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Abstract

In this note we give some sharp estimates for norms of polynomials via the products of norms of their

linear terms. Different convex norms on the unit disc are considered.

1 Introduction

Let p1(z), . . . , pm(z) be complex polynomials such that their product p :=
m∏

j=1

pj is of degree

n. Then, by a well-known inequality of Mahler [6],

‖p1‖∞ . . . ‖pm‖∞ ≤ 2n‖p‖∞, n ∈ IN,(1.1)

where ‖f‖∞ := max|z|=1 |f(z)| denotes the uniform norm on the unit circle. (A weaker

version of (1.1) appeared earlier in Gel’fond [4].) Choosing p(z) = zn + 1, m = n, and

pj(z) (1 ≤ j ≤ n) to be the linear factors of zn + 1, one can easily see that the constant in

(1.1) cannot be, in general, smaller than 2n−1, i.e., 2n in (1.1) is sharp up to the factor 2.

Based on this observation, it was conjectured by Sarantopoulos [7] that the constant 2n in

(1.1) can be replaced by 2n−1. We shall verify this conjecture in the present note. In fact,

this will be accomplished in the context of generalized polynomials, and other norms on the

unit circle will be discussed as well. It should be noted that, for m = o(
√

n), the constant in

(1.1) was substantially improved by Boyd [3], see also Borwein [1] and Borwein-Erdélyi [2]

for some recent developments in this area.
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2 Results

For α = (α1, . . . , αn) ∈ IRn
+, denote

ρn(α) := min
|aj |=1

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥∞
and dn(α) :=

n∑
j=1

αj.(2.2)

Now we can state the next

Theorem 2.1 For any α ∈ IRn
+ and any set {aj ∈ IC, 1 ≤ j ≤ n}, we have

n∏
j=1

‖|z − aj|αj‖∞ ≤ 2dn(α)

ρn(α)

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥∞
.(2.3)

Moreover, the equality in (2.3) holds if and only if {aj, 1 ≤ j ≤ n} is a solution of the

minimization problem (2.2).

Functions p(z) =
n∏

j=1

|z−aj|αj are usually called generalized polynomials of degree
n∑

j=1

αj =

dn(α) (α ∈ IRn
+) (see [2]). Using Theorem 2.1, we can easily derive the following

Corollary 2.2 Let p1(z), . . . , pm(z) be generalized complex polynomials such that p(z) :=
m∏

j=1

pj(z) =
n∏

j=1

|z − aj|αj , where α = (α1, . . . , αn) ∈ IRn
+ and {aj ∈ IC, 1 ≤ j ≤ n} are

arbitrary. Then

‖p1‖∞ . . . ||pm‖∞ ≤ 2dn(α)

ρn(α)
‖p‖∞,(2.4)

with equality being attained only if p is a solution of the minimization problem (2.2).

It is well-known that when α∗ = (1, . . . , 1), the solution of the minimization problem (2.2)

is given by ρn(α∗) = 2, with zn + 1 being the unique (up to a rotation) extremal polynomial

for (2.2). Hence we obtain an improvement of Mahler’s inequality (1.1) from (2.4).

Corollary 2.3 Let p1, . . . , pm be complex polynomials such that their product p =
m∏

j=1

pj is

of degree n. Then

‖p1‖∞ . . . ‖pm‖∞ ≤ 2n−1‖p‖∞,(2.5)

and equality in (2.5) is attained if and only if p(z) = zn + ρ, with |ρ| = 1, and m = n.
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Inequalities (2.3)-(2.5) provide sharp estimates for the products of generalized polynomials

in the uniform norm. Next, we present the L2-version of Theorem 2.1 for ordinary complex

polynomials. Consider the Lq-norm on the unit circle given by

‖f‖q =
(

1

2π

∫ 2π

0
|f(eiθ)|qdθ

)1/q

, 0 < q < ∞.

Theorem 2.4 For any set {aj ∈ IC, 1 ≤ j ≤ n},

2(1−n)/2
n∏

j=1

‖z − aj‖2 ≤
∥∥∥∥∥∥

n∏
j=1

(z − aj)

∥∥∥∥∥∥
2

≤ 2−n/2

(
2n

n

)1/2 n∏
j=1

‖z − aj‖2.(2.6)

Moreover, the estimates (2.6) are sharp; the lower bound is attained for zn + 1, the upper

bound is attained for (z + 1)n, and these extremal polynomials are unique up to a rotation.

