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Abstract. We study the uniform approximation of the canonical conformal
mapping, for a Jordan domain onto the unit disk, by polynomials generated
from the partial sums of the Szegő kernel expansion. These polynomials con-
verge to the conformal mapping uniformly on the closure of any Smirnov
domain. We prove estimates for the rate of such convergence on domains with
piecewise analytic boundaries, expressed through the smallest exterior angle
at the boundary. Furthermore, we show that the rate of approximation on
compact subsets inside the domain is essentially the square of that on the
closure. Two standard applications to the rate of decay for the contour or-
thogonal polynomials inside the domain, and to the rate of locally uniform
convergence of Fourier series are also given.
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1. Convergence of the Szegő kernel expansion and
approximation of conformal maps

Let G be a Jordan domain in the complex plane. There are two well known ker-
nel methods used for approximation of the canonical conformal mappings of G
onto a disk. The Bergman kernel method is associated with the L2 spaces and
orthogonal polynomials with respect to the area measure, while the Szegő kernel
method is based on the inner product and orthogonal polynomials with respect
to the arclength measure on the boundary of G (see Gaier [7], Smirnov and Lebe-
dev [19]). The approximations related to the area orthogonality approach were
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first introduced by Bieberbach [5] through an extremal problem for polynomials.
The first result about the uniform convergence of the Bieberbach polynomials was
proved by Keldysh [14], for domains with sufficiently smooth boundaries. The
uniform convergence of the Bieberbach polynomials has been extensively studied
since then (see Gaier [8] and references therein). A selection of further results
on this subject is in the papers of Andrievskii [1], Gaier [9]–[11], Andrievskii and
Gaier [3], and Andrievskii and Pritsker [4]. In contrast however, the method
based on the Szegő kernel did not receive any comprehensive attention. The goal
of this paper is to show that the Szegő kernel method is also very useful for the
uniform approximation of conformal mappings.

Suppose that G has rectifiable boundary L of length l. We consider the Smirnov
spaces Ep(G), 1 ≤ p < ∞, of analytic functions in G, whose boundary values
satisfy

‖f‖p =

(
1

l

∫
L

|f(z)|p |dz|
)1/p

<∞

(see Duren [6], Smirnov and Lebedev [19]). Our interest is focused on the Hilbert
space E2(G), equipped with the inner product

(f, g) :=
1

l

∫
L

f(z)g(z) |dz|, f, g ∈ E2(G).

Polynomials are dense in Ep(G), 1 ≤ p < ∞, if and only if G is a Smirnov
domain [6]. Keldysh and Lavrentiev [15] characterized Smirnov domains by the
property that, for a conformal mapping ψ of the unit disk D onto G, log |ψ| is
represented by the Poisson integral of its boundary values. Although no com-
plete geometric description of Smirnov domains is known, this class is suffi-
ciently wide. In particular, it contains (in the decreasing order of generality)
all Ahlfors-regular domains, Lavrentiev (cord-arc) domains, Lipschitz domains,
domains with bounded boundary rotation (Radon domains), piecewise smooth
and smooth domains (cf. Pommerenke [17, Chap. 7]). Applying Gram-Schmidt
orthonormalization to monomials {zn}∞n=0 in the Smirnov domain G, we ob-
tain a complete orthonormal system of polynomials {pn(z)}∞n=0 in E2(G) (see
Szegő [21]). Next, we introduce the Szegő kernel

(1.1) K(z, ζ) =
∞∑
k=0

pk(ζ)pk(z), z, ζ ∈ G,

where convergence of this bilinear series is uniform in z and ζ on compact subsets
in G [21], [19], [7]. The importance of the Szegő kernel lies in its reproducing
property

f(ζ) =
1

l

∫
L

f(z)K(z, ζ) |dz|, ζ ∈ G,
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which holds for any f ∈ E2(G). Equivalently, every f ∈ E2(G) can be represented
by its Fourier series

(1.2) f(ζ) =
∞∑
k=0

akpk(ζ) =
∞∑
k=0

(
1

l

∫
L

f(z)pk(z) |dz|
)
pk(ζ),

convergent in the E2(G) norm and, consequently, locally uniformly convergent
in G (see [19, Chapter 4]).

