
HOLOMORPHIC DOUBLE FIBRATION TRANSFORMS

Joseph A. Wolf and Roger Zierau

23 August 1999

Dedicated to the memory of Harish–Chandra

Abstract. Let D be a noncompact complex manifold which fits into a holomorphic double

fibration D ← W → M . We describe the construction of a transform from the Dolbeault
cohomology space Hs(D,O(E)) into a space of holomorphic sections of a bundle on M , under

somewhat mild conditions on the fibration (and the bundle E → D). When D is a flag

domain for a semisimple Lie group the space M will be the linear cycle space MD of D. This
specifies a natural holomorphic double fibration. The corresponding Dolbeault cohomology

spaces support many interesting irreducible representations. Our transform provides new
realizations of these representations on spaces of holomorphic sections over MD . This article

surveys the background and presents new results on the detailed structure of MD .
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Section 7. Remarks.
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Section 1. Introduction.

Double fibration transforms have appeared in mathematics in a variety of contexts,
mostly analytic or geometric, over many years. Many of the integral transforms in spe-
cial function theory can be viewed as single or double fibration transforms. This is more
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explicit, however, in integral geometry, starting with the Crofton formulae and Chern’s
intersection theory of two homogeneous spaces G/H and K\G of the same group, through
the classical Radon and X–ray transforms, the Gelfand–Graev horocycle transforms [12]
which extend the Radon transform to Riemannian and Lorentzian spaces of constant neg-
ative curvature, Helgason’s group–theoretic reformulation of the Gelfand–Graev horocycle
transform, which applies in general to riemannian symmetric spaces of noncompact type,
and the Fourier inversion formulae for various classes of non–unimodular Lie groups.

Here we study certain holomorphic double fibration transforms connected with real
group orbits D = G0(z) ⊂ Z = G/Q on complex flag manifolds [38] and their linear cycle
spaces ([33], [42], [43], [47]). We apply those transforms to the representation theory of
the real group G0 . A real analytic double fibration transform occurs in [3] and [48] as
an important tool in the study of cohomology representations; a degenerate case occurs
in [25]. It appears that holomorphic fibration transforms were first used in construction
of automorphic cohomology [33]; see §7 for more details. The case G0 = SU(2, 2) is also
used in physics [10]. In this context it is called the “Penrose Transform”.

We discuss holomorphic double fibration transforms in general in §2. In §3 we recall some
basic facts on real group orbits in complex flag manifolds, their linear cycle spaces, and
cohomologies of homogeneous holomorphic vector bundles. Highest weight (holomorphic)
representations are discussed in §4, where in fact the linear cycle space is not yet needed.
We then discuss the linear cycle space in some detail in §§6 and 7, verifying the conditions
needed for injectivity of the double fibration transform, and we show how this injectivity
yields an identity theorem and a closed range theorem for cohomology. Then, in §7, we
describe some closely related matters: convergence of Poincaré series, Gindikin–Akhiezer
extensions of symmetric spaces, the Barlet Space, and a few closed range theorems. The
Appendix extends the range of our structural result for the linear cycle space.

Section 2. General Transforms.

Let D be a complex manifold. Later it will be an open orbit of a real reductive group
G0 on a complex flag manifold Z = G/Q of its complexification. We suppose that D fits
into a holomorphic double fibration, in other words that there are complex manifolds M
and W with holomorphic fibrations as follows:

W

D

............................................................................................................................................................................
.......
................

µ

M

................................................................................................................................................................................... .........
.......

ν(2.1)

Given a coherent analytic sheaf E → D we construct a coherent sheaf E ′ → M and a
transform

(2.2) P : Hs(D; E) → H0(M ; E ′)



HOLOMORPHIC DOUBLE FIBRATION TRANSFORMS 3

under mild conditions on (2.1). In fact we give several variations on the construction.
This construction is fairly standard (see, for example, [6], [22] and [16]), but we need some
specific details.

Pull–back. The first step is to pull cohomology back from D to W . Let µ−1(E) →W
denote the inverse image sheaf. As µ is open, it is the sheaf defined by the presheaf whose

value at an open set Ũ ⊂ W is Γ(U, E) where U = µ(Ũ). Here, as usual, Γ denotes the
space of sections. For every integer r ≧ 0 there is a natural map

(2.3) µ(r) : Hr(D; E) → Hr(W ;µ−1(E))

given on the Čech cocycle level by µ(r)(c)(σ) = c(µ(σ)) where c ∈ Zr(D; E) and where
σ = (w0, . . . , wr) is a simplex.

2.4. Proposition. (See [7].) Suppose that the fiber F of µ : W → D is connected and

that Hr(F ;C) = 0 for 1 ≦ r ≦ p− 1. Then the map (2.3) is an isomorphism for r ≦ p− 1
and is injective for r = p. In particular, if the fibers of µ are contractible then (2.3) is an

isomorphism for all r.

As usual, if X is a complex manifold then OX → X denotes its structure sheaf, the
sheaf of germs of holomorphic C–valued functions on X . If E → X is a holomorphic vector
bundle then O(E) → X is its sheaf of germs of holomorphic sections.

Denote µ∗(E) = µ−1(E)⊗µ−1(OD) OW . It is a sheaf of OW –modules. If it happens that
E = O(E) for some holomorphic vector bundle E → D, then µ∗(E) = O(µ∗(E)), where
µ∗(E) is the pull–back bundle. In any case, [σ] 7→ [σ]⊗1 defines a map i : µ−1(E) → µ∗(E)
which in turn specifies maps in cohomology, the coefficient morphisms

(2.5) ip : H
p(W ;µ−1(E)) → Hp(W ;µ∗(E)) for p ≧ 0.

Our natural pull–back maps are the compositions

(2.6) j(p) : Hp(D; E) → Hp(W ;µ∗(E)) for p ≧ 0

of (2.3) and (2.5), that is, j(p) = ip · µ(p).

Consider the case E = O(E) for some holomorphic vector bundle E → D. Then µ∗(E) =
O(µ∗(E)), we realize these sheaf cohomologies as Dolbeault cohomologies, and the pull–
back maps (2.6) are given by pulling back [ω] 7→ [µ∗(ω)] on the level of differential forms.

Push–down. In order to push the Hq(W ;µ∗(E)) down to cohomologies on M we
assume that

(2.7) ν :W →M is a proper map and M is a Stein manifold.

Consider the Leray direct image sheaves1 Rp(µ∗(E)) → M . The Grauert Direct Image

1Whenever γ : W → X is a holomorphic map, the p–th Leray direct image sheaf Rp(F)→ X is defined
by the presheaf U 7→ Hp(γ−1(U);F|γ−1(U)).
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Theorem2 [13] ensures that each of the Rp(µ∗(E)) → M is a coherent sheaf of OM–
modules. As M is Stein

(2.8) Hq(M ;Rp(E)) = 0 for p ≧ 0 and q > 0.

Thus the Leray spectral sequence collapses and gives

(2.9) Hp(W ;µ∗(E)) ∼= H0(M ;Rp(µ∗(E))).

2.10. Definition. The holomorphic double fibration transform for the holomorphic dou-

ble fibration (2.1) is the composition

(2.11) P : Hp(D; E) → H0(M ;Rp(µ∗(E)))

of the maps (2.6) and (2.9).

One wants two things in (2.11): that P be injective, and that there be an explicit
description of its image. Assuming (2.7), injectivity of P is equivalent to injectivity of j(p)

in (2.6). There are several ways to ensure this. The most general is the vanishing condition
in Theorem 2.18 below. Another, more specific to our situation, which we carry out in
Section 4, uses the fact that the fibers of µ are Stein manifolds. Finally, in some cases one
knows that Hp(D; E) is an irreducible representation space for a group under which all our
constructions are equivariant, so P is an intertwining operator, thus zero or injective.

The relative Dolbeault complex. In order to address the injectivity question just
mentioned, we need some basic facts on the relative Dolbeault complex of a holomorphic
fibration µ :W → D.

Let T 1,0
µ,w = T 1,0(µ−1(µ(w))), the holomorphic tangent space at w of the fiber µ−1(µ(w))

of µ containing w. Since µ is a holomorphic fibration, T1,0
µ (W ) =

⋃
w∈W T 1,0

µ,w is a holo-

morphic sub–bundle of the holomorphic tangent bundle T
1,0(W ) → W . Define the sheaf

of germs of relative holomorphic p–forms on W with respect to µ by

Ωpµ(W ) = O(
∧p

T
1,0
µ (W )∗) = O(

∧p
(T∗
µ(W ))1,0) as sheaf over W.

Let Ωp(W ) → W denote the sheaf O(
∧p

T1,0(W )∗) →W of ordinary holomorphic p–forms,
as usual. If η ∈ Γ(U ; Ωpµ(W )) there exists ω ∈ Γ(U ; Ωp) such that η(w) = ω(w)|∧p

Tµ(W ) .
Thus

p : Ωp(W ) → Ωpµ(W ), by p(ω)(w) = ω(w)|∧pTµ,w
,

is surjective.

The relative exterior differential is

∂µ(η) = p(∂(ω)), where η = p(ω).

It is clear that ∂µ is well defined, ∂2µ = 0 and p is a map of complexes.

2Grauert’s theorem says that if γ : W → X is a proper holomorphic map, if p ≥ 0, and if F →W is a
coherent analytic sheaf, then Rp(F) is a coherent sheaf of OX–modules.
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2.12. Lemma. µ−1OD → Ω•
µ(W ) is a resolution of the sheaf µ−1OD →W .

