/irreducible representation by χm : T → C∗.

Let σ ⊂ NR be a rational strongly convex polyhedral cone. Recall that σ is rational if it is generated as
a cone by vectors from N . To σ one associates an affine toric variety Uσ defined by

Uσ = Spec(C[σ∨ ∩M ].

Here C[σ∨ ∩M ] is the semigroup algebra of the semigroup of all lattice points in the dual cone σ∨. If τ � σ
then we have natural inclusion Uτ ↪→ Uσ. The variety U0 associated to the origin is just the algebraic torus
T itself. The M -grading on the algebra C[σ∨ ∩M ] induces a T -action on the variety Uσ with open orbit U0.

Recall that a fan Σ in NR is rational if all the cones in Σ are generated by vectors in N . Let XΣ be
the toric variety corresponding to a complete rational fan Σ (see [CLS11, Chap. 3] for more details). The
(abstract) variety XΣ is obtained by gluing all the affine toric varieties Uσ, σ ∈ Σ, with respect to inclusion
maps Uτ ↪→ Uσ, τ � σ.

There is an inclusion-reversing correspondence between the cones in Σ and the T -orbits in XΣ. For σ ∈ Σ
let the corresponding T -orbit be Oσ. For a ray ρ ∈ Σ(1) we denote the corresponding T -orbit closure Oρ
by Dρ. The Dρ, ρ ∈ Σ(1), are T -invariant prime divisors on XΣ. For each ray ρ ∈ Σ(1) let vρ ∈ N be the
primitive vector along ρ, i.e. shortest lattice vector on ρ. Let ξ ∈ σ ∩N be a cocharacter. One knows that
for x ∈ U0, limt→0 ξ(t) · x exists and is a point in the orbit Oσ.

Let us assume that XΣ is a projective variety. This is equivalent to the set P(Σ), of polytopes with
normal fan Σ, being nonempty. Let ∆ ⊂MR be a lattice polytope with normal fan Σ. The faces of ∆ are in
one-to-one correspondence with cones in Σ. For σ ∈ Σ let Qσ be the corresponding face of ∆. We note that
dimQσ = codimσ. The polytope ∆ can be represented as

∆ = {x ∈MR : 〈x, vρ〉 6 −aρ,∀ρ ∈ Σ(1)}, (5.1)

where the aρ are the support numbers of ∆ (see Section 2). Recall that for σ ∈ Σ we let T+
∆,σ (respectively

T−∆,σ) be the inward looking (respectively outward looking) tangent cone of the corresponding face Qσ in ∆

(see Equations (2.2) and (2.3)).
To ∆ one associates a T -invariant (Cartier) divisor

D∆ =
∑

ρ∈Σ(1)

−aρDρ.

It can be shown that D∆ is an ample divisor. We denote the corresponding line bundle on XΣ by L∆. Since
D∆ is T -invariant, the line bundle L∆ comes with a natural T -linearization. The divisor D∆ defines a sheaf
of rational functions O(D∆) by

H0(U,O(D∆)) = {f ∈ C(X) : (f) +D∆ > 0 on U} ⊂ C[U0], (5.2)

= {f ∈ C(X) : ordDρ(f) > aρ, ∀ρ ∈ Σ(1) such that Dρ ∩ U 6= ∅}. (5.3)

In particular, for an open affine chart Uσ, the subspace H0(Uσ,O(D∆)) is T -invariant and hence decomposes
into one dimensional T -modules. Let m ∈M . One verifies that for any ray ρ ∈ Σ(1), the order of zero/pole
of the character χm, regarded as a rational function on U0

∼= T , along the divisor Dρ is given by

ordDρ(χm) = −〈m, vρ〉.