It is well known that the Szegő kernel is closely connected with the canonical
conformal mapping ϕ of G onto the unit disk D:

(1.3) K(z, ζ) =
l

2π

√
ϕ′(z)ϕ′(ζ),

where ϕ(ζ) = 0 and ϕ′(ζ) > 0 (cf. [19] and [21]). Hence we have that

(1.4) ϕ′(ζ) =
2π

l
K(ζ, ζ) =

2π

l

∞∑
k=0

|pk(ζ)|2,

by (1.1) and (1.3). It follows that

(1.5) ϕ′(z) =
2π

l

(K(z, ζ))2

K(ζ, ζ)
=

2π

l

(
∞∑
k=0

pk(ζ)pk(z)

)2

∞∑
k=0

|pk(ζ)|2
, z ∈ G,

where ζ ∈ G is regarded as a fixed point. We now introduce the following
sequence of approximating polynomials.

J2n+1(z) =
2π

l

z∫
ζ

(
n∑
k=0

pk(ζ)pk(t)

)2

dt

n∑
k=0

|pk(ζ)|2
, n ∈ N.

Note that the degree of J2n+1(z) is 2n + 1. The sequence {J2n+1}∞n=0 converges
to ϕ uniformly on compact subsets of G, which is inherited from the partial sums
of the Szegő kernel.

Similar approximating polynomials, but with a different normalization, were in-
troduced via an extremal problem for any Ep(Γ), 1 ≤ p < ∞, by Keldysh
and Lavrentiev (see [13] and [15]). They developed the ideas of Julia [12], who
earlier considered the same extremal problem for the conformal mapping. Fur-
ther study of the convergence properties in E2(G) is due to Warschawski [22]
(also see Gaier [7] for a survey). Convergence questions for general Fourier ex-
pansions in contour orthogonal polynomials were considered in Rosenbloom and
Warschawski [18], Smirnov and Lebedev [19] and Suetin [20]. However, all of
these investigations impose quite strict smoothness assumptions on the boundary
of G. We prove the first uniform convergence results for domains with corners,
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and give explicit rates of approximation in terms of the geometric properties
of G.

We start with a general estimate for the uniform (sup) norm of the approximation
error on G. A similar result was proved by Warschawski [22], but in a somewhat
different form (see also [7, pp. 130–131]).

Theorem 1.1. Let G be a Smirnov domain, with ζ ∈ G fixed. If ϕ : G → D is
a conformal mapping normalized by ϕ(ζ) = 0 and ϕ′(ζ) > 0, then

(1.6) ‖ϕ− J2n+1‖∞ ≤ 8π

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

→ 0 as n→∞.

Recall that
∑n

k=0 pk(ζ)pk(z) is the Fourier sum for K(z, ζ), i.e., it is the best
E2(G) approximation from the subspace of polynomials of degree n. Hence we
can give an upper estimate for the rate of convergence by appropriately choosing
a sequence of approximating polynomials for K(z, ζ). The rate of convergence
necessarily depends on the geometric properties of the domain G. We consider
a class of domains with piecewise analytic boundaries, which is important in
applications. An analytic arc is defined as the image of a segment under a
mapping that is conformal in an open neighborhood of the segment. Thus a
domain has piecewise analytic boundary if it is bounded by a Jordan curve
consisting of a finite number of analytic arcs.

Theorem 1.2. Let ∂G be piecewise analytic, with the smallest exterior angle
λπ, 0 < λ < 2, at the junction points of the analytic arcs. If ζ ∈ F , where
F ⊂ G is compact, then

(1.7)

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

≤ C1(G,F ) n−λ/(4−2λ), n ∈ N.

Here, the constant C1(G,F ) > 0 depends only on G and F .

Combining Theorems 1.1 and 1.2, we obtain the main result on the uniform
approximation of conformal mappings.

Theorem 1.3. Let ∂G be piecewise analytic, with the smallest exterior angle
λπ, 0 < λ < 2, at the junction points of the analytic arcs. Suppose that ζ ∈ F ,
where F ⊂ G is compact. For the conformal mapping ϕ : G→ D, normalized by
ϕ(ζ) = 0 and ϕ′(ζ) > 0, we have

(1.8) ‖ϕ− J2n+1‖∞ ≤ C2(G,F ) n−λ/(4−2λ), n ∈ N,
where the constant C2(G,F ) > 0 depends only on G and F .