Proof. Note that Ω0(W ) = Ω0
µ(W ). The kernel of ∂µ : Ω0

µ(W ) → Ω1
µ(W ) is µ−1OD. For

if f is a holomorphic function and ∂µf = 0 then f is constant in the fiber directions, so
f ∈ µ−1(OD). The exactness of Ω

•
µ(W ) follows from an argument analogous to that of the

Dolbeault Lemma. �

Let E → D be a coherent analytic sheaf. Tensor µ−1(E) over µ−1(OD) with the resolu-
tion of Lemma 2.12. That gives a resolution

(2.13) 0 → µ−1E → µ∗(E) → Ω1
µ(E) → · · · → Ωmµ (E) → 0

of µ−1E . We will use it to obtain an injectivity condition for

(2.14) Hs(W ;µ−1E) → Hs(W ;µ∗(E)).
Recall that a complex of sheaves

(2.15) 0 → C0 → C1 → · · · Cm → 0

over a space W leads to spectral sequences {′Ep,qr , ′dr} and {′′Ep,qr , ′′dr} converging to
the hypercohomology, with

(2.16) ′Ep,q2 = Hp(W ;Hq(W ; C•)) and ′′Ep,q2 = Hq
d(H

p(W ; C•)),

as follows. For the first, Hq(W ; C•) is the cohomology sheaf, associated to the presheaf

U → Ker {Γ(U ; Cq) → Γ(U ; Cq+1)}
Im {Γ(U ; Cq−1) → Γ(U ; Cq)} .

For the second, the differentials are the coefficient morphisms induced by the differentials
of (2.15).

2.17. Lemma. Suppose that (1) 0 → S → C0 → C1 → · · · Cm → 0 is exact and that (2)
there is an integer s such that Hp(W ; Cq) = 0 for all p < s and for q = 1, 2, . . . , m. Then

Hs(W ;S) → Hs(W ; C0) is injective.

Proof. Hypothesis (1) says Hq(W ; C•) = 0 for q > 0. In the notation (2.16) now

′Ep,q2 =

{
Hp(W ;S) for q = 0 and all p,

0 for q > 0 and all p.

Hypothesis (2) gives us

′′Ep,q2 =

{
0 for p < s and 1 ≦ q ≦ m,

Ker dq/Im dq−1 for p = s and all q.

Therefore
Hs(W ;S) = Ker {d0 : Hs(W ; C0) → Hs(W ; C1)}.

In particular, Hs(W ;S) → Hs(W ; C0) is injective. �

Injectivity. We return to the situation of a double fibration (2.1), a holomorphic vector
bundle E → D, and a coherent analytic sheaf E → D. Eventually we will take E = O(E)
where E → D is a negative homogeneous holomorphic vector bundle over a flag domain.



6 J. A. WOLF & R. ZIERAU

2.18. Theorem. Suppose that the fiber F of µ : W → D is connected and, for some fixed

integer s ≧ 0, that Hr(F ;C) = 0 for 1 ≦ r < s. Assume (2.7) that ν :W →M is a proper

map and that M is a Stein manifold. Suppose further that Hp(ν−1(Y ′); Ωqµ(E)|ν−1(Y ′)) = 0

for all Y ′ ∈ M , all p < s, and 1 ≦ q ≦ m. Then P : Hs(D; E) → H0(M ;Rs(µ∗(E))) is

injective.

Proof. The assumption on F ensures, as in Proposition 2.4, that
µ(s) : Hs(D; E) → Hs(W ;µ−1(E))

is injective. Now the Leray spectral sequence for µ : W → M and Ωqµ(E) → W and

the Stein condition on M give Hp(W ; Ωqµ(E)) ∼= H0(M ;Rp(Ωqµ(E))). The vanishing

assumption for certain Hp(ν−1(Y ′); Ωqµ(E)|ν−1(Y ′)) says Rp(Ωqµ(E)) = 0 for p < s and
1 ≦ q ≦ m. Now Hp(W ; Ωqµ(E)) = 0 for p < s and 1 ≦ q ≦ m, and Hs(W ; Ωqµ(E)) ∼=
H0(M ;Rs(Ωqµ(E))) for 1 ≦ q ≦ m. Using the notation (2.5), Lemma 2.17 says that

is : H
s(W ;µ−1E) → Hs(W ;µ∗E)

is injective. In view of Proposition 2.4 now the map
j(s) : Hs(D; E) → Hs(W ;µ∗(E))

of (2.6) is injective. In view of (2.9) we conclude that the double fibration transform
P : Hs(D; E) → H0(M ;Rs(µ∗(E))) is injective. �

2.19. Remark. The image of P : Hs(D; E) → H0(M ;Rs(µ∗(E))) may be identified with
the kernel of the coefficient morphism Hs(W ;µ∗(E)) → Hs(W ; Ω1

µ(E)) specified by d0 . In
effect, the Leray spectral sequence identifies this kernel with the kernel of the corresponding
map H0(M ;Rs(µ∗(E))) → H0(M ;Rs(Ω1

µ(E))). ♦

2.20. Remark. In the cases of interest to us, E = O(E) for some holomorphic vec-
tor bundle E → D, and P has an explicit formula. Let ω be an E–valued (0, s)–form
on D representing a Dolbeault cohomology class [ω] ∈ Hs

∂
(D,E). Note Rs(µ∗(E)) =

O(Hs(µ∗(E)|µ−1(Y )) where the latter bundle has fiber Hs(Y ′;µ∗(E)|µ−1(Y ′)) over Y
′ ∈M .

Thus

P ([ω])(Y ′) is the section of Rs(µ∗(E)) →M whose value at Y ′ ∈M is µ∗(ω)|ν−1(Y ′).

In other words,

(2.21) P ([ω])(Y ′) = [µ∗(ω)|ν−1(Y ′)] ∈ H0
∂
(M ;Hs(µ∗(E)|ν−1(Y ))).

This is most conveniently interpreted by viewing P ([ω])(Y ′) as the Dolbeault class of ω|Y ′ ,
and by viewing Y ′ 7→ [ω|Y ′ ] as a holomorphic section of the holomorphic vector bundle
over M whose fiber at Y ′ is Hs(Y ′;µ∗(E)|ν−1(Y ′)). ♦

Section 3. Flag Domains and Cohomology.

Basic structure. Let G be a complex semisimple Lie group, Q a parabolic subgroup
of G, and Z = G/Q the corresponding complex flag manifold. We write g and q for the
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respective Lie algebras of G and Q, and Q is the G–normalizer of q, so we can view Z as
the set of G–conjugates of q. The correspondence is z ↔ qz where qz is the Lie algebra of
the isotropy subgroup Qz of G at z.

Fix a real form G0 of G. So its Lie algebra is a real form g0 of g. Write x 7→ x for
complex conjugation of G over G0 and of g over g0 . We recall some of the basic facts
about G0–orbits on Z ([38]; or see [44]).

If z ∈ Z then qz∩qz contains a Cartan subalgebra h of g. We may assume that h = h, in
other words that h is the complexification of a Cartan subalgebra h0 = h∩g0 of g0 . There
is a choice of positive root system ∆+ = ∆+(g, h) such that qz is the standard parabolic
subalgebra qΦ defined by some subset Φ ⊂ Ψ where Ψ = Ψ(g, h,∆+) is the corresponding
simple root system. In other words, qz = qΦ where

(3.1)

Φr = {α ∈ ∆ | α is a linear combination of elements of Φ},
Φn = {α ∈ Σ+ | α /∈ Φr}, and
qΦ = qrΦ + q−nΦ with qrΦ = h+

∑

α∈Φr

gα and q−nΦ =
∑

α∈Φn

g−α .

It follows that G0 acts on Z with only finitely many orbits; in particular there are open
orbits. We refer to the open orbits as flag domains. As G0–invariant open subsets of Z,
the flag domains D ⊂ Z are G0–homogeneous complex manifolds.

A flag domain D = G0(z) ⊂ Z is called measurable if it carries a G0–invariant volume
element. This is the type of flag domain currently of most importance in representation
theory. More precisely, the following conditions are equivalent:

(3.2a) The orbit G0(z) is measurable.
(3.2b) G0 ∩Qz is the G0–centralizer of a (compact) torus subgroup of G0 .
(3.2c) D has a G0–invariant possibly–indefinite Kaehler metric, thus a G0–invariant

measure obtained from the volume form of that metric.
(3.2d) Φr = Φr, and Φn = −Φn where qz = qΦ .
(3.2e) qz ∩ qz is reductive, i.e. qz ∩ qz = qrz ∩ qrz .
(3.2f) qz ∩ qz = qrz .
(3.2g) q is Ad (G)–conjugate to the parabolic subalgebra q− = qr + qn opposite to q.

In particular, since (3.2g) is independent of choice of z, if one open G0–orbit on Z is
measurable then all open G0–orbits are measurable.

Condition (3.2d) holds whenever the Cartan subalgebra h0 = h ∩ g0 of g0 corresponds
to a compact Cartan subgroup H0 ⊂ G0 . (Here h = h is the Cartan subalgebra relative
to which qz = qΦ .) For in that case α = −α for every α ∈ ∆(g, h). In particular, if G0

has discrete series representations, so that by a result of Harish–Chandra it has a compact
Cartan subgroup, then every open G0–orbit on Z is measurable. Condition (3.2d) is also
automatic if Q is a Borel subgroup of G, and more generally Condition (3.2g) provides a
quick test for measurability.

Compact subvarieties. We now fix z ∈ Z such that D = G0(z) is open in Z. For
convenience we suppose that z is the base point in Z = G/Q, so Q = Qz and q = qz . For
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notational consistency with many papers in this area, we write L for the Levy component
Qr of Q. For reasons that will appear at the end of Section 3, we write R− for the unipotent
radical Q−n. So D is measurable if and only if L ∩G0 is a real form L0 of L, and in that
case D ∼= G0/L0 .