It follows that, for any σ ∈ Σ, the irreducible representation χm appears in H0(Uσ,O(D∆)) if and only
if 〈m, vρ〉 6 −aρ, for all ρ ∈ σ(1). Thus the T -module H0(Uσ,O(D∆)) decomposes into one dimensional
irreducible representation as

H0(Uσ,O(D∆)) =
⊕

m∈T+
∆,σ∩M

χm, (5.4)
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where as before T+
∆,σ denotes the inward looking tangent cone of ∆ at the face corresponding to σ. Similarly,

χm appears in the space of global sections H0(XΣ,O(D∆)) if and only if 〈m, vρ〉 6 −aρ, for all ρ ∈ Σ(1)
and we have

H0(XΣ,O(D∆)) =
⊕

m∈∆∩M
χm. (5.5)

This implies that dim(H0(XΣ,O(D∆)) = |∆ ∩M |, the number of lattice points in M .

5.2. Brianchon-Gram theorem and equivariant Euler characteristic. Let F be a T -linearized sheaf
(of rational functions) on XΣ, that is for any T -invariant open set U , the space of sections H0(U,F) is a
T -module and the restriction maps are T -equivariant. For m ∈ M and V a T -module let Vm denote the
m-isotypic component of V . By the equivariant Euler characteristic of F we mean the function χT (XΣ,F) :
M → Z≥0 given by

χT (XΣ,F)(m) =

n∑
i=0

(−1)i dim(Hi(XΣ,F)m).

Let us compute the equivariant Euler characteristic of the T -linearized sheaf O(D∆). As explained above,
for each cone σ ∈ Σ the T -module H0(Uσ,O(D∆)) decomposes as

H0(Uσ,O(D∆)) =
⊕

m∈T+
∆,σ∩M

χm.

Recall that T+
∆,σ denotes the inward tangent cone of ∆ at the face corresponding to σ (see Section 2.2). From

above it follows that the equivariant Euler characteristic χT (XΣ,O(D∆)), computed using Čech cohomology,
can be written as:

χT (XΣ,O(D∆)) =
∑
σ∈Σ

(−1)dim(Qσ)1T+
∆,σ∩M

, (5.6)

where as usual 1A denotes the characteristic function of a set A.
One knows that O(D∆) is ample and hence Hi(XΣ,O(D∆)) = 0 for i > 0. Thus we also obtain

χT (XΣ,O(D∆))(m) = dim(H0(XΣ,O(D∆))m), ∀m ∈M. (5.7)

And hence from (5.5) we have

χT (XΣ,O(D∆)) = 1∆∩M . (5.8)

Comparing with (5.6) one recovers the Brinachon-Gram theorem (Theorem 2.10).
The alternative version of the Brianchon-Gram using outward face cones (Theorem 2.12) can also be

obtained in a similar fashion. Let ∆′ be the polytope with support numbers aρ + 1 and D′ = D∆′ =∑
ρ∈Σ(1)

−(aρ+1)Dρ the corresponding Cartier divisor. Note that 〈x, vρ〉 6 −(aρ+1) if and only 〈−x, vρ〉 > aρ.

Thus for all m ∈M we have

χT (XΣ,O(−D′))(m) =
∑
σ∈Σ

(−1)n−dimσ1T−∆,σ∩M
(−m) (5.9)

(recall (2.3) for defining inequalities of outward tangent cone T−∆,σ). On the other hand, the Khovanskii-

Pukhlikov formula for inverse of the polytope ∆ with respect to the convolution ∗ (see Section 2.6) tells us
that:

χT (XΣ,O(−D′))(m) = (−1)nχT (XΣ,O(D∆))(−m) = (−1)n1∆∩M (−m), (5.10)

Putting together (5.9) and (5.10) we obtain

(−1)n1∆∩M =
∑
σ∈Σ

(−1)n−dimσ1T−∆,σ∩M

which immediately implies Theorem 2.12.
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Remark 5.11 (A symplectic interpretation of the Brianchon-Gram theorem). We can also give a symplectic
geometric interpretation of the Brianchon-Gram theorem, namely as an identity between Liouville measures.
Let X be a symplectic manifold with a Hamiltonian S1-action with moment map µ : X → R. This means
that the Hamiltonian vector field of µ generates the S1-action. Let ε be a regular value of the moment map
µ. Then µ−1([ε,∞)) is a manifold with boundary. The sympectic cut Xµ≥ε is the manifold obtained by
collapsing each S1-orbit in the boundary µ−1(ε) to a point.