It is interesting to compare the convergence properties of our sequence {J2n+1}∞n=0

with those of the Bieberbach polynomials {Bn}∞n=0. Gaier [10] proved for domains
with piecewise analytic boundaries that

‖ϕ−Bn‖∞ ≤ C3 log n n−λ/(2−λ), n ≥ 2.
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Later, Andrievskii and Gaier [3] replaced log n by (log n)1/2, and relaxed the im-
posed geometric condition to piecewise quasianalytic boundary. Their estimate
for the rate of uniform convergence of the Bieberbach polynomials remains the
most precise known. Although (1.8) gives a slower rate of convergence, the poly-
nomials J2n+1 have some advantages over the Bieberbach polynomials. They
are free from the convergence anomalies exhibited by Keldysh’s example [14],
where only one singular point, at an otherwise very smooth boundary, destroys
the uniform convergence of the Bieberbach polynomials. (One can find further
information about this example of Keldysh in [4].) In fact, Smirnov domains
include any imaginable domain arising in numerical applications, guaranteeing
the uniform convergence of {J2n+1}∞n=0 by Theorem 1.1. In addition, this se-
quence is easier to generate numerically, because the inner products defined by
the boundary integrals are easier to compute than the area inner products in
Gram-Schmidt orthonormalization.

We show that the rate of convergence for J2n+1 on compact subsets of G is better
than that on the whole domain, i.e., it is essentially squared compared to (1.8).

Theorem 1.4. If the conditions of Theorem 1.3 are satisfied, then

(1.9) max
z∈F
|ϕ(z)− J2n+1(z)| ≤ C4(G,F ) n−λ/(2−λ), n ∈ N,

where C4(G,F ) > 0 depends only on G and F .

Gaier [11] posed the question of possible improvement in locally uniform conver-
gence rates for the Bieberbach polynomials and other approximations for con-
formal maps. The above theorem provides a partial answer for his question in
the case of the Szegő kernel method. Furthermore, it is possible to give similar
improvements for the Bieberbach polynomials too, by following the ideas of this
paper.

Clearly, it was not our goal to achieve the highest possible level of generality here.
Thus Theorem 1.2 is true for domains with piecewise quasianalytic boundaries [3]
(therefore, all other results are valid for these domains too). One only needs to
fill in a number of technical details on the behaviour of (ϕ′)1/2 near corners, in
our proof, to reach this conclusion. We are also able to prove Theorems 1.2–1.4
for Lavrentiev (cord-arc) domains, with the rates of convergence of the order
n−γ, γ > 0. Finally, we have analogues of these results in Ep(G) for p 6= 2.

2. Orthogonal polynomials and Fourier series

We give two standard applications for approximation of the Szegő kernel here.
Since polynomials {pn}∞n=0 form a complete orthonormal system, we can restate
(1.7) in the following form.

(2.1)

(
∞∑

k=n+1

|pk(ζ)|2
)1/2

≤ C1(G,F ) n−λ/(4−2λ), n ∈ N,
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by (1.1). It is well known that pn converge to zero on compact subsets of G as
n → ∞ (cf. [21, Chapter XVI]). Equation (2.1) immediately gives an estimate
for the rate of decay of pn inside G.

Theorem 2.1. Let ∂G be piecewise analytic, with the smallest exterior angle λπ,
0 < λ < 2, at the junction points of the analytic arcs. If ζ ∈ F , where F ⊂ G is
compact, then

|pn(ζ)| ≤ C1(G,F ) n−λ/(4−2λ), n ∈ N.

The second application is related to the rates of convergence of the Fourier series
(1.2) for f ∈ E2(G) on compact subsets of G. Observe that

‖f‖2 =

(
∞∑
k=0

|ak|2
)1/2

.

Hence we have from (1.2) and Cauchy-Schwarz inequality that∣∣∣∣∣f(ζ)−
n∑
k=0

ak pk(ζ)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

ak pk(ζ)

∣∣∣∣∣
≤

(
∞∑

k=n+1

|ak|2
)1/2( ∞∑

k=n+1

|pk(ζ)|2
)1/2

=

∥∥∥∥∥f −
n∑
k=0

ak pk

∥∥∥∥∥
2

(
∞∑

k=n+1

|pk(ζ)|2
)1/2

≤ ‖f‖2

(
∞∑

k=n+1

|pk(ζ)|2
)1/2

.

We thus obtain the following result from (2.1).