Fix a Cartan involution θ of G0 that stabilizes the Cartan subgroup H0 ⊂ G0 , and
denote its fixed point sets on G0 and G by K0 = Gθ0 and K = Gθ. Then K0 is a maximal
compact subgroup of G0 and K is its complexification. L∩K0 is a real form of L∩K and
K0(z) ∼= K0/(L ∩K0).

As D is open we may assume h chosen so that H0 ∩K0 is a Cartan subgroup of K0 , in
other words so that H0 is a fundamental Cartan subgroup of G0 . Use h for the standard
Weyl basis construction of a θ–stable compact real form gu ⊂ g. Then G0 ∩Gu = K0 and
k = (k∩ l) + (k∩ r−) + (k∩ r+). Thus K(z) ∼= K/(K ∩Q) is a complex flag submanifold of
Z, and K0 acts transitively on it. In summary,

3.3. Lemma. K(z) = K0(z); in particular it is a compact complex submanifold of D.

We write Y for the compact complex submanifold K0(z) ⊂ D.

3.4. Example. Let Z be the complex projective space Pn(C) and let G0 = SU(n, 1).
Let {e1, . . . , en+1} denote the standard basis of Cn+1, relative to which the hermitian form

defining G0 is 〈u, v〉 =
(∑

1≤a≤n uava

)
−un+1vn+1 . Then G0 has three orbits on Z: the

(open) unit ball B in Cn inside Z, consisting of the negative definite lines; the (2n − 1)–
sphere S which is the boundary of B, consisting of the null lines; and the complement D
of B∪S, consisting of the positive definite lines. D is the non–convex open G0–orbit on Z.
Here Y is the hyperplane at infinity, complement to Cn in Z. In homogeneous coordinates
[z1, . . . , zn+1], B is given by

∑
1≦a≦n |za|2 < |zn+1|2, S is given by

∑
1≦a≦n |za|2 = |zn+1|2,

D is given by
∑

1≦a≦n |za|2 > |zn+1|2, and Y is given by |zn+1|2 = 0. ♦

Y is maximal among the linear subvarieties of Z contained in D. This phenomenon
leads us to the term linear cycle space, which we will define in Section 5 below.

Holomorphic vector bundles. Assume now that D is measurable and fix a (finite
dimensional) homogeneous holomorphic vector bundle Eχ → D. Thus the typical fiber
Eχ is an (L, q)–module, χ denotes the representations both of L and of q on Eχ , and the
complex structure on Eχ is the one for which [30]

(3.5)

f : G0 → Eχ is a section if and only if f(gl) = χ(l)−1f(g) for g ∈ G0, l ∈ L0

f : G0 → Eχ is a holomorphic section if and only if, in addition,

f(g; ξ) + χ(ξ)f(g) = 0 for g ∈ G0 and ξ ∈ q.

Here f(g; ξ) refers to the complexification of the differential of the right translation action
of G0 on itself. For ξ in the Levy component l of q, the “holomorphic” half of (3.5)
follows from the “section” half. The Cauchy–Riemann equations for Eχ come down to the
“holomorphic” half of (3.5) for ξ in the nilradical r− of q. In effect, the antiholomorphic
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tangent space of D at z is identified with r− . The holomorphic tangent space is identified
with r+ = r− =

∑
∆+\Φr gα . Of course O(Eχ) → D denotes the sheaf of germs of

holomorphic sections of Eχ → D.

For more details on the structure of flag domains see [38], [38] and [43]. For more details
on their geometry see [33], [42] and [44].

Our goal is to study the cohomologies Hp(D;O(Eχ)) using the holomorphic double
fibration (2.1). In Sections 4 and 5 we carry this out for many situations, defining and
analyzing a natural double fibration and addressing the problem of injectivity raised in
Section 2. For the remainder of this section we look at the structure of the Hp(D;O(Eχ))
and we examine a certain “holomorphic type” property for flag domains.

Cohomologies. The sheaf cohomology spaces Hp(D;O(Eχ)) can be computed by
means of the Dolbeault complex, and we identify Hp(D;O(Eχ)) with the Dolbeault co-
homology Hp

∂
(D;Eχ). As r− is identified with the antiholomorphic tangent space, the

complex

(3.6)

(
A•(D;Eχ), ∂

)
computes Dolbeault cohomology Hp

∂
(D;Eχ) where

Ap(D;Eχ) =

{ω : G0 →
∧p

(r−)
∗ ⊗ Eχ | ω(gl) = Ad (l)−1χ(l)−1ω(g) for g ∈ G0, l ∈ L0}

We will have occasion to restrict cohomology classes from D to Y , and some formalism
will be convenient for this. Whenever U ⊂ V is a submanifold, E → V is a vector bundle,
and ω is an E–valued differential form on V , the inclusion i : U → V gives us the restrictions

(3.7) RU,V (E) = i∗(E) and RU,V (ω) = i∗(ω).

Here RU,V (E) → U is the bundle with fiber Eu at u ∈ U . Its transition functions are the
restrictions of the transition functions of E → V . Also, RU,V (ω)(u) is just the restriction
of ω(u) to the appropriate exterior power of the tangent space of Tu(U). The point of this
formalism is that we want to consider

(3.8) RY,D : Ap(D;E) → Ap(Y ;E|Y ), by RY,D(ω)(y) = ω(y)
∣∣∣
∧pT

(0,s)
y (Y )

for y ∈ Y.

If we represent [ω] ∈ Hp

∂
(D;Eχ) by a form ω ∈ Ap(D;Eχ) and view ω(g) as an Eχ–valued

linear function on
∧p

(r−), then the restriction becomes

(3.9) RY,D : Ap(D;Eχ) → Ap(Y ;Eχ|Y ) by RY,D(ω)(k) = ω(k)|∧p(r−∩k).

This intertwines the respective ∂ operators for Eχ → D and Eχ|Y → Y and thus induces a
map Hp

∂
(D;Eχ) → Hp

∂
(Y ;Eχ|Y ). The latter corresponds to the map on sheaf cohomology

induced by Y →֒ D.

G0 acts naturally on all the ingredients in the recipe for Hp

∂
(D;Eχ), so it acts naturally

on Hp

∂
(D;Eχ). The sticky point here is the topology on Hp

∂
(D;Eχ). In principle it need

not be Hausdorff, in fact a priori the trivial subspace {0} might be dense, so one needs a
closed range theorem for ∂. That is an extremely delicate point, not at all understood in
general, and only known recently for flag domains. The current state of the matter is
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3.10. Theorem. Let D be a measurable flag domain and let Eχ → D be a finite di-

mensional homogeneous holomorphic vector bundle. Then the differential ∂ of the complex(
A•(D;Eχ), ∂

)
has closed range, the cohomology Hp

∂
(D;Eχ) is a nuclear Fréchet space,

and the action of G0 on Hp

∂
(D;Eχ) is a strongly continuous representation.

Various cases were proved in [25], [33], [24] and [28]. The theorem stated above (except
for nuclearity of Hp

∂
(D;Eχ), noted by Michor) is due to Wong [48]. Schmid–Wolf [28]

(for Q Borel), and later Wong [48] (in general), prove closed range for ∂ by showing that
Hp

∂
(D;Eχ) is a maximal globalization [26] of the corresponding cohomologically induced

(g, K0)–module. Thus the functorial properties of cohomologically induced modules apply
to the Dolbeault cohomologies Hp

∂
(D;Eχ). In particular,

3.11. Theorem. Let s = dimC Y = dimCK0/(L0 ∩K0). Suppose that the representation

χ of L is irreducible with highest weight λ where 〈λ+ρ, γ〉 < 0 for all γ ∈ ∆(r+, h), that is,
for all γ ∈ Φn. Then Hp

∂
(D;Eχ) = 0 for p 6= s, and the representation of G0 on Hs

∂
(D;Eχ)

is topologically irreducible.

All the tempered unitary highest weight representations of G0 , and many non–tempered
ones as well, occur on the cohomologies just described. The highest weight representation
case of Theorems 3.10 and 3.11 was done in [24] with the help of a certain holomorphic
double fibration as in (3.12) below.

The two types of double fibrations. Consider the following variation on the double
fibration (2.1):

G0/(L0 ∩K0)

D = G0/L0

............................................................................................................................................................................
.......
................

µ

B = G0/K0

................................................................................................................................................................................... .........
.......

ν(3.12)

Decompose G0 into a local direct product of a compact group with some noncompact
simple groups. Then everything — including both double fibrations — decomposes ac-
cordingly. Thus we may, and do, assume that G0 is a noncompact simple Lie group. This
assumption made, G0 has nontrivial unitary highest weight representations if and only if
it is of hermitian type, that is, locally isomorphic to the analytic automorphism group of
a bounded symmetric domain. In that case the domain is B = G0/K0 has one of two
possible invariant complex structures, and G0/(L0 ∩ K0) has several invariant complex
structures.

3.13. Definition. A flag domain D ⊂ Z is of holomorphic type if G0 is of hermitian

type and the G0–invariant complex structures on G0/K0 and G0/(L0 ∩K0) can be chosen

such that both µ and ν are holomorphic in (3.12). D is of nonholomorphic type if it is not
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of holomorphic type3.