Note that inequality (2.3) can be written in an equivalent form

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥∞
≥ ρn(α)2−dn(α)

n∏
j=1

(1 + |aj|)αj .(2.7)

Let us also mention an interesting explicit form of (2.6): for pn(z) =
n∏

j=1

(z−aj) =
n∑

k=0

ckz
k,

where cn = 1, we have

2−n+1
n∏

k=1

(1 + |ak|2) ≤
n∑

k=0

|ck|2 ≤ 2−n

(
2n

n

)
n∏

k=1

(1 + |ak|2),(2.8)

and both of these bounds are sharp. Although the coefficients ck of a polynomial pn can

be expressed explicitly via its zeros, the estimates (2.8) do not seem to follow directly from

these expressions.

Now we shall address the question of extending (2.7) for the Lq-norms.

Let ρn,q(α) be defined as follows:

ρn,q(α) := min
|aj |=1

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥
q

, α = (α1, . . . , αn) ∈ IRn
+.(2.9)

Theorem 2.5 Let α = (α1, . . . , αn) ∈ IRn
+ and 0 < q ≤ ∞ be such that qαj ≥ 1, 1 ≤ j ≤ n.

Then, for any set {aj ∈ IC, 1 ≤ j ≤ n}, we have
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∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥
q

≥ ρn,q(α) 2−dn(α)
n∏

j=1

(1 + |aj|)αj .(2.10)

The equality in (2.10) is attained for solutions of the minimization problem (2.9). If, in

addition, 1 < qαj < ∞, 1 ≤ j ≤ n, then this equality holds only for solutions of (2.9).

Note that the estimate (2.10) is more general than (2.3), but on the other hand the

additional claim of Theorem 2.1, that equality in (2.3) can be attained only when the roots

of generalized polynomials are on the unit circle, does not follow from Theorem 2.5. Thus,

Theorems 2.1 and 2.5 complement each other. In addition, their proofs are based on different

methods. Theorem 2.1 (as well as Theorem 2.4) will follow by variational arguments, while

the proof of Theorem 2.5 will be based on applications of symmetry and convexity.

The above results indicate that the sharp constants, appearing in inequalities for the

norms of products of polynomials, depend on the solution of the extremal problems (2.2)

and (2.9). For ordinary polynomials, the explicit solution of such extremal problem can be

given for a wide class of norms. Let

ρn := min
|aj |=1

∥∥∥∥∥∥
n∏

j=1

(z − aj)

∥∥∥∥∥∥ ,(2.11)

where ‖ · ‖ is an arbitrary convex norm in the space of polynomials on the unit circle. We

shall say that ‖ · ‖ is rotation invariant if for any fixed ϕ0 ∈ IR and any polynomial p

‖p(ei(ϕ+ϕ0))‖ = ‖p(eiϕ)‖ and ‖p‖ = ‖|p|‖.

Our next result extends Theorem 2.5 for rotation invariant norms in the case of ordinary

polynomials.

Theorem 2.6 For any rotation invariant convex norm ‖ · ‖ on the unit circle and any set

{aj ∈ IC, 1 ≤ j ≤ n}, we have ρn = ‖zn + 1‖ and

∥∥∥∥∥∥
n∏

j=1

(z − aj)

∥∥∥∥∥∥ ≥ 2−n ‖zn + 1‖
n∏

j=1

(1 + |aj|).(2.12)

The equality in (2.12) is attained for solutions of the minimization problem (2.11). If, in

addition, ‖ · ‖ is strictly convex, then this equality holds only for solutions of (2.11).
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3 Proofs

3.1 Proof of Theorem 2.1.

First, we note that (2.3) is trivial for n = 1 and assume that n ≥ 2. Let us consider the

following minimization problem:

Γn(α) := inf
aj∈ IC

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥∞
n∏

j=1

(1 + |aj|)αj

, α ∈ IRn
+.(3.13)