Theorem 2.2. Let ∂G be piecewise analytic, with the smallest exterior angle λπ,
0 < λ < 2, at the junction points of the analytic arcs. Suppose that f ∈ E2(G)
has the Fourier expansion (1.2). If ζ ∈ F , where F ⊂ G is compact, then∣∣∣∣∣f(ζ)−

n∑
k=0

ak pk(ζ)

∣∣∣∣∣ ≤ C1(G,F ) n−λ/(4−2λ)

∥∥∥∥∥f −
n∑
k=0

ak pk

∥∥∥∥∥
2

, n ∈ N.

Results of this kind for domains with smooth boundaries were previously proved
by Szegő [21], Rosenbloom and Warschawski [18], Smirnov and Lebedev [19],
Suetin [20], and others.



3 (2003), No. 1 Approximation of Conformal Mapping via the Szegő Kernel Method 85

3. Proofs

Proof of Theorem 1.1. Let ψ := ϕ−1. We have

|ϕ(z)− J2n+1(z)| =

∣∣∣∣∫ z

ζ

(
ϕ′(t)− J ′2n+1(t)

)
dt

∣∣∣∣
=

∣∣∣∣∣
∫ ϕ(z)

0

(
ϕ′(ψ(u))− J ′2n+1(ψ(u))

)
ψ′(u) du

∣∣∣∣∣
≤
∫ ϕ(z)

0

∣∣(ϕ′(ψ(u))− J ′2n+1(ψ(u))
)
ψ′(u)

∣∣ |du|,
where the integration is carried over the segment connecting 0 and ϕ(z) in D.
Note that the function

(
ϕ′(ψ(u))− J ′2n+1(ψ(u))

)
ψ′(u) = 1 − J ′2n+1(ψ(u))ψ′(u)

belongs to the Hardy class H1(D), because L is rectifiable. Hence we obtain by
Fejér-Riesz inequality (cf. [6, Theorem 3.13]) that

|ϕ(z)− J2n+1(z)| ≤ 1

2

∫
|u|=1

∣∣(ϕ′(ψ(u))− J ′2n+1(ψ(u)
)
ψ′(u)

∣∣ |du|
=

1

2

∫
L

∣∣ϕ′(t)− J ′2n+1(t)
∣∣ |dt|.

Define

Qn(z) :=

(
l

2π

n∑
k=0

|pk(ζ)|2
)−1/2 n∑

k=0

pk(ζ)pk(z),

so that J ′2n+1(z) = Qn
2(z). We continue with this notation, by using the Cauchy-

Schwarz and Minkowski inequalities.

|ϕ(z)− J2n+1(z)| ≤ 1

2

∫
L

∣∣∣∣(√ϕ′(t)
)2

−Qn
2(t)

∣∣∣∣ |dt|
=

1

2

∫
L

∣∣∣√ϕ′(t)−Qn(t)
∣∣∣ ∣∣∣√ϕ′(t) +Qn(t)

∣∣∣ |dt|
≤ l

2

∥∥∥√ϕ′ −Qn

∥∥∥
2

∥∥∥√ϕ′ +Qn

∥∥∥
2

≤ l

2

∥∥∥√ϕ′ −Qn

∥∥∥
2

(∥∥∥√ϕ′
∥∥∥

2
+ ‖Qn‖2

)
.

Observe that∥∥∥√ϕ′
∥∥∥

2
=

(
1

l

∫
L

|ϕ′(z)| |dz|
)1/2

=

(
1

l

∫
|w|=1

|dw|
)1/2

=

√
2π

l
,

and that

‖Qn‖2 =

(
l

2π

n∑
k=0

|pk(ζ)|2
)−1/2( n∑

k=0

|pk(ζ)|2
)1/2

=

√
2π

l
,
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by orthonormality of the polynomials pk. Thus

(3.1) ‖ϕ− J2n+1‖∞ ≤
√

2πl
∥∥∥√ϕ′ −Qn

∥∥∥
2
.