Assume from now on that G0 is of hermitian type. Then the standard Cartan de-
compositions g = k + s and g0 = k0 + s0 into ±1 eigenspaces of θ decompose further to

s = s+ ⊕ s− where K0 acts irreducibly on each of s± and s− = s+ .
Set S± = exp(s±) , so S− = S+ . Then the p± = k + s± are parabolic subalgebras of g
with p− = p+ , the P± = KS± are parabolic subgroups of G with P− = P+ , and the
X± = G/P± are hermitian symmetric flag manifolds. Note that X− = X+ in the sense
of conjugate complex structure, for s+ represents the holomorphic tangent space of X−

and s− = s+ represents the holomorphic tangent space of X+ . Let x± = 1 · P± ∈ X± , so
G0/K0

∼= G0(x±) ⊂ X± . We denote

B = G0/K0 : symmetric space G0/K0 with the complex structure of G0(x−),

B = G0/K0 : space G0/K0 with the (conjugate) complex structure of G0(x+).

The distinction between s− and s+ in (1.3) is made by a choice of positive root system
Σ+ = Σ+(g, h) for g relative to a Cartan subalgebra h = h ⊂ k of g. The choice is made so
that s+ is spanned by positive root spaces in that system and consequently s− is spanned
by negative root spaces. However, Σ+ need not be the same as the positive system ∆+

relative to which r+ is spanned by positive root spaces and r− is spanned by negative root
spaces. The precise situation here is

3.14. Proposition. The following conditions are equivalent.

(1) D is of holomorphic type.

(2) One can choose Σ+ = ∆+ in the discussion just above. In other words, g has a

positive root system relative to h that contains both ∆(s+, h) and ∆(r+, h).
(3) Either r+ ∩ s+ = 0 or r+ ∩ s− = 0.
(4) Either q ∩ p+ or q ∩ p− is a parabolic subalgebra of g.

3.15. Example. Let G0 = SU(p, q) and let Z be the flag manifold of m–planes in Cp+q.
The open G0–orbits on Z are the

Dr,s = {z ∈ Z | z has signature (r, s)}.
Here r + s = m, and “signature” refers to the hermitian form that defines G0 . Then Dr,s
is of holomorphic type if and only if either rs = 0 or (p− r)(q − s) = 0. ♦

3.16. Example. Let G0 be a connected simple group of hermitian type and let Q be
a Borel subgroup of G. Then z ∈ Z = G/Q lies in an open orbit if and only if Qz ∩ G0

contains a compact Cartan subgroup T0 of G0 . We suppose that T0 ⊂ K0 and that q = qz
has Levy component t. The open orbits are of the form G0(wz) where w belongs to the
Weyl group W (G, T ). They are parameterized by W (G0, T0)\W (G, T ) =W (k, t)\W (g, t).
See [38]. There are just two open orbits of holomorphic type, corresponding to the two
(modulo W (k, t)) positive root systems with just one noncompact simple root. ♦

3Note here: if G0 is not of hermitian type then D is of nonholomorphic type.
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3.17. Example. Fix a positive root system Σ+ = Σ+(g, t) that has a unique noncompact
simple root. Let Ψ denote the simple root system. Then D is of holomorphic type if
qz = qΦ for some z ∈ D and some Φ ∈ Ψ. Every open G0–orbit of holomorphic type
is obtained this way for one of the two (modulo W (k, t)) such systems Σ+. Since few
positive root systems have just one noncompact simple root, this shows that flag domains
of holomorphic type are relatively rare. ♦

Section 4. Highest Weight Representations

and Domains of Holomorphic Type.

In this Section we suppose that D is an open orbit of holomorphic type in our complex
flag manifold Z. Thus we fix G0–invariant complex structures on B = G0/K0 and on
G0/(L0 ∩K0) such that both projections in the double fibration

G0/(L0 ∩K0)

D = G0/L0

...........................................................................................................................................................................
.......
.

................

µ

B = G0/K0

................................................................................................................................................................................... ........
.......
.

ν(4.1)

are holomorphic. Let χ be an irreducible finite dimensional unitary representation of L0 ,
let λ denote its highest weight, and let Eχ → D be the corresponding homogeneous holo-
morphic vector bundle. As before, Eχ = O(Eχ). We will give an embedding of Hs(D; Eχ)
into H0(B; Eχ′) for a certain finite dimensional unitary representation χ′ of K0 and the
corresponding homogeneous holomorphic vector bundle Eχ′ → B.

The double fibration (4.1) satisfies our basic conditions for double fibration transforms:

(1) ν : G0/(L0 ∩K0) → B is proper: in fact ν−1(gK0) = g · Y ,
(2) B = G0/K0 is Stein,
(3) µ−1(gL0) = gF ∼= g ·L0/L0∩K0

∼= L0/L0∩K0. It is a hermitian symmetric space,
thus contractible.

Let W = G0/(L0 ∩K0). Then the sheaf of germs of holomorphic relative p–forms for the
fibration µ is Ωpµ = Ωpµ(W ) = O(

∧p
T1,0
µ (W )∗). We write µ∗Eχ–valued forms as Ωpµ(E) =

O(
∧p

T1,0
µ (W )∗ ⊗ µ∗Eχ) for the corresponding sheaf of Eχ–valued forms.

The vanishing condition on the fibers of ν in Theorem 2.18 is

Hp(Y ′; Ωqµ(Eχ)|Y ′) = 0 for all Y ′ ∈ B, all p < s, and 1 ≦ q ≦ m.

The bundle T1,0
µ (W ) → W has the same typical fiber l ∩ s+ as T1,0(F ). In fact by

construction T1,0
µ (W )|F = T1,0(F ). So we express the vanishing condition as

(4.2) Hp(Y ;O(
∧q

(l ∩ s+)
∗ ⊗ Eχ)) = 0 for p < s and 1 ≦ q ≦ m.
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Fix a positive system ∆+ = ∆+(g, t) containing both ∆(s+, t) and ∆(r+, t); see Proposition
3.14. The Bott–Borel–Weil Theorem shows that (4.2) holds whenever

(4.3) 〈λ, γ〉 < −C

for all γ ∈ ∆(k ∩ r+), for some sufficiently large constant C. One can choose

(4.4) C = max
F⊂∆((l∩s−),t)

{ ∑

β∈F

〈β, γ〉
∣∣∣γ ∈ ∆((k ∩ r+), t)

}
.

(See [24] for a more refined bound.) The bundle Eχ′ → B is given by the Bott–Borel–Weil
Theorem as well. Let w0 ∈W (k, t) such that

w0

(
∆+(k ∩ l, t) ∪∆(k ∩ r−, t)

)
= ∆+(k ∩ l, t) ∪∆(k ∩ r+, t).

Then the highest weight of Eχ′ is λ′ = w0(λ+ ρk)− ρk. We now have

4.5. Theorem. Let D be an orbit of holomorphic type in Z and suppose that the highest

weight λ of χ satisfies (4.3). Let χ′ be the representation of K0 of highest weight λ′ =
w0(λ + ρk) − ρk with w0 as above. Then the double fibration transform P for (4.1) maps

Hs(D; Eχ) to H0(G0/K0; Eχ′), and P : Hs(D; Eχ) → H0(G0/K0; Eχ′) is an injection.

There is a slightly different route to Theorem 4.5 using the fact that the fibers of µ
are Stein. The de Rham cohomology of the fiber F = µ−1(z) ∼= L0/(L0 ∩ K0) can be
calculated from the complex of holomorphic forms,

0 → H0(F ;O(
∧0

T
1,0(F )∗)) → · · · → H0(F ;O(

∧m
T
1,0(F )∗)).

In order to make effective use of the structure of g here, we adopt some slightly unusual
notation: if v is an (L ∩K)–module we denote

(4.6)
E(v) → F : associated homogeneous holomorphic vector bundle,

E(v) → F : sheaf of germs of holomorphic sections of E(v) → F.

Since l ∩ s+ represents the holomorphic tangent space to F , the complex of holomorphic
forms that computed de Rham cohomology of F can now be written as

(4.7) 0 → H0(F ; E(
∧0

(l ∩ s+)
∗)) → · · · → H0(F ; E(

∧m
(l ∩ s+)

∗)).

Here the differentials are the ordinary exterior derivative d, which sends E(
∧i

(l ∩ s+)
∗)

to E(
∧i+1

(l ∩ s+)
∗) because ∂ annihilates holomorphic forms. Since F = L0/(L0 ∩K0) is

contractible we have an exact sequence

0 → C → H0(F ; E(∧0
(l ∩ s+)

∗)) → · · · → H0(F ; E(∧m
(l ∩ s+)

∗)).
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Tensoring the typical fibers of the underlying bundles by the L0–module Eχ , and then tak-
ing associated vector bundles, we obtain exact sequences of G0–homogeneous holomorphic
vector bundles over D, and of their sheaves of germs of holomorphic sections,

(4.8)
0 →Eχ → H

0(F ; E(
∧0

(l ∩ s+)
∗ ⊗Eχ)) → · · · → H

0(F ; E(
∧m

(l ∩ s+)
∗ ⊗Eχ)),

0 →Eχ → H0(F ; E(∧0
(l ∩ s+)

∗ ⊗Eχ)) → · · · → H0(F ; E(∧m
(l ∩ s+)

∗ ⊗ Eχ)).

The double complex

(4.9) Aq(D;H0(F ; E(∧p
(l ∩ s+)

∗ ⊗Eχ)))

gives rise to a spectral sequence {Ep,qr , dr} with

(4.10)

Ep,q1 = Hq(D;H0(F ; E(
∧p

(l ∩ s+)
∗ ⊗Eχ)))

= Hq(WD; E(
∧p

(l ∩ s+)
∗ ⊗ Eχ))

= H0(B; (Hq(Y ; E(
∧p

(l ∩ s+)
∗ ⊗ Eχ)|Y ))).