We can decompose T = (C∗)n as T = (S1)n×Rn>0. Equip T with the standard symplectic form from Cn.
Each ray ρ ∈ Σ(1) defines a Hamiltonian function µρ : U0 → R on U0

∼= T by

µρ(x) = |x|vρ := |x1|r1 · · · |xn|rn ,

where x = (x1, . . . , xn) and vρ = (r1, . . . , rn). One verifies that the Hamiltonian vector field of µρ generates
the C∗-action on T corresponding to the cocharacter vρ ∈ N . Let Σ be a smooth fan and let ∆ be a rational
polytope with normal fan Σ and let aρ, ρ ∈ Σ(1), be its support numbers. Starting with (C∗)n, doing
repeated symplectic cuts with respect to the µ = µρ and ε = aρ, ρ ∈ Σ(1), one arrives at the toric variety
XΣ. One can show that the open affine chart Uσ is the symplectic manifold obtained by symplectic cuts
using rays of σ. Moreover, the image of the moment map of Uσ is the inward tangent cone T+

∆,σ.

The Brianchon-Gram equality (2.11) can be thought of as an equality involving pushforwards (toNR = Rn)
of Liouville measures on all the symplectic manifolds Uσ and XΣ.

5.3. Positive part of a toric variety and logarithm map. As before let XΣ be the toric variety as-
sociated to a rational fan Σ in NR. Take σ ∈ Σ. By definition the set Uσ(C) of points of Uσ defined
over C is the set of maximal ideals of the semigroup algebra C[σ∨ ∩M ]. This set then can be identified
with Hom(σ∨ ∩ M,C) where Hom denotes the semigroup homomorphisms. This observation enables us
to construct X+

Σ , the points of XΣ over the semigroup R≥0 (see [Fu93, Section 4.1]). We think of X+
Σ as

the “positive” part of XΣ(C). It is constructed as follows. For each σ ∈ Σ let U+
σ = Hom(σ∨ ∩M,R≥0).

Then, as before the U+
σ glue together to give X+

Σ . One has natural inclusion X+
Σ ↪→ XΣ(C). Moreover, the

absolute value | · | : C → R≥0 induces a retraction map XΣ(C) → X+
Σ . Let TK = (S1)n denote the usual

compact torus which is the maximal compact subgroup of T . One verifies that the retraction map induces
a homeomorphism between the quotient XΣ(C)/TK and X+

Σ .

Another way to look at X+
Σ is as follows. Consider the logarithm map

Log : TN = (C∗)n −→ NR = Hom(M,R)

defined as follows. For z ∈ T and m ∈M let

Log(z)(m) = log(|χm(z)|). (5.12)

In the standard coordinates for (C∗)n the logarithm map is given by

Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|). (5.13)

For each σ ∈ Σ the orbit Oσ can be identified with T/Tσ where Tσ is the T -stabilizer of Oσ. Let Nσ denote
the cocharacter lattice of Tσ. It follows from the definitions that Nσ ⊗ R = Span(σ). The logarithm map
then induces a map Logσ : T/Tσ → NR/ Span(σ). In the same way, that XΣ(C) is a disjoint union of the
tori Oσ, σ ∈ Σ, the positive part X+

Σ , is a disjoint union of the real vector spaces NR/ Span(σ), σ ∈ Σ.

Finally X+
Σ is actually homeomorphic to a polytope (in a non-unique way). Given a polytope ∆ with

normal fan Σ, one can construct explicitly a TK-invariant continuous map µ : XΣ → ∆ such that the induced
map µ̄ : XΣ/TK → ∆ is a homeomorphism and the following diagram is commutative (see [Fu93, Section
4.2]).

(C∗)n ∼= U0 XΣ(C)

NR Rn ∼= U+
0 X+

Σ ∆

Log
Log

Log
µ

∼=
µ̄

∼=

(5.14)

Moreover, the bottom row gives a homeomorphism between NR and the interior ∆◦ of ∆. The map µ is a
special case of the notion of momentum map from the theory of Hamiltonian group actions in symplectic
geometry.
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6. Geometric interpretations of combinatorial truncation

We propose two geometric interpretations of our combinatorial truncation in terms of geometric notions
on toric varieties. The same ideas should extend to give geometric interpretations of Arthur’s truncation
and modified kernel. We expect that in this case one should replace a toric variety XΣ by Mumford’s
compactificaiton of a reductive algebraic group as in [KKMS73, Section IV.2].