We now estimate the norm on the right of the above inequality. Recall that√
ϕ′(z) =

√
2π

l

K(z, ζ)√
K(ζ, ζ)

,

by (1.5). Therefore,

√
ϕ′(z)−Qn(z) =

√
2π

l

 K(z, ζ)√
K(ζ, ζ)

−

(
n∑
k=0

|pk(ζ)|2
)−1/2 n∑

k=0

pk(ζ)pk(z)


=

√
2π

lK(ζ, ζ)

(
K(z, ζ)−

n∑
k=0

pk(ζ)pk(z)

)

+

√
2π

lK(ζ, ζ)

1−

 K(ζ, ζ)
n∑
k=0

|pk(ζ)|2


1/2


n∑
k=0

pk(ζ)pk(z).

It follows that

‖
√
ϕ′ −Qn‖2 ≤

√
2π

lK(ζ, ζ)

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

+

√
2π

lK(ζ, ζ)


 K(ζ, ζ)

n∑
k=0

|pk(ζ)|2


1/2

− 1


(

n∑
k=0

|pk(ζ)|2
)1/2

=

√
2π

lK(ζ, ζ)

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

+

√
2π

lK(ζ, ζ)

(K(ζ, ζ))1/2 −

(
n∑
k=0

|pk(ζ)|2
)1/2

 .

Since

(K(ζ, ζ))1/2 −

(
n∑
k=0

|pk(ζ)|2
)1/2

= ‖K(·, ζ)‖2 −

∥∥∥∥∥
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

≤

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

,
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we obtain that∥∥∥√ϕ′ −Qn

∥∥∥
2
≤ 2

√
2π

lK(ζ, ζ)

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

.

Equation (3.1) now gives that

(3.2) ‖ϕ− J2n+1‖∞ ≤
4π√
K(ζ, ζ)

∥∥∥∥∥K(·, ζ)−
n∑
k=0

pk(ζ)pk(·)

∥∥∥∥∥
2

.

Recall that

K(ζ, ζ) =
l

2π
ϕ′(ζ),

by (1.4). Using [17, Corollary 1.4, p. 9], we have

|ϕ′(ζ)| ≥ 1

4

1− |ϕ(ζ)|2

dist(ζ, L)
=

1

4 dist(ζ, L)
,

where dist(ζ, L) is the distance from ζ to L. Clearly, l ≥ 2π dist(ζ, L), so that

K(ζ, ζ) =
l ϕ′(ζ)

2π
≥ ϕ′(ζ) dist(ζ, L) ≥ 1

4
.

Combining this with (3.2), we obtain (1.6).

Proof of Theorem 1.2. We start by recalling that the partial sum
n∑
k=0

pk(ζ)pk(z)

for K(z, ζ) is its best approximation in E2(G) (with ζ ∈ G fixed) among all
polynomials of degree at most n. Thus we construct a sequence of polynomials
with good approximative properties, which gives the desired upper bound (1.7).

It is clear from (1.3) that approximation of K(z, ζ) is equivalent to approximation
of (ϕ′(z))1/2. We use a method resembling that of Andrievskii and Gaier [3].
We first continue the mapping ϕ conformally beyond the boundary L, by using
reflections across the analytic arcs Li, L =

⋃m
i=1 Li. Suppose that τi is a mapping

such that Li = τi([0, 1]), which is conformal in an open neighborhood of [0, 1].
Then we can find a symmetric lens shaped domain Si, bounded by two circular
arcs subtended by [0, 1], whose closure is contained in this open neighborhood
of [0, 1]. Defining

G̃ := G ∪

(
m⋃
i=1

τi(Si)

)
,

we extend ϕ into G̃ as follows.

ϕ(z) :=
1

ϕ
[
τi

(
τ−1
i (z)

)] , z ∈ τi(Si)\G,
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where i = 1, . . . ,m. The boundary ∂G̃ consists of m analytic arcs Γi that share
endpoints with the arcs Li of ∂G.

∂G̃ ∩ ∂G = {zi}mi=1,

which are clearly the corner points of ∂G. Since each τi, i = 1, . . . ,m, is conformal
and has bounded derivative (together with its inverse) on Si, we obtain the
inequalities

(3.3) dist(z, ∂G) ≥ c1 min
1≤i≤m

|z − zi|, z ∈ ∂G̃,

where dist(z, ∂G) is the distance from z to ∂G, and

(3.4) |γ| ≤ c2|z − t|, z, t ∈ ∂G̃,

where |γ| is the length of the shorter arc γ ⊂ ∂G̃, connecting z and t. We denote
various positive constants by c1, c2, etc.