Here recall the coset space expressions D = G0/L0 ,WD = G0/(K0∩L0), B = G0/K0 , and
Y = K0/(K0∩L0) . If λ+ρ is sufficiently negative then Hq(Y ; E(

∧p
(l∩s+)

∗⊗Eχ)|Y ) = 0
for q 6= s, so we have

(4.11) Ep,q1 = 0 for q 6= s and Ep.s1 = H0(B; (Hs(Y ; E(∧p
(l ∩ s+)

∗ ⊗ Eχ)|Y ))).

As d1 : Ep,q1 → Ep+1,q
1 computes Ep,q2 we now have

(4.12) Ep,q2 = 0 for q 6= s and Ep.s1 = Hs(D;H0(F ; E(
∧p

(l ∩ s+)
∗ ⊗Eχ)|Y ))).

In particular, the spectral sequence collapses at E2 and we have

(4.13)
Hs(D;Eχ) = E0,s

2

= Ker
{
d1 : H0(B;Hs(Y ; Eχ|Y )) → H0(B;Hs(Y ; E(l ∩ s+)

∗ ⊗ Eχ)|Y ))
}
.

In the notation of (3.8), if [ω] ∈ Hs

∂
(D;E) then

(4.14) P ([ω])(y′) = RY ′,D(µ
∗(ω))(y′) for y′ ∈ Y ′ ∈MD .

One immediate consequence of Theorem 4.5 is the Schmid Identity Theorem ([25], [33],
[48]) for flag domains of holomorphic type. That is Corollary 4.15 below, and of course its
application, Corollary 4.16, is exactly what one would expect.

4.15. Corollary. Assume (4.2). If [ω] ∈ Hs(D; Eχ) has the property that RY ′,D(ω) = 0
for each Y ′ = g · Y then [ω] = 0.

Spaces of smooth forms on D carry the C∞ topology. Similarly we use the C∞ topology
on the spaces of holomorphic sections of holomorphic vector bundles over G0/K0 . The
kernel of ∂ is a closed subspace of As(D; Eχ). In order for Hs(D; Eχ) to be a Fréchet space,

the image of ∂ must be closed.
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4.16. Corollary. Assume (4.2). In the topology induced by the natural C∞ topology,

Hs(D; Eχ) is a Fréchet space, and the resulting action of G is a continuous representation.

Proof. The restriction map RY,D of (4.14) is continuous in the C∞ topology, for any com-
pact complex submanifold Y ⊂ D. Since Y is compact, its cohomologies are finite dimen-
sional, so ∂Y has closed range. Suppose ω = lim ∂ηk. Then RY,D(ω) = limRY,D(∂ηk) =

lim ∂RY,D(ηk) is exact. Now ω is exact by Corollary 4.15. �

The proof given here, that Hs(D; Eχ) is Fréchet, is close to the proofs given in [25],
[33] and [48]. But our proof is somewhat different when D is not of holomorphic type; see
Section 6.

4.17. Corollary. When D is of holomorphic type the representations Hs(D; Eχ) are

highest weight representations.

Proof. Theorem 4.5 realizes Hs(D; Eχ) as a subrepresentation of the highest weight rep-
resentation H0(G0/K0; Eχ′). �

Some of the representations Hs(D; Eχ) are unitarized in [24], and our spectral sequence
argument above is taken from [24]. In [6] the Bernstein–Gelfand–Gelfand resolution is used
to explicitly calculate the differential operators defining the image of P .

Section 5. The Linear Cycle Space: Basic Setup.

We now modify the double fibration (3.12), replacing B by the linear cycle space MD

and G0/(L0∩K0) by the appropriate incidence space WD . If D is of holomorphic type, so
we can use (3.12) for a double fibration transform as described in Section 2, then nothing
changes. But in the important case where D is not of holomorphic type, this replaces
(3.12) by a holomorphic double fibration which we can in fact use to construct a double
fibration transform of the sort described in Section 2.

Lemma 3.3 gives us a particular maximal compact complex submanifold Y = K(z) =
K0(z) in our flag domain D = G0(z) ⊂ Z.

The G–stabilizer J of Y is a closed (because Y is compact) complex (because Y is a
complex submanifold) subgroup of G, so

MZ = {gY | g ∈ G} ∼= G/J
has a natural structure of complex manifold. Since Y is compact and D is open in Z, the
subset {gY | g ∈ G} is open inMZ . Thus {gY | g ∈ G} has a natural structure of complex
manifold. See [33]. Its incidence space

WZ = {(z′, Y ′) | z′ ∈ Y ′ ∈MZ}
thus also has a natural structure of complex manifold, and we have a G–equivariant holo-
morphic double fibration
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WZ

Z

............................................................................................................................................................................
.......
................

µ̃

MZ

................................................................................................................................................................................... .........
.......

ν̃(5.1)

where µ̃(z′, Y ′) = z′ and ν̃(z′, Y ′) = Y ′.

5.2. Definition. The linear cycle space MD of D is the topological component of Y in

{gY | g ∈ G and gY ⊂ D}. Its incidence space is WD = {(z′, Y ′) | z′ ∈ Y ′ ⊂ D}.

MD inherits a complex manifold structure as an open subset of MZ , as follows. First,
{gY | g ∈ G and gY ⊂ D} is open in MZ because D is open in Z and Y is compact.
Second, MD is open in {gY | g ∈ G and gY ⊂ D}. Similarly, WD inherits a complex
manifold structure as an open subset of WZ . Thus, inside (5.1) we have a smaller G0–
equivariant holomorphic double fibration

WD

D

...........................................................................................................................................................................
.......
.

................

µ

MD

................................................................................................................................................................................... ........
.......
.

ν(5.3)

where µ(z′, Y ′) = z′ and ν(z′, Y ′) = Y ′.

We compare the double fibrations (3.12) and (5.3). Assuming G0 simple, there are two
sharply different possibilities for the complex isotropy subgroup J = {g ∈ G | gY = Y }.
Specifically, the following is proved in [33] and [42].

5.4. Proposition. Let G0 be simple. Then either (1) D is of holomorphic type, J =
KS± , MZ = G/J is a projective algebraic variety, and dimCMD = 1

2
dimRG0/K0 , or

(2) D is of nonholomorphic type, J is a finite extension of K, MZ = G/J is an affine

algebraic variety, and dimCMD = dimRG0/K0 .

5.5. Remark. The incidence space WZ
∼= G/(Q∩J) varies with the two types as follows.

If D is of holomorphic type then Q∩J is (for proper choice of s±) a parabolic subgroup of
G, so WZ also is a projective algebraic variety. If D is of nonholomorphic type then Q∩ J
is not parabolic. ♦

5.6. Remark. Suppose that D is of nonholomorphic type. In most cases J = K,
More precisely, one always has K ⊂ J ⊂ NGu

(K) · K, and in most but not all cases
K = NGu

(K) ·K. Here Gu ⊂ G is the compact real form such that Gu ∩ G0 = K0 . For
example, if G0 = SU(p, q) with p 6= q then K = NGu

(K) ·K, that is, NGu
(K) = K0 . But
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if p = q then NGu
(K) = K0 · {1, σ} where4 σ =

(
0 Ip

−Ip 0

)
. Now let D = Dr,s as in

Example 3.15 above. Decompose Cp+q as the orthogonal direct sum U ⊕V where U is the
positive definite Cp spanned by the first p standard basis vectors and V is the negative
definite Cq spanned by the last q standard basis vectors. Then

Y = {z ∈ Z | dim(z ∩ U) = r and dim(z ∩ V ) = s}.
In particular σ(Y ) = Y if and only if r = s. Thus we have J = K except when p = q and
D = Dr,s with r = s; and in that exceptional case we have J = K · {1, σ}. ♦

5.7. Remark. In both cases, MD is a Stein manifold. See [42] and [43]. ♦

The holomorphic case. If D is of holomorphic type, then the G0–equivariant holo-
morphic double fibrations (3.12) and (5.3) agree, by

5.8. Proposition. (See [42] for the original proof, [47] for a more direct proof.) If D is

of holomorphic type, then MD is biholomorphic to B or to B, and WD
∼= G0/(K0 ∩ L0).

5.9. Remark. If D ∼= G0/L0 is of holomorphic type and L0 is compact, so L0 ⊂ K0 ,
then the natural projection π : G0/L0 → G0/K0 is holomorphic. In that case, if gY ∈MD

then5 π(gY ) = gπ(Y ) = gx± = g0x± for some g0 ∈ G0 . Thus g−1g0 ∈ KS± . As D
is of holomorphic type now gY = g0Y . So MD = G0/K0 . This is the special case of
Proposition 5.8 considered in [33]. Here (5.3) collapses: WD = D, µ is the identity map,
and ν is just the projection π : G0/L0 → G0/K0 . ♦

Section 6. The Linear Cycle Space: Domains of Nonholomorphic Type.

Structure of MD . We now suppose that D is of nonholomorphic type. Then the
detailed structure of MD remains elusive, except in some special cases, many of which are
included in the following result from [47].

6.1. Theorem. If G0 is a classical group of hermitian type, and D is a flag domain of

nonholomorphic type, then MD is biholomorphic to B ×B.

Some special cases of Theorem 6.1 are worked out in [23], in [9], and in [18] and [19].
Here is a straightforward example.