Since the functional minimized in (3.13) is invariant with respect to the transformation

aj → 1/aj, it is clear that the inf in (3.13) is attained for |aj| ≤ 1, 1 ≤ j ≤ n. We are

going to verify now that this inf can be attained only when |aj| = 1, 1 ≤ j ≤ n. This will

immediately imply the statement of Theorem 2.1. We shall show that the inf in (3.13) can

be attained only for aj’s on the unit circle, by using variational arguments based on the

following well-known formula for the directional derivative of the L∞-norm (see [5]).

lim
t→0+

‖f + tg‖∞ − ‖f‖∞
t

= max
z∈E(f)

Re g sgn f,(3.14)

where E(f) = {|z| = 1 : |f(z)| = ‖f‖∞}, sgn f = f/|f |.
Since

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥∞
≤ (1+ |a1|)α1

∥∥∥∥∥∥
n∏

j=2

|z − aj|αj

∥∥∥∥∥∥∞
, it easily follows that we do not lose

generality by assuming that the inf in (3.13) is attained for 0 < |aj| ≤ 1, 1 ≤ j ≤ n. Set

p(z) :=
n∏

j=1

|z − aj|αj , pt(z) :=
n∏

j=1

|z − aj + twj|αj

S :=
n∏

j=1

(1 + |aj|)αj , St :=
n∏

j=1

(1 + |aj − twj|)αj

where wj ∈ IC, 1 ≤ j ≤ n, and t > 0 are arbitrary. Evidently,

1

t
(S‖pt‖∞ − St‖p‖∞) ≥ 0.(3.15)
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Furthermore, it can be easily shown that

|z − aj + twj|αj = |z − aj|αj + tαj|z − aj|αj−2 Re wj(z − aj) + O(t2), 1 ≤ j ≤ n,

where O(t2) above is uniform in z from compact subsets of IC\{aj}n
j=1. Thus,

pt(z) = p(z) + tp(z)
n∑

j=1

αj Re

(
wj

z − aj

)
+ O(t2).(3.16)

Similarly, for aj 
= 0

(1 + |aj − twj|)αj = (1 + |aj|)αj − αj(1 + |aj|)αj−1t Re wj sgn aj + O(t2)

and therefore

St = S − tS
n∑

j=1

αj

1 + |aj| Re wj sgn aj + O(t2).(3.17)

Using (3.14)-(3.17) we obtain

0 ≤ lim
t→0+

1

t
(‖pt‖∞ − ‖p‖∞) + ‖p‖∞

n∑
j=1

αj

1 + |aj| Re wj sgn aj

= ‖p‖∞ max
z∈E(p)

Re
n∑

j=1

αjwj

z − aj

+ ‖p‖∞
n∑

j=1

αj

1 + |aj|Re wj sgn aj.

This means that for every wj ∈ IC, 1 ≤ j ≤ n, there exists a z ∈ E(p) so that

n∑
j=1

αj Re

(
wj

(
1

z − aj

+
sgn aj

1 + |aj|
))

≥ 0.(3.18)

It can be easily seen that

1

z − aj

+
sgn aj

1 + |aj| =
(1 − |aj|)(|aj| + Re ajz) + i (1 + |aj|)Im ajz

aj(1 + |aj|)|z − aj|2

This and (3.18) yield that for every wj ∈ IC, 1 ≤ j ≤ n, there exists a point z ∈ E(p) so

that

n∑
j=1

αj Re

(
wj

|z − aj|2 ((1 − |aj|)(|aj| + Re ajz) + i (1 + |aj|)Im ajz)

)
≥ 0.(3.19)
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Assume now that |aj| 
= 1 for 1 ≤ j ≤ k (1 ≤ k ≤ n) and |aj| = 1 if k < j ≤ n. Setting

in (3.19) wj = 1/(|aj| − 1) for 1 ≤ j ≤ k, and wj = 0 for k < j ≤ n, we obtain that for some

z0 ∈ E(p)

k∑
j=1

αj

|z0 − aj|2 (|aj| + Re ajz0) ≤ 0.(3.20)

On the other hand |z0| = 1 and, therefore, each term in the sum (3.20) is nonnegative, i.e.,

z0 = −aj/|aj|, 1 ≤ j ≤ k. Thus, we may assume that z0 = −1 and aj = xj > 0 for

1 ≤ j ≤ k. Using, in addition, that

Re
1 + z

z − xj

=
(1 − xj)(1 + Re z)

|z − xj|2 ,

we obtain from (3.18) that for every bj ∈ IR, 1 ≤ j ≤ k, and wj ∈ IC, k < j ≤ n, there exists

a point z ∈ E(p) so that

k∑
j=1

αjbj
1 + Re z

|z − xj|2 +
n∑

j=k+1

αj Re

(
wj

aj + z

aj − z

)
≥ 0.