Let Γj be an arc of ∂G̃, with the endpoints zj and zj+1, and let ζj ∈ Γj be a
fixed point, j = 1, . . . ,m. Note that ζj divides Γj into Γ1

j and Γ2
j , so that

∂G̃ =
m⋃
j=1

2⋃
i=1

Γij.

We obtain from Cauchy’s integral formula for the continuation of (ϕ′)1/2 into G̃
that √

ϕ′(z) =
1

2πi

∫
∂G̃

√
ϕ′(t)

t− z
dt =

1

2πi

m∑
j=1

2∑
i=1

∫
Γij

√
ϕ′(t)

t− z
dt, z ∈ G̃.

Hence the problem is reduced to approximation of functions of the form

g(z) :=

∫
γ

√
ϕ′(t)

t− z
dt

in E2(G) norm, where γ is any of the arcs Γij, with i = 1, 2 and j = 1, . . . ,m.

Let Ω := C \ G. Consider the standard conformal mapping Φ: Ω → ∆, where
∆ := {w : |w| > 1}, normalized by Φ(∞) = ∞ and Φ′(∞) > 0. We define the
level curves of Φ by

Ln :=

{
z : |Φ(z)| = 1 +

1

n

}
, n ∈ N.

Denote by γ2 the part of γ from its endpoint ζj ∈ Γj to the first point ξ of
intersection with Ln, so that γ2 ⊂ {z : |Φ(z)| > 1 + 1/n}. Then γ1 := γ \ γ2

connects ξ with the corner point zj of L. Write

(3.5) g(z) :=

∫
γ1

√
ϕ′(t)

t− z
dt+

∫
γ2

√
ϕ′(t)

t− z
dt =: g1(z) + g2(z).
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We show that ‖g1‖2 → 0 sufficiently fast as n→∞, while g2 is well approximated
by polynomials of degree n. To estimate the norm of g1, we need to know the
behaviour of (ϕ′)1/2 near the corner point zj ∈ L. This is conveniently found
from the asymptotic expansion of Lehman [16]. Assume that zj = 0 and that
λjπ, 0 < λj < 2, is the exterior angle formed by L at this point. Then we have
in a neighborhood of zj = 0 that

ϕ(z)− ϕ(0) = b z1/(2−λj) + O
(
z1/(2−λj)

)
as z → 0,

where b 6= 0, and

ϕ′(z) =
b

2− λj
z1/(2−λj)−1 + O

(
z1/(2−λj)−1

)
as z → 0.

Hence there exists a constant c3 > 0 such that

(3.6)
∣∣∣√ϕ′(z)

∣∣∣ ≤ c3 |z|α, z ∈ G̃ ∪ ∂G̃,

where we set

α :=
1

4− 2λj
− 1

2
.

For the endpoints ξ ∈ Ln and 0 of γ1, we let

dn := |ξ − 0| = |ξ|.

It follows from (3.4) that

|γ1| ≤ c2dn.

We now estimate that

(3.7) ‖g1‖2
2 =

1

l

∫
L

∣∣∣∣∣
∫
γ1

√
ϕ′(t)

t− z
dt

∣∣∣∣∣
2

|dz| ≤ c4

∫
L

(∫
γ1

|t|α

|t− z|
|dt|
)2

|dz|,

by (3.5) and (3.6). Note that if z ∈ L satisfies |z| ≥ dn, then |t − z| ∼ |z| by
(3.3). Consequently,

(3.8)

∫
L∩{|z|≥dn}

(∫
γ1

|t|α

|t− z|
|dt|
)2

|dz| ≤ c5

∫
L∩{|z|≥dn}

(
dn

α+1

|z|

)2

|dz|

≤ c6 dn
2α+1.
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On the other hand, if z ∈ L satisfies |z| ≤ dn, then |t − z| ∼ |t| + |z| by (3.3),
and using (3.4) we obtain that

(3.9)