6.2. Example. G0 = SU(p, q), Z is the Grassmann manifold of m–planes in C
p+q, and

D = Dr,s as in Example 3.15 (so r + s = m) . We assume that D is of nonholomorphic
type, in other words, in this case, that both 0 < r < p and 0 < s < q. Let {e1, . . . , ep+q}
denote the standard basis of Cp+q, relative to which the hermitian form defining G0 is
〈u, v〉 =

∑
1≤a≤p uava −

∑
1≤b≤q up+bvp+b. Set

z+ = span {e1, . . . , ep} and z− = span {ep+1, . . . , ep+q},
zr,s = span {e1, . . . , er; ep+1, . . . , ep+s}, so Yr,s = K0(zr,s) ∈MDr,s

.

4See [37] for a number of calculations of this sort.
5Here, as in Section 3, x

−
is the base point of B = G0(x−

) and x+ is the base point of B = G0(x+).
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Whenever Cp+q = U ⊕ V direct sum of a p–plane U and a q–plane V we set

YU,V = {z′ ∈ Z | dim(z′ ∩ U) = r and dim(z′ ∩ V ) = s}, so Yr,s = Yz+,z− .

Then gYU,V = YgU,gV for all g ∈ G. It follows that

MZ = {YU,V | Cp+q = U ⊕ V with dimU = p and dimV = q} = {Ygz+,gz− | g ∈ G},

consisting of transverse pairs U, V where U is a p–plane and V is a q–plane. When p 6= q
or r 6= s or both, MZ

∼= GL(p+ q;C)/(GL(p;C)×GL(q;C)) ∼= G/K. In any case,

MDr,s
= {YU,V | U is positive definite and V is negative definite}
= {Ygz+,gz− | g ∈ G, gz+ is positive definite and gz− is negative definite}.

As g runs over G0 , gz− runs through the bounded symmetric domain B of maximal
negative definite subspaces of (Cp+q, 〈·, ·〉), and gz+ runs through the bounded symmetric
domain B of maximal positive definite subspaces of (Cp+q, 〈·, ·〉). That shows exactly how
MDr,s

∼= B ×B. ♦

The crucial first step in the proof of Theorem 6.1 is our placement of B×B inside G/K.
Use notation of Section 3 and the standard G0 ⊂ S+KS− . Then K is the intersection of
the parabolic subgroups P± = KS± so G/K = δG(x−, x+) ⊂ X− ×X+ where δ denotes
the diagonal action of G on the product X− ×X+ of hermitian symmetric flag manifolds.
Of course we also have B ×B = (G0 ×G0)(x−, x+) ⊂ X− ×X+ .

6.3. Lemma. B ×B = (G0 ×G0)(x−, x+) ⊂ δG(x−, x+) = G/K ⊂ X− ×X+ .

Proof ([19], [47]). Let gi ∈ G0 , so g
−1
2 g1 = exp(ξ+)k exp(ξ−) with k ∈ K , ξ± ∈ s± . Then

(g1x−, g2x+) = δg2(g
−1
2 g1x−, x+) = δg2(exp(ξ+)x−, x+)

= δg2(exp(ξ+)x−, exp(ξ+)x+) = δg2 δ exp(ξ+)(x−, x+) ∈ δG(x−, x+)

shows that (G0 ×G0)(x
−
0 , x

+
0 ) ⊂ δG(x−0 , x

+
0 ) ⊂ X− ×X+ . �

Now B × B ⊂ G/K ⊂ X− × X+ . But MD ⊂ MZ = G/J , and while the identity
component J0 = K we will have J 6= K in general. Nevertheless, it is shown in [47] that

6.4. Lemma. If D is of nonholomorphic type then the natural projection G/K → G/J
is injective on B ×B.

Theorem 6.1 is proved in [47]. Lemmas 6.3 and 6.4 above, show that comparison is
possible, for they place both MD and B ×B inside the same space MZ = G/J . In [47] is
it shown that
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6.5. Proposition. If D is of nonholomorphic type and G0 is of hermitian type then

MD ⊂ B ×B.

However, B × B ⊂ MD requires a case by case argument, which is carried out for the
classical groups, in order to complete the proof of Theorem 6.1.

There are several cases not covered by Theorem 6.1 where the structure ofMD is known,
due to R. O. Wells [32], to Akhiezer and Gindikin [1], and to Dunne and Zierau [9]. There
are also a number of cases, the cases where D is indefinite Kähler symmetric space, covered
in the Appendix below.

When D is of holomorphic type, it is immediate from Proposition 5.8 thatMD is a Stein
manifold. When D is of nonholomorphic type and G0 is a classical group of hermitian type,
then it is immediate from Theorem 6.1 that MD is a Stein manifold. However one knows
in general that MD is a Stein manifold; see [42] and [43].

The fiber of µ :WD → D. The next ingredient in our construction of the holomorphic
double fibration transform associated to (5.3) is

6.6. Theorem. If G0 is a classical group of hermitian type, and D is a flag domain of

nonholomorphic type, then the fibers of µ :WD → D are contractible.

A proof will appear in [20]. The contractibility can be obtained by realizing the fiber
as an iterated fibration of bounded symmetric domains. Here is an example that indicates
the general idea.

6.7. Example. G0 = SU(p, q), Z is the Grassmann manifold of m–planes in Cp+q,
and D = Dr,s = G0(zr,s) as in Examples 3.15 and 6.2 (so r + s = m). Again, D is of
nonholomorphic type, that is, both 0 < r < p and 0 < s < q. Let {e1, . . . , ep+q} denote
the standard basis of Cp+q, relative to which the hermitian form defining G0 is 〈u, v〉
=

∑
1≤a≤p uava −∑

1≤b≤q up+bvp+b . Then zr,s = Span {e1, . . . , er; ep+1, . . . , ep+s} and

Dr,s = {z′ ∈ Z | z′ has signature (r, s)}. As in Example 6.2 , now

YU,V = {z′ ∈ Z | dim z′ ∩ U = r and dim z′ ∩ V = s} ∈WZ

and YU,V ∈MD just when U is positive definite and V is negative definite. So

µ−1(zr,s) = {YU,V | U >> 0 >> V, dim(zr,s ∩ U) = r, and dim(zr,s ∩ V ) = s}.

Thus the possibilities for U and V are as follows. Write ⊥ for orthogonality relative to the
hermitian form 〈·, ·〉. Then U = U ′ ⊕ U ′′ where

(1) U ′ is an element of the bounded symmetric domain B′
+ consisting of all maximal

positive definite subspaces of zr,s ,

(2) U ′′ ranges over the bounded symmetric domain B
′′

+ of all maximal positive definite

subspaces of (U ′)⊥.
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Thus the pairs (U ′, U ′′) form the total space of a real analytic fiber bundle with base B′
+

and typical fiber B′′
+ . If p 6= 2r, in other words if dimU ′ 6= dimU ′′, then U determines

(U ′, U ′′). If p = 2r then the condition YU,V ∈ MD determines which is which between U ′

and U ′′. Now the possibilities for U form a contractible space, the total space of a Cω

fiber bundle with base B′
+ and typical fiber B′′

+ .

Similarly, V = V ′ ⊕ V ′′ where

(1) V ′ is an element of the bounded symmetric domain B′
− consisting of all maximal

negative definite subspaces of zr,s ,

(2) V ′′ ranges over the bounded symmetric domain B
′′

− of all maximal negative definite

subspaces of (V ′)⊥ .

The possibilities for V form a contractible space, the total space of a Cω fiber bundle with
base B′

− and typical fiber B′′
− .

Conclusion: µ−1(zr,s) is contractible. The same holds for any fiber, for if z′ ∈ D we
have g ∈ G0 with z′ = gzr,s , and µ

−1(z′) = gµ−1(zr,s). ♦

The transform. All the ingredients are now in place for the holomorphic double
fibration transform P : Hs(D; Eχ) → H0(M ;Rs(µ∗(Eχ))) when G0 is a classical group

of hermitian type. In particular, MD is explicitly identified as the Stein manifold B × B
and the fibers of µ : WD → D are shown contractible. Now, by Theorem 2.18, we must
determine a condition on the highest weight λ of χ that will ensure

(6.8) Hp(Y ′; Ωqµ(Eχ)|Y ′) = 0 for all Y ′ ∈MD , all p < s, and 1 ≦ q ≦ m.

Recall from (3.1) that q = qr + q−n has nilradical q−n =
∑

α∈Φn g−α . Its opposite is its
complex conjugate q = qr+qn, which has nilradical qn =

∑
α∈Φn gα . The sheaf of relative

holomorphic p–forms for µ :WD → D is Ωpµ = O(
∧p

T1,0
µ (WD)

∗) as in Section 4, but here

q/(q∩ k) replaces l ∩ s+ , and the relative complex is given by the E(∧q
(q/(q∩ k))∗ ⊗Eχ).

In terms of homogeneous vector bundles, (6.8) becomes

(6.9) Hp(Y ′; E(
∧q

(q/(q ∩ k))∗ ⊗ Eχ)) = 0, all Y ′ ∈MD , all p < s, and 1 ≦ q ≦ m.

Let ρk denote half the sum of the positive roots of k, as usual, and recall that ∆+(qn, h)
consists of positive roots. Following the Bott–Borel–Weil Theorem, the negativity condi-
tion

(6.10) 〈λ+ β + ρ, γ〉 < 0 whenever β is a sum from ∆(q ∩ s, h) and γ ∈ ∆(qn ∩ k)

gives Hp(Y ; Ωqµ(Eχ)|Y ) = 0 for all p < s and all q ≧ 0. In view of G–homogeneity of MZ

this holds with Y replaced by any Y ′ ∈ MD . Thus (6.10) implies (6.8) and (6.9). We
conclude that the double fibration transform

(6.11) P : Hs(D; Eχ) → H0(M ;Rs(µ∗(Eχ)))

is injective when (6.10) holds.
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In our case the map (2.3) is specialized to µ(s) : Hs(D; Eχ) → Hs(WD;µ
−1Eχ) Con-

tractibility of the fiber of µ : WD → D shows that this is an isomorphism and that the
map

(6.12) d0 : H0(MD;Rs(µ∗(Eχ))) → H0(MD;Rs(Ω1
µ(Eχ)))

has kernel equal to the image of P .