Choose bj = −N, 1 ≤ j ≤ k. Then, it follows that for some zN ∈ E(p)

n∑
j=k+1

αjRe

(
wj

aj + zN

aj − zN

)
≥ N

k∑
j=1

αj
1 + Re zN

|zN − xj|2 .(3.21)

But 1 + Re zN ≥ 0 and zN → z∗ ∈ E(p) as N → ∞ (for a proper subsequence). Thus we

obtain from (3.21) that z∗ = −1 and for every wj ∈ IC, k + 1 ≤ j ≤ n

n∑
j=k+1

αj Re

(
wj

aj − 1

aj + 1

)
≥ 0.

Thus aj = 1, k + 1 ≤ j ≤ n, i.e., p(z) = |z − 1|β
k∏

j=1

|z − xj|αj with some β > 0 and xj >

0, 1 ≤ j ≤ k. Hence Γn(α), defined by (3.13), equals 1, which is an evident contradiction if

n ≥ 2. This completes the proof of Theorem 2.1. �

3.2 Proof of Theorem 2.4.

Set
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Mn := sup
aj∈ IC

∥∥∥∥∥∥
n∏

j=1

(z − aj)

∥∥∥∥∥∥
2

n∏
j=1

‖z − aj‖2

; mn := inf
aj∈ IC

∥∥∥∥∥∥
n∏

j=1

(z − aj)

∥∥∥∥∥∥
2

n∏
j=1

‖z − aj‖2

.

Again, it is evident that sup and inf in the above expressions are attained.

Proposition 3.1 If the set of points {aj, 1 ≤ j ≤ n} ⊂ IC is extremal for Mn or mn and

|a1| 
= 1, then for pn(z) =
n∏

j=1

(z − aj)

‖pn‖2 =
∥∥∥∥ pn

z − a1

∥∥∥∥
2

‖z − a1‖2.(3.22)

Proof. (3.22) is trivial for a1 = 0, so we may assume that a1 
= 0. Consider the functional

ϕ(t) =

∫ 2π

0

∣∣∣∣∣pn(z) − ta1pn(z)

z − a1

∣∣∣∣∣
2

dθ

1 + (1 + t)2|a1|2 , z = eiθ.

The extremality of the set {aj, 1 ≤ j ≤ n} yields that ϕ′(0) = 0. Therefore, by differen-

tiating ϕ(t), we obtain

(1 + |a1|2)
∫ 2π

0
|pn(z)|2 Re

a1

z − a1

dθ + |a1|2
∫ 2π

0
|pn(z)|2dθ

=
∫ 2π

0
|pn(z)|2

(
Re

a1(1 + |a1|2)
z − a1

+ |a1|2
)

dθ = 0.

(3.23)

Moreover, for |z| = 1

Re
a1(1 + |a1|2)

z − a1

+ |a1|2 = Re
a1 + z|a1|2

z − a1

=
(1 − |a1|2) Re za1

|z − a1|2 .

Since |a1| 
= 1, we obtain by substituting the above expression into (3.23) that

∫ 2π

0

∣∣∣∣∣ pn(z)

z − a1

∣∣∣∣∣
2

Re za1 dθ = 0, z = eiθ.

Finally, using this relation implies
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‖pn‖2
2 =

1

2π

∫ 2π

0
|pn(z)|2dθ =

1

2π

∫ 2π

0

∣∣∣∣∣ pn(z)

z − a1

∣∣∣∣∣
2

(z − a1)(z − a1) dθ

=
1

2π

∫ 2π

0

∣∣∣∣∣ pn(z)

z − a1

∣∣∣∣∣
2

(1 + |a1|2 − 2Re za1)dθ =

=
1

2π

∫ 2π

0

∣∣∣∣∣ pn(z)

z − a1

∣∣∣∣∣
2

(1 + |a1|2) dθ = ‖z − a1‖2
2

∥∥∥∥ pn

z − a1

∥∥∥∥2

2

. �

Corollary 3.2 If the set of points {aj, 1 ≤ j ≤ n} ⊂ IC is extremal for Mn (or mn) and

|a1| 
= 1, then Mn = Mn−1 (respectively, mn = mn−1).