6.1. Combinatorial truncation as a complex measure on a toric variety. In this section we propose
that combinatorial truncation can be interpreted as a “truncated” complex measure on a projective toric
variety, obtained from the data of prescribed measures on each torus orbit as well as choice of a polytope
normal to the fan which determines certain neighborhoods of the torus orbits.

As usual let XΣ be the toric variety associated to a (rational) fan Σ in NR. Recall that the starting data
of combinatorial truncation is a collection of functions {Kσ : NR → C : σ ∈ Σ}, where each Kσ is invariant
in the direction of Span(σ).

As before let TK = (S1)n denote the compact torus in T = (C∗)n which is the maximal compact subgroup
of T . Suppose we are given a TK-invariant complex measure ω0 = f0dµ0 on U0 = T where f0 is a continuous
function on U0 and dµ0 denotes a Haar measure on U0. Moreover, suppose for each {0} 6= σ ∈ Σ we have
a TK-invariant complex measure ωσ = fσdµσ on the torus orbit Oσ, the T -orbit in XΣ associated to σ.
Here fσ is a continuous function on Oσ and dµσ is the Haar measure on Oσ induced from dµ0. Recall that
Oσ ∼= T/Tσ is itself isomorphic to a torus, where Tσ ⊂ T is the stabilizer of any point in Oσ. Since ωσ, and
hence fσ, are TK-invariant, the function fσ induces a continuous function kσ : NR/ Span(σ) −→ C.

The projection NR → NR/ Spanσ maps the cone σ to {0}. This gives us an equivariant morphism πσ from
the T -toric variety Uσ to the (T/Tσ)-toric variety Oσ (see [CLS11, Sec. 3.3]). We can use πσ : Uσ → Oσ to
extend the measure ωσ to a measure Ωσ on the affine toric chart Uσ ⊂ XΣ (and in particular, on the open
orbit U0

∼= T ) by defining

Ωσ = π∗σ(ωσ).

The measure Ωσ then gives a continuous function Kσ : NR → C which is invariant in the direction of Span(σ).
Now fix an inner product 〈·, ·〉 on NR and identify MR with NR via 〈·, ·〉. As usual take a polytope

∆ ⊂ MR ∼= NR with normal fan Σ. Recall that Log : T → NR denotes the logarithm map on the torus,
which extends to Log : XΣ → X+

Σ (see (5.12) and the diagram (5.14)). Consider the tangent cone T−∆,σ. We

regard it as an open subset of U+
0
∼= NR ∼= Rn and hence as an open subset of X+

Σ . We have

U∆,σ = Log−1(T−∆,σ).

We can also define the subset U∆ ⊂ U0 by

U∆ = Log−1(∆).

We think of Ωσ 1Uσ,∆ as an extension of the measure ωσ to the neighborhood U∆,σ. Finally, we can define a
measure Ω∆ on XΣ by

Ω∆ =
∑
σ∈Σ

(−1)dimσΩσ 1U∆,σ .

It is a TK-invariant complex measure on XΣ and corresponds to the function k∆ on NR. We think of it as
a truncation of ω0 with respect to the measures ωσ at infinity. From Theorems 3.20 and 4.1 we have the
following.

Proposition 6.1. Under the assumptions in Theorem 3.20 on the functions Kσ, the total measure of Ω∆

is finite and is a polynomial in the support numbers of ∆.

Remark 6.2. In fact, each tangent cone T−∆,σ gives us an open neighborhood of the orbit closure Oσ in XΣ.