The bundle Rs(µ∗(Eχ)) can be computed from µ∗(Eχ) using the Bott–Borel–Weil The-

orem. It is the G0 ×G0–homogeneous holomorphic vector bundle Fχ′ → B×B defined by
the complex structures and the representation χ′ ⊗ 1 of K0 ×K0 , where

(6.13)
χ′ has highest weight λ′ = w0(λ+ ρk)− ρk and w0 ∈ W (k ∩ qr, t) such

that w0

(
∆+(k ∩ qr, t) ∪∆(k ∩ q−n, t)

)
= ∆+(k ∩ qr, t) ∪∆(k ∩ qn, t).

See [19, §4] for this computation along with an explanation of the apparent asymmetry in
the two factors of K0 ×K0 .

Fχ′ is the representation space for the representation χ′ ⊗ 1 of K0 ×K0 , Fχ′ → B ×B

is the associated homogeneous holomorphic vector bundle, and Fχ′ → B ×B is the sheaf
of germs of holomorphic sections. We summarize the results of this Section as follows.

6.14. Theorem. Let D be an orbit of nonholomorphic type in Z and suppose that the

highest weight λ of χ satisfies (6.10). Let χ′ be the representation of K0 of highest weight

λ′ = w0(λ + ρk) − ρk as in (6.13). Then the linear cycle space MD = B × B, the Leray

derived sheafRs(Ω1
µ(Eχ)) = Fχ′, the double fibration transform P for (5.3)maps Hs(D; Eχ)

to H0(B ×B;Fχ′), P : Hs(D; Eχ) → H0(B ×B;Fχ′) is an injection, and the image of P
is the kernel of the differential operator d0 of (6.12).

Now, somewhat as in (4.15), we have a version of the Identity Theorem ([25], [33], [48])
for flag domains of nonholomorphic type:

6.15. Corollary. Assume (6.10). If [ω] ∈ Hs(D; Eχ) such that 0 = [ω|Y ′ ] ∈ Hs(Y ′; Eχ|Y ′)
for all Y ′ ∈MD , then [ω] = 0.

Again, because of cohomology vanishing in degrees 6= s we have

6.16. Corollary. Assume (6.10). In the topology induced by the natural C∞ topology,

Hs(D; Eχ)is a Fréchet6 space, and the resulting action of G is a continuous representation.

Section 7. Remarks.

Fréchet convergence of ϑ–series. Currently ϑ–series and automorphic cohomology
have only been studied for flag domains D = G0(z) such that the isotropy subgroup

6In fact this Fréchet space is nuclear. Compare Theorem 3.10 above.
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G0 ∩ Qz is compact. In that case, Wells and one of us [33] used the double fibration
transform and the Stein nature of MD to prove: if E → D is a sufficiently negative
homogeneous holomorphic vector bundle, if [c] ∈ Hs(D;O(E)) is a K0–finite Dolbeault
class, if c is chosen reasonably within its cohomology class, and if Γ is any discrete subgroup
of G0 , then the Poincaré series

∑
γ∈Γ γ

∗c converges in the C∞ topology to a representative

ϑ[c] ∈ Hs(D;O(E))Γ of a Γ–invariant cohomology class. Later work provided information
on the image of the Poincaré series operator ϑ : Hs(D;O(E)) → Hs(D;O(E))Γ. For
arbitrary discrete Γ this consists of completeness results — every invariant class realized as
such a Poincaré series — for the various Lebesgue classes ([40], [31]). For a class of discrete
subgroups Γ that includes the arithmetic groups, Williams gave several arguments that
dimHs(D;O(E))Γ < ∞ ([34], [35], [36]). The earlier one [34] uses an L2–index theorem
of Moscovici [17], but the most interesting one [36] uses the double fibration transform
to map the invariant L2 cohomology Hs

2(D;O(E))Γ into one of Harish–Chandra’s spaces
A2(ν,Γ) of automorphic forms ([14], [15]), which are known to be finite dimensional.

Gindikin–Akhiezer tubular extension. The linear cycle space is a G0–invariant
Stein extension of G0/K0 . By a complex extension of a real analytic manifold M0 we
mean a complex manifold M containing M0 as a totally real submanifold. If M is Stein
and has an action of G0 by holomorphic automorphisms extending a given action on M0 ,
then we call M a G0–invariant Stein extension. Complex analysis on M is closely related
to analysis on M0. In the case M0 = G0/K0 , with the proper choice of G0–invariant Stein
extension, representations known to occur in a real analytic setting on M0 may be given
realizations in a holomorphic setting on M .

Akhiezer and Gindikin [1] published a conjecture, motivated by results in [33], on the
structure of a certain G0–invariant extension of G0/K0 . Let a0 be a maximal abelian
subspace of s0 in a Cartan decomposition g0 = k0 + s0 . Then g has compact real
form gu = k0 +

√
−1 s0 and the corresponding compact group has decomposition Gu =

K0 exp
(√

−1 a0
)
K0 . Define

(7.1)
Ω : component of 1K in

G0{exp(iH) | H ∈ a0 and |α(H)| < π/2, ∀α ∈ ∆+(g0, a0)}K.

The particular G0–invariant extension of G0/K0 studied in [1] is M = Ω. It is conjectured
that Ω is a Stein extension.

7.2. Proposition. If G0 is a classical group of hermitian type, and D is a flag domain

of nonholomorphic type, then Ω =MD .

Proposition 7.2 has the same hypotheses as Theorem 6.1. The statement follows from the
structure of Hermitian symmetric spaces given in [38] (or see [39]).

Several examples given in [1], with G0 not of holomorphic type also have Ω =MD.

It would be interesting to determine all G0–invariant Stein extensions of G0/K0 inside
G/K. Of course G/K, being affine, is Stein. An example of a G0–invariant Stein extension
which is smaller that Ω is given in [1].



HOLOMORPHIC DOUBLE FIBRATION TRANSFORMS 23

There is some evidence that MD is the “correct” extension. First, the restriction of
holomorphic sections from MD to G0/K0 is one to one. Therefore, by Theorem 6.14, one
may study the representations in cohomology either as real analytic sections on G0/K0

or as holomorphic sections on MD . It appears that MD is the maximal extension, or at
least the maximal Stein extension, for which this is possible. Second, there is a strong
“correctness” indication in [2], which studies the discrete series representations of U(p, q)
by realizing them as images of a Szegö maps into real analytic sections of certain bundles
over G0/K0 . The largest extension in G/K of G0/K0 to which the Szegö kernel extends
holomorphically, is computed. For orbits of nonholomorphic type it is shown that the
connected component of this extension is precisely MD . So, again the representation is
realized in a holomorphic setting.

A closely related problem is to determine the G0–invariant Stein extensions of a semisim-
ple symmetric space. See [11], [21] and [29] for results on the semisimple group manifold
case.

The Barlet Space. Let D be a complex analytic space and fix an integer m ≧ 0. Then
Cm(D) denotes the space of m–cycles on D, consisting of all finite integral linear combi-
nations Y =

∑
niYi of m–dimensional, compact, pairwise distinct, irreducible analytic

subsets of D. Our linear cycle space MD is of course contained in Cs(D). The Barlet space
of D is the union C(D) =

⋃
Cm(D). Barlet [4] introduced a natural analytic structure on

C(D). Barlet proved [5] that when D is a reduced (q + 1)–complete complex space, then
Cq(D) is Stein. If we could show that our linear cycle space MD is a closed subvariety
in Cs(D), then this would apply directly to MD . It would not, however, give us any new
information on the precise structure of MD nor on our double fibration transforms.

See [8] for an exposition of the theory of cycle spaces, especially the Barlet space.

Closed Range Theorems. In realizations of topological representations on cohomolo-
gies one must always deal with the question of closed range for the coboundary. Typically
that coboundary is the Dolbeault operator ∂ or something close, and the cocycle spaces
are either Hilbert or Fréchet. In the Fréchet setting at least, where the coboundaries are
continuous, cohomology vanishing theorems lead to closed range theorems ([25], [33], [26],
[27], [41], [48]), as in Corollary 6.16 above. Double fibrations give an identity theorem
setting for proof of cohomology vanishing theorems as [25], [33] and Corollary 6.15 above,
as well as the corresponding closed range theorems. In fact, given a general holomorphic
double fibration (2.1) such that (i) µ has contractible fibers, (ii) ν is proper and (iii) M is
Stein, one expects closed range theorems for an appropriate class of bundles E → D.

Appendix: The Symmetric Case.

In this section we show that Theorem 6.1 holds when D is a pseudo–riemannian sym-
metric space. As before, our standing assumption is that G0 is a simple Lie group of
hermitian type, but we do not assume that G0 is classical.

A.1. Definition. The open orbit D = G0(z) ⊂ Z is symmetric if it has the structure of
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a pseudo–riemannian symmetric space for G0 , that is, if L0 is open in the fixed point set

Gσ0 of an involutive automorphism7 σ of G0 .

A.2. Lemma. If one open G0–orbit on Z is symmetric, then every open G0–orbit on Z
is symmetric.