Proof. Clearly, Mn ≥ Mn−1 and mn ≤ mn−1 for every n ≥ 2. On the other hand, if |a1| 
= 1

then (3.22) yields that Mn ≤ Mn−1 and mn ≥ mn−1. Thus Mn = Mn−1 and mn = mn−1.

�

The next two statements are straightforward.

Proposition 3.3 For every n ∈ IN

Mn ≥ 2−n/2‖(z + 1)n‖2 =

⎛
⎝2−n

n∑
k=0

(
n

k

)2
⎞
⎠

1/2

=

(
2−n

(
2n

n

))1/2

,

mn ≤ 2−n/2‖zn + 1‖2 = 2(1−n)/2.

Proposition 3.4 If the set of points {aj, 1 ≤ j ≤ n} ⊂ {|z| = 1} is extremal for Mn or

mn, then

Mn = 2−n/2

∥∥∥∥∥∥
n∏

j=1

(z − aj)

∥∥∥∥∥∥
2

≤
⎛
⎝2−n

n∑
k=0

(
n

k

)2
⎞
⎠

1/2

=

(
2−n

(
2n

n

))1/2

.

Respectively,

mn = 2−n/2

∥∥∥∥∥∥
n∏

j=1

(z − aj)

∥∥∥∥∥∥
2

≥ 2−n/2 ‖zn + 1‖2 = 2(1−n)/2.

Let us verify now that

Mn =

(
2−n

(
2n

n

))1/2

and mn = 2(1−n)/2.
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Assume that Mn = . . . = Mm > Mm−1, where 2 ≤ m ≤ n. Then, by Corollary 3.2,

|aj| = 1, 1 ≤ j ≤ m, where aj’s are extremal for Mm. Thus, by Propositions 3.3 and 3.4

2−n

(
2n

n

)
≤ M2

n = M2
m ≤ 2−m

(
2m

m

)
.

It is easy to show that this inequality is possible only if m = n, i.e., Mn =
(
2−n

(
2n
n

))1/2
.

Similarly, if mn = . . . = m� < m�−1, we obtain by Propositions 3.3 and 3.4

2(1−n)/2 ≥ mn = m� ≥ 2(1−�)/2,

yielding that n = � and mn = 2(1−n)/2. The above arguments show that Mn > Mn−1 and

mn < mn−1 for every n ≥ 2. Thus, by Corollary 3.2, the extremal sets for Mn and mn

must belong to the unit circle. Therefore, if pn(z) =
n∏

j=1

(z − aj) is extremal for mn, then

we must have |aj| = 1, 1 ≤ j ≤ n, and ‖pn‖2 =
√

2. It is well-known that only pn(z) =

zn + ρ (ρ ∈ IC, |ρ| = 1) can satisfy the above properties. Similarly, if gn(z) =
n∏

j=1

(z − bj) is

extremal for Mn, then |bj| = 1, 1 ≤ j ≤ n, and ‖gn‖2 =

√(
2n
n

)
. Again, it is easy to see that

gn(z) = (z + ρ)n (ρ ∈ IC, |ρ| = 1).

The proof of Theorem 2.4 is now complete. �

3.3 Proof of Theorem 2.5.

Consider the functional

ψ(a1, . . . , an) :=

∥∥∥∥∥∥
n∏

j=1

|z − aj|αj

∥∥∥∥∥∥
q

n∏
j=1

(1 + |aj|)αj

and the corresponding extremal problem

γn(α) := inf
aj∈ IC

ψ(a1, . . . , an).(3.24)

Evidently, it suffices to show that (3.24) possesses a solution {aj, 1 ≤ j ≤ n} ⊂ IC such that

|aj| = 1, 1 ≤ j ≤ n. First, observe that for every aj 
= 0, 1 ≤ j ≤ n,
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|z − aj|αj

(1 + |aj|)αj
=

∣∣∣∣∣z − 1

aj

∣∣∣∣∣
αj

(
1 +

1

|aj|
)αj

,

and therefore

ψ(a1, . . . , aj, . . . , an) = ψ

(
a1, . . . ,

1

aj

, . . . , an

)
.(3.25)

(Note that this relation easily implies the existence of a solution of (3.24).)