∫
L∩{|z|≤dn}

(∫
γ1

|t|α

|t− z|
|dt|
)2

|dz|

≤ c7

∫ c8dn

0

(∫ c9dn

0

sα

s+ r
ds

)2

dr

≤ c7

∫ c8dn

0

(∫ r

0

sα

r
ds+

∫ c9dn

r

sα−1 ds

)2

dr

= c7

∫ c8dn

0

(
rα

α + 1
+

(c9dn)α − rα

α

)2

dr

≤ c10 dn
2α+1,

for α 6= 0. If α = 0 then we estimate∫
L∩{|z|≤dn}

(∫
γ1

|dt|
|t− z|

)2

|dz| =

∫
L∩{|z|≤dn}

(∫
γ1

|t|1/2 |t|−1/2

|t− z|
|dt|
)2

|dz|

≤ c2 dn

∫
L∩{|z|≤dn}

(∫
γ1

|t|−1/2

|t− z|
|dt|
)2

|dz|

≤ c2 dn c10 dn
2(−1/2)+1 = c2 c10 dn,

as above. Combining (3.7)–(3.9), we have that

(3.10) ‖g1‖2 ≤ c11 dn
α+1/2 ≤ c11 dn

1/(4−2λ),

where λ = min1≤j≤m λj.

The next step is the construction of approximating polynomials Pn for g2. This
is accomplished by using Dzjadyk kernels (see, e.g. [2]) of the form

Kn(t, z) =
n∑
i=0

ai(t)z
i, n ∈ N,

which approximate the Cauchy kernel. It was proved in [3, Lemma 5] that a
sequence of such kernels can be selected, so that for any fixed m ∈ N, and for all
t ∈ γ with |Φ(t)| ≥ 1 + 1/n, we have

(3.11)

∣∣∣∣ 1

t− z
−Kn(t, z)

∣∣∣∣ ≤ c12
dn

m

|t− z|m+1
, z ∈ L,

for all sufficiently large n ∈ N. In particular, (3.11) holds for t ∈ γ2. Define the
polynomials

Pn(z) :=

∫
γ2

√
ϕ′(t)Kn(t, z) dt,
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and estimate

‖g2 − Pn‖2
2 =

1

l

∫
L

∣∣∣∣∫
γ2

(
1

t− z
−Kn(t, z)

)√
ϕ′(t) dt

∣∣∣∣2 |dz|
≤ c13dn

2m

∫
L

(∫
γ2

|t|α

|t− z|m+1
|dt|
)2

|dz|,

by (3.11) and (3.6). Observe that |t − z| ∼ |t| + |z| for t ∈ γ2. Therefore, we
have for m > α that∫

L

(∫
γ2

|t|α

|t− z|m+1
|dt|
)2

|dz|

≤ c14

∫ c15

0

(∫ c17

c16dn

sα

(s+ r)m+1
ds

)2

dr

≤ c14

∫ c16dn

0

(∫ c17

c16dn

sα−m−1 ds

)2

dr

+c14

∫ c15

c16dn

(
r−m−1

∫ r

c16dn

sα ds+

∫ c17

r

sα−m−1 ds

)2

dr

≤ c18 dn
2(α−m)+1 + c19

∫ c15

c16dn

r2(α−m) dr

≤ c20 dn
2(α−m)+1.

It follows that

(3.12) ‖g2 − Pn‖2 ≤ c21 dn
α+1/2 ≤ c21 dn

1/(4−2λ).

Collecting (3.10), (3.12) and (3.5) together, we obtain

(3.13) ‖g − Pn‖2 ≤ ‖g1‖2 + ‖g2 − Pn‖2 ≤ c22 dn
1/(4−2λ).

Recall that dn = |ξ|, where ξ ∈ Ln ∩ γ1. Applying the results of [16] to the
conformal mapping Ψ := Φ−1, we obtain

z = Ψ(Φ(z))−Ψ(Φ(0)) = a (Φ(z)− Φ(0))λj + O
(

(Φ(z)− Φ(0))λj
)

as z → 0,

where λjπ is the exterior angle at zj = 0, and a 6= 0. Thus

dn = |ξ| ≤ c23 min
z∈Ln
|z| ≤ c24 n

−λj ≤ c24 n
−λ, n ∈ N,

and
‖g − Pn‖2 ≤ c25 n

−λ/(4−2λ), n ∈ N,
by (3.13). Hence there exists a sequence of polynomials Qn such that

‖
√
ϕ′ −Qn‖2 ≤ c26 n

−λ/(4−2λ), n ∈ N.
Since

K(z, ζ) =
l

2π

√
ϕ′(z)ϕ′(ζ),
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we obtain (1.7) from the previous estimate:∥∥∥∥K(·, ζ)− l