To construct this open neighborhood, we complete T−∆,σ ⊂ NR to an open subset T̃∆,σ ⊂ X+
Σ containing the

closure O+
σ by

T̃∆,σ =
⋃

σ′:σ�σ′

⋃
τ :τ�σ′

T−Qτ ,σ′ ⊂ X
+
Σ :=

⊔
σ∈Σ

NR/ Span(σ).
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One verifies that T̃∆,σ is indeed an open subset of X+
Σ containing O+

σ . It follows that Ũ∆,σ = Log−1(T̃∆,σ)

is an open neighborhood of the orbit closure Oσ in the toric variety XΣ. We note that T−∆,σ is open dense

in T̃∆,σ and hence for the purposes of truncation it does not matter whether we work with T−∆,σ or T̃∆,σ.

6.2. Combinatorial truncation as a Lefschetz number. In this section we give an interpretation of the
combinatorial truncation as a Lefschetz number.

Lefschetz number. Let X be a topological space such that all its cohomology groups Hi(X,R) are finite
dimensional and for some n > 0, Hi(X,R) = 0, ∀i > n. Let Φ : X → X be a continuous map. Recall that
the Lefschetz number of Φ is defined to be

Λ(Φ) =

n∑
i=0

(−1)i Tr(Φ∗ : Hi(X,R)→ Hi(X,R)).

The Lefschetz number of the identity map is, by definition, equal to the Euler characteristic of X. The Lef-
schetz number appears in the Lefschetz fixed point theorem which states that if X is a compact triangulable
space and Λ(Φ) 6= 0, then Φ has at least one fixed point.

Let us define an analogue of the notion of Lefschetz number for morphisms of sheaves. Let F be a sheaf
of vector spaces on X such that all the cohomology groups of (X,F) are finite dimensional and for some
n, Hi(X,F) = 0, ∀i > n. By a morphism of sheaves Ψ : F → F we mean a collection of linear maps
{ΨU : F(U) → F(U) : U ⊂ X open } which are compatible with the restriction maps. That is, for U ⊂ V
we have

ΨU ◦ restV,U = restV,U ◦ΨV .

Clearly, Ψ induces linear maps Ψ∗ : Hi(X,F) → Hi(X,F) between the cohomology groups of (X,F).
Extending the above notion of Lefschetz number we make the following definition.

Definition 6.3 (Lefschetz number for morphisms of sheaves). The Lefschetz number Λ(Ψ,F) is defined to
be

Λ(Ψ,F) =

n∑
i=0

(−1)i Tr(Ψ∗ : Hi(X,F)→ Hi(X,F)).

Remark 6.4. When Ψ is the identity morphism, i.e. all the maps ΨU are identities, then Λ(Ψ,F) is just the
Euler characteristic of the sheaf F .

Let U be a finite open cover of X. Suppose U is a good open cover with respect to F , that is, F is acyclic
on any intersection of the open sets in U . It is a standard result in topology that the Čech cohomology groups
of (U ,F) are independent of the choice of the good open cover and coincide with the sheaf cohomology groups
of (X,F).

Suppose the vector spaces in the Čech cochain complex C•(U ,F) are finite dimensional. In other words,
for any collection of open sets U1, . . . , Uk ∈ U we have dimH0(U1 ∩ · · · ∩ Uk,F) < ∞. In this case, the
Lefschetz number can be computed in terms of the traces of the vector spaces in the cochain complex
C•(U,F) as well. This straightforward result is sometimes referred to as the Hopf trace formula.

Proposition 6.5. With assumptions as above, the Lefschetz number can be computed as

Λ(Ψ) =

n∑
i=0

(−1)i Tr(Ψ∗ : Ci(U ,F)→ Ci(U ,F)),

where Ci(U ,F) denotes the vector space of i-th Čech cochains of U with coefficients in F .

Similarly, suppose X is equipped with a measure and F a sheaf of L2-functions on X and let Ψ : F → F
be a morphism of sheaves. Moreover, suppose for every open set U , the linear operator Ψ : F(U)→ F(U) is
a trace class operator with kernel function KU . Then for each i, the induced map Ψ∗ : Hi(X,F)→ Hi(X,F)
is also a trace class operator. We denote its kernel by Ti.
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Definition 6.6 (Lefschetz number for morphisms of sheaves of L2-functions). We define the Lefschetz
number Λ(Ψ,F) by

Λ(Ψ,F) =

∫
X

n∑
i=0

(−1)iTi(x) dx. (6.7)

As above, let U be a finite open cover of X which is a good cover with respect to F . Suppose for each
i the operator Ψ∗ : Ci(U ,F) → Ci(U ,F) is trace class with kernel Ki. Similarly to Proposition 6.5 the
Lefschetz number Λ(Ψ,F) can be computed as

Λ(Ψ,F) =

∫
X

n∑
i=0

(−1)iKi(x) dx.