Set

p(z) :=
n∏

j=1

|z − aj|αj , pk(z) := p(z)/|z − ak|αk ,

S :=
n∏

j=1

(1 + |aj|)αj , Sk := S/(1 + |ak|)αk (1 ≤ k ≤ n).

Then, using that αjq ≥ 1 (1 ≤ j ≤ n), we obtain for any ak 
= 0 and 0 ≤ t ≤ 1 :

∥∥∥∥
∣∣∣∣z −

(
tak + (1 − t)

1

ak

)∣∣∣∣
αk

pk

∥∥∥∥
1/αk

q

=
∥∥∥∥
∣∣∣∣z −

(
tak + (1 − t)

1

ak

)∣∣∣∣ p1/αk

k

∥∥∥∥
αkq

≤ t
∥∥∥|z − ak| p1/αk

k

∥∥∥
αkq

+ (1 − t)
∥∥∥∥
∣∣∣∣z − 1

ak

∣∣∣∣ p1/αk

k

∥∥∥∥
αkq

= t‖p‖1/αk
q + (1 − t)

∥∥∥∥
∣∣∣∣z − 1

ak

∣∣∣∣
αk

pk

∥∥∥∥
1/αk

q

= S
1/αk

k

{
t (1 + |ak|) (ψ(a1, . . . , an))1/αk + (1 − t)

(
1 +

1

|ak|
) (

ψ
(
a1, . . . ,

1

ak

, . . . , an

))1/αk
}

.

(3.26)

Using (3.25) and the relation

t(1 + |ak|) + (1 − t)

(
1 +

1

|ak|
)

= 1 +
∣∣∣∣tak +

1 − t

ak

∣∣∣∣ ,
we obtain from (3.26)

ψ
(
a1, . . . , tak +

1 − t

ak

, . . . , an

)
≤ ψ(a1, . . . , an), 1 ≤ k ≤ n,(3.27)
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if ak 
= 0 and 0 ≤ t ≤ 1. Furthermore, the inequality ‖p‖q ≤ (1 + |ak|)αk‖pk‖q yields that

(3.24) possesses a solution {aj, 1 ≤ j ≤ n} such that aj 
= 0, 1 ≤ j ≤ n. Moreover, (3.27)

implies that this solution can be chosen so that |aj| = 1, 1 ≤ j ≤ n.

Note that if 1 < αjq < ∞, then ‖ · ‖αjq is strictly convex, 1 ≤ j ≤ n. Therefore, it follows

from (3.26) that the equality in (3.27) can hold only for |ak| = 1, 1 ≤ k ≤ n, in this case.

�

Remark 3.5 It can be seen from the above proof that Theorem 2.5 could be generalized by re-

placing
n∏

j=1

(1+|aj|)αj by a function g(|a1|, . . . , |an|) such that gj(t) := g1/αj(|a1|, . . . , |aj−1|, t,

|aj+1|, . . . , |an|) is concave and satisfies the symmetry property tgj

(
1

t

)
= gj(t) (1 ≤ j ≤

n), t > 0.

3.4 Proof of Theorem 2.6.

We need to verify first that ρn = ‖zn + 1‖. The rest of the proof will then follow by the

same arguments as in the proof of Theorem 2.5. Consider the following best approximation

problem

ρ̃n := min
cj∈ IC

∥∥∥∥∥∥zn + 1 −
n−1∑
j=1

cjz
j

∥∥∥∥∥∥ .(3.28)

Clearly, ρ̃n ≤ ρn. Assume first that ‖ · ‖ is strictly convex. Then (3.28) possesses a unique

solution q(z) :=
n−1∑
j=1

c∗jz
j. This and the rotation invariance of the norm yield that q(e2πi/nz) =

q(z) for every |z| = 1, i.e., q ≡ 0. This verifies that ρ̃n = ρn = ‖zn + 1‖ when ‖ · ‖ is strictly

convex. In the general case, set

‖p‖ε = ‖p‖ + ε‖p‖2 (ε > 0).

Evidently, ‖ · ‖ε is rotation invariant and strictly convex, i.e., the above argument is

applicable to ‖ · ‖ε. Letting ε → 0, we obtain that ρ̃n = ρn = ‖zn + 1‖. �
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