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Abstract. Let Z = G/Q, complex flag manifold, where G is a complex semisimple Lie

group and Q is a parabolic subgroup. Fix a real form G0 ⊂ G and consider the linear cycle

spaces MD , spaces of maximal compact linear subvarieties of open orbits D = G0(z) ⊂ Z.
In general MD is a Stein manifold. Here the exact structure of MD is worked out when G0

is a classical group that corresponds to a bounded symmetric domain B. In that case MD is
biholomorphic to B if a certain double fibration is holomorphic, is biholomorphic to B × B

otherwise. There are also a number of structural results that do not require G0 to be classical.

Section 1. Introduction.

Fix a connected simply connected complex simple Lie group G and a parabolic subgroup
Q. That defines a connected irreducible complex flag manifold Z = G/Q. Let G0 ⊂ G be
a real form and K0 a maximal compact subgroup with complexification K.

If D = G0(z) is an open G0–orbit on Z, then for an appropriate choice of base point
z ∈ D, Y = K0(z) = K(z) is a maximal1 compact complex submanifold of D [10]. The
linear cycle space is

(1.1) MD : component of Y in {gY | g ∈ G and gY ⊂ D}.

MD is an open submanifold of the complex flag manifold MZ = {gY | g ∈ G} ∼= G/J
where2 J = {g ∈ G | gY = Y }, thus also is a complex manifold. It is also known ([12],
[13]) that MD is a Stein manifold. We are going to sharpen that result when G0 is of
hermitian type.

There are two structurally distinct types of open orbits D, as follows.
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1See [10] for a geometric proof and [7] for an analytic proof
2In earlier work on this topic ([12], [13]) we used L to denote the G–stabilizer of Y . Here we use J for

that stabilizer, reserving L