Proof. Let D = G0(z) ⊂ Z be a symmetric open orbit. We may assume Q = Qz and
L0 = G0∩Q open in Gσ0 where σ is an involutive automorphism of G0. Thus the reductive
part l = q ∩ q of q is of the form gσ where σ is an involutive automorphism of G that
preserves g0 . Now let D′ = G0(z

′) ⊂ Z be another open orbit, Q′ = Qz′ , L
′ = Q′ ∩ Q′,

and L′
0 = G0 ∩ L′. Write z′ = g(z) where g ∈ Gu . Now σ′ = Ad(g)σAd(g−1) is an

involutive automorphism of G such that l′ = gσ
′

.

We have l′ = l′ by construction because L′ = Q′ ∩ Q′. It follows that σ′ and complex
conjugation ξ 7→ ξ commute. Now σ′ preserves g0 , so the real form l′0 = g0∩ l′ of l′ satisfies

l′ = gσ
′

0 . Thus D′ is symmetric. �

In order to describe the G0–orbit structure of Z it is best to start from the viewpoint
of an open orbit of holomorphic type. For that we need

A.3. Lemma. There is an open G0–orbit on Z that is of holomorphic type.

Proof. Let D = G0(z) be an open orbit in Z. Choose any positive root systems ∆+(l, h)
and ∆+(k, h). Then we have positive systems

∆+
0 = ∆+

0 (g, h) = ∆+(l, h) ∪∆(r+, h) and ∆+
±1 = ∆+

±1(g, h) = ∆+(k, h) ∪∆(s±, h)

for ∆(g, h). Let w± ∈ W (g, h) be the Weyl group element that sends ∆+
0 to ∆+

±1 and let
g± ∈ G represent w± . Then [38] G0(g±(z)) is open in Z because Ad(g±)h = h. Further,
s± ⊂ Ad(g±)(l+ r+), so Ad(g±)(r−)∩ s± = 0, and thus G0(g±(z)) is of holomorphic type
by equivalence of (1) and (3) in Proposition 3.14. �

We need one more piece of background information: the structure of the hermitian
symmetric submanifold of Z that serves [46] to pick out the G0–orbits on Z. As θ and σ
commute, the (±1)–eigenspace decompositions

g0 = k0 + s0 under θ and g0 = l0 + r0 under σ

are compatible. We define

(A.4) m = gθσ = (l ∩ k) + (r ∩ s) and m0 = gθσ0 = (l0 ∩ k0) + (r0 ∩ s0).

7In this case σ is the identity on l0 , thus on every compact Cartan subalgebra of g0 contained in l0 , in

particular on the Cartan subalgebra h0 ⊂ k0 of g0 , relative to whose complexification h we have q of the

form qΦ . Now σ is the identity on, and thus preserves, h∩ k0 . It follows that σ(k0) = k0 . Also, in this
case L0 is the identity component of Gσ

0 because L0 is connected.
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Let M and M0 denote the corresponding analytic subgroups of G and G0 . Since D is
symmetric it is measurable (even without the assumption that G0 be of hermitian type),
so (3.2b) there exists ξ ∈

√
−1(h0 ∩ k0) such that q = h +

∑
α∈∆(g,h),α(ξ)≧0 gα . Then

m ∩ q = (l ∩ k) + (r− ∩ s) =
∑
α∈∆(m,h),α(ξ)≧0 gα , so m ∩ q is a parabolic subalgebra of m.

Now M(z) is a flag manifold and M0(z) is an open M0–orbit. The isotropy subgroup of
M0 at z is M0 ∩ Q = M0 ∩ L0 = M0 ∩K0 , which is the maximal compact subgroup Mθ

0

of M0 . Now M0(z) is a riemannian symmetric space of noncompact type with invariant
complex structure. We have proved

A.5. Lemma. If the open orbit D = G0(z) ⊂ Z is symmetric, then F = M(z) is

a complex flag manifold of M , the open orbit M0(z) is a hermitian symmetric space of

noncompact type, and M0(z) ⊂ F is the Borel embedding.

The proof of Lemma A.5 did not require that G0 be of hermitian type.

A.6. Theorem. Let G0 be of hermitian type and let D = G0(z) ⊂ Z = G/Q be a

symmetric flag domain that is not of holomorphic type. View B ×B ⊂ G/J ∼=MZ (using
Lemma 6.4) and MD ⊂MZ as usual. Then B ×B =MD .

Proof. We have B×B ⊃MD from Proposition 6.5, so we need only prove B×B ⊂MD .
Let g1, g2 ∈ G0 so (g1x−, g2x+) ∈ B×B. Express g−1

2 g1 = exp(ξ+)k exp(ξ−) with ξ± ∈ s±
and k ∈ K, as in Lemma 6.3. We must show that g2 exp(ξ+)Y ⊂ D.

Let ||ξ||g denote the K0-invariant norm on s+ as in Hermann’s Convexity Theorem [39,

p. 286]: ||ξ||g is the operator norm of ad( 12 (ξ + ξ)) on g relative to the positive definite
hermitian form (u, v) = −〈u, v〉 where 〈·, ·〉 is the Killing form. Let ξ ∈ s+; then there
exist g1, g2 ∈ G0 such that g−1

2 g1 ∈ exp(ξ)KS− if and only if ||ξ||g < 1. For Theorem A.6
it now suffices to prove

(A.7) if ξ ∈ s+ with ||ξ||g < 1 then exp(ξ+)(z) ∈ D.

For if g1, g2 ∈ G0 with g−1
2 g1 = exp(ξ+)k exp(ξ−) then (A.5) will give us

g2 exp(ξ+)Y = g2 exp(ξ+)K0(z) ⊂ g2{exp(Ad (k0)ξ)(z) | k0 ∈ K0} ⊂ g2D = D,

as required.

Write ξ = ξ+ + ξ− + ξl with ξ+ ∈ r+ ∩ s+ , ξ− ∈ r− ∩ s+ , and ξl ∈ l ∩ s+ . We assert

(A.8) ||ξ+||g ≦ ||ξ||g .
To see this, recall [39] that if η ∈ s+ is Ad(K0)–conjugate to

∑
ψ∈Ψg zψeψ then, for

appropriate normalization of eφ , one has ||η||g = supψ∈Ψg |zψ| . Decompose the simple

root system Ψg = Ψ(g, h) as Ψg
+ ∪ Ψg

− where σ(eψ) = ±eψ for ψ ∈ Ψg
±. ¿From this note

||ξ||g = ||σξ||g . Now ||ξ+ + ξ−||g = || 12(ξ − σξ)||g ≦ 1
2 (||ξ||g + ||σξ||g) = ||ξ||g . Recall

m = gθσ, so m = (l ∩ k) + (r ∩ s). Decompose m = m+ ⊕m− ⊕ z where

(i) m+ is generated by (r+ ∩ s+) + (r− ∩ s−),
(ii) m− is generated by (r+ ∩ s−) + (r− ∩ s+), and
(iii) z is the center of the reductive Lie algebra m.
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Note that [m+,m−] = 0 so the m± are ideals in m. Let M± denote the (closed normal)
analytic subgroups of M for m± . Then we have k± ∈M± ∩K0 such that Ad (k+)ξ+ is of
the form

∑
ψ∈Ψg

+
zψeψ and Ad (k−)ξ− is of the form

∑
ψ∈Ψg

−

zψeψ . Here [m+,m−] = 0

implies k+k− = k−k+ , Ad (k−)ξ+ = ξ+ and Ad (k+)ξ− = ξ− . Thus ||ξ+ + ξ−||g =
max{||ξ+||g , ||ξ−||g}. We already proved ||ξ+ + ξ−||g ≦ ||ξ||g . Now ||ξ+||g ≦ ||ξ||g , and
(A.8) is proved.

Let η ∈ m+ ∩ s+ , using the decomposition of m described just above. Recall [39] that
||η||m+

and ||η||g are operator norms. Decompose m+ =
∑

mi into simple ideals. Each mi
is θ–stable and ad(η)–invariant so ||η||m+

= maxi ||η||mi
. The Killing form of mi is some

positive multiple of the restriction of the Killing form of g. So on each mi the restriction of
ad( 1

2
(η + η)) has the same operator norm whether computed relative to the Killing form

of g or the Killing form of mi . We compute relative to the Killing form 〈·, ·〉 of g using
(u, v) = −〈u, v〉:

||η||m+
= max

i
sup

0 6=ζ∈mi

(√
([ 12 (η+η),ζ],[(

1
2 (η+η)),ζ])√

(ζ,ζ)

)

= sup
0 6=ζ∈m

(√
([ 12 (η+η),ζ],[(

1
2 (η+η)),ζ])√

(ζ,ζ)

)

≦ sup
0 6=ζ∈g

(√
([ 12 (η+η),ζ],[(

1
2 (η+η)),ζ])√

(ζ,ζ)

)
= ||η||g .

That proves

(A.9) if η ∈ m+ ∩ s+ then ||η||m+
≦ ||η||g .

Lemma A.5 says that F = M(z) is a complex flag manifold and M0(z) ⊂ F is a
hermitian symmetric space of noncompact type Borel–embedded in its compact dual. In
the notation just above, F = F+ × F− where each F± = M±(z) is a complex flag and
M0(z) = M+(z) × M−(z) where each M±(z) ⊂ F± is a hermitian symmetric space of
noncompact type Borel–embedded in its compact dual. Thus,

(A.10) if η ∈ m+ ∩ s+ with ||η||m+
< 1 then exp(η)z ∈M+,0(z).

Combine (A.8) and (A.9) to see ||ξ+||m+
≦ ||ξ+||g ≦ ||ξ||g < 1. As ξ+ ∈ m+ ∩ s+ , (A.10)

forces exp(ξ+)z ∈M+,0(z) ⊂ D. That proves (A.7), completing the proof of Theorem A.6.
�
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