The observation in this section is that when X = XΣ is a toric variety, the Lefschetz number is given by
a combinatorial truncation JΣ(∆). As usual let Σ be a (rational) fan in NR and let ∆ ∈ P(Σ) be a polytope
with normal fan Σ. As in Section 5.1 let XΣ be the toric variety of the fan Σ and O(D∆) be the sheaf of
sections of the (Cartier) divisor D∆ associated to ∆. Let the aρ, ρ ∈ Σ(1), be the support numbers of ∆. Let
∆′ be the polytope whose support numbers are the aρ − 1. Let Ψ : O(−D∆′) → O(−D∆′) be a morphism
of sheaves.

Recall that the characters χm, m ∈ M , form a vector space basis for C[U0]. Moreover, a subset of this
basis is a basis for O(−D∆′). For m ∈M , let Kσ(m) be the (m,m)-entry of the matrix of the linear operator
Ψσ : O(−D∆′)(Uσ)→ O(−D∆′)(Uσ). The following follows from Section 5.2 and in particular (5.9).

Proposition 6.8 (Combinatorial truncation as a Lefschetz number on a toric variety). With notation as
above, the Lefschetz number Λ(Ψ,O(−D∆′)) is equal to the truncated sum SΣ(∆,M):

Λ(Ψ,O(−D∆′)) = SΣ(∆,M) :=
∑
m∈M

∑
σ∈Σ

(−1)dimσKσ(m) 1T−∆,σ∩M
(m).

Remark 6.9. The reason for appearance of the polytope ∆′ instead of ∆ is that we defined the outward
tangent cones T−∆,σ using strict inequalities. If we change the convention and use non-strict inequalities in

the definition of T−∆,σ, then Proposition 5.9 holds with D in place of D′.

Finally, as a side remark we also mention an example of a presheaf that is reminiscent of Arthur’s
construction of the kernels KP (see [Ar05, Section 4]).

Example 6.10 (A sheaf of W -invariant sections on the toric variety of Weyl fan). Suppose Σ is the Weyl
fan and hence the Weyl group acts on Σ. Note that by definition W acts on the character lattice M . For
σ ∈ Σ let Wσ be the W -stabilizer of σ. Let O(∆) be the invertible sheaf associated to a W -invariant polytope
∆. We define the sheaf O(∆)W by

H0(Uσ,O(∆)W ) := H0(Uσ,O(∆))Wσ , ∀σ ∈ Σ.

Let τ ⊂ σ be cones in Σ. Note that Wσ ⊂Wτ and hence if f ∈ H0(Uσ,O(∆))Wσ then, in general, f|Uτ may

not be Wτ -invariant and hence may not lie in H0(Uτ ,O(∆))Wτ . We remedy this by defining the restriction
map iστ : H0(Uσ,O(∆)W )→ H0(Uτ ,O(∆)W ) by:

iστ (f) =
∑

w∈Wτ/Wσ

(w · f)|Uτ .

Let us verify that the above restriction maps iστ give a well-defined pre-sheaf on XΣ. Suppose we have cones
γ ⊂ τ ⊂ σ in Σ with corresponding affine charts Uγ ⊂ Uτ ⊂ Uσ. We need to show iτγ ◦ iστ = iσγ . Let
f ∈ H0(Uσ,O(∆)W ). We have

iτγ(iστ (f)) =
∑

w∈Wγ/Wτ

∑
w′∈Wτ/Wσ

(ww′) · f.

As w (respectively, w′) runs over a set of representatives for Wγ/Wτ (respectively, Wτ/Wσ), the product
ww′ runs over a set of representatives for Wγ/Wσ. This proves the claim.

It is interesting to compute the Euler characteristic and Čech cohomologies of the above presheaf.
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