2π

√
ϕ′(ζ) Qn

∥∥∥∥
2

≤ c26l

2π

√
ϕ′(ζ) n−λ/(4−2λ), n ∈ N,

where ζ ∈ G was fixed throughout this proof. We now lift this restriction and
allow ζ to vary within a compact set F ⊂ G. Note that |ϕ′(ζ)| is uniformly
bounded on F , and so are the other constants in the above proof. Indeed, we
only need to verify this for the constant c3 of (3.6), arising from the first term in
the expansion of ϕ′(z). One can obtain a conformal mapping ϕ̃ of G onto D with

ϕ̃(ζ̃) = 0 and ϕ̃′(ζ̃) > 0, for any ζ̃ ∈ F , by composing ϕ with a Möbius self-map
of the unit disk, which is conformal in an open neighborhood of D. It follows
that (3.6) holds for all such mappings ϕ̃ with a constant c3 uniformly bounded

for ζ̃ ∈ F .

Proof of Theorem 1.4. We proceed as in the proof of Theorem 1.1, denoting

Qn(z) :=

(
l

2π

n∑
k=0

|pk(ζ)|2
)−1/2 n∑

k=0

pk(ζ)pk(z),

so that J ′2n+1(z) = Qn
2(z). It follows from (1.5) that

√
ϕ′(z)−Qn(z) =

√
2π

l

 K(z, ζ)√
K(ζ, ζ)

−

(
n∑
k=0

|pk(ζ)|2
)−1/2 n∑

k=0

pk(ζ)pk(z)



=

√
2π

lK(ζ, ζ)

(
K(z, ζ)−

n∑
k=0

pk(ζ)pk(z)

)

+

√
2π

lK(ζ, ζ)

(
n∑
k=0

|pk(ζ)|2
)1/2

− (K(ζ, ζ))1/2

(
n∑
k=0

|pk(ζ)|2
)1/2

n∑
k=0

pk(ζ)pk(z).

Recall that

lim
n→∞

n∑
k=0

pk(ζ)pk(z) = K(z, ζ),

where convergence is uniform for z, ζ ∈ F , and that

0 < c1 < |K(z, ζ)| < c2 < +∞, z, ζ ∈ F.
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Hence

max
z∈F

∣∣∣√ϕ′(z)−Qn(z)
∣∣∣ ≤ c3 max

z∈F

∣∣∣∣∣K(z, ζ)−
n∑
k=0

pk(ζ)pk(z)

∣∣∣∣∣
+c4

(K(ζ, ζ))1/2 −

(
n∑
k=0

|pk(ζ)|2
)1/2

 .

The first term is estimated from (1.7)–(2.1) and the Cauchy-Schwarz inequality.

max
z,ζ∈F

∣∣∣∣∣K(z, ζ)−
n∑
k=0

pk(ζ)pk(z)

∣∣∣∣∣ = max
z,ζ∈F

∣∣∣∣∣
∞∑

k=n+1

pk(ζ)pk(z)

∣∣∣∣∣
≤

(
∞∑

k=n+1

|pk(z)|2
)1/2( ∞∑

k=n+1

|pk(ζ)|2
)1/2

≤ (C1(G,F ))2 n−λ/(2−λ), n ∈ N.
Thus for the second term we also have

(K(ζ, ζ))1/2 −

(
n∑
k=0

|pk(ζ)|2
)1/2

≤ c5

(
K(ζ, ζ)−

n∑
k=0

|pk(ζ)|2
)

≤ c5 (C1(G,F ))2 n−λ/(2−λ), n ∈ N.
Combining these estimates, we obtain that

max
z∈F

∣∣∣√ϕ′(z)−Qn(z)
∣∣∣ ≤ c6 n

−λ/(2−λ), n ∈ N.

It immediately follows that

max
z∈F

∣∣ϕ′(z)−Qn
2(z)

∣∣ ≤ max
z∈F

∣∣∣√ϕ′(z) +Qn(z)
∣∣∣ max

z∈F

∣∣∣√ϕ′(z)−Qn(z)
∣∣∣

≤ c7 n
−λ/(2−λ), n ∈ N,

and that

max
z∈F
|ϕ(z)− J2n+1(z)| ≤ max

z∈F

∫ z

ζ

∣∣ϕ′(t)−Qn
2(t)
∣∣ |dt| ≤ c8 n

−λ/(2−λ), n ∈ N,

where all constants in this proof are independent of z, ζ ∈ F and n ∈ N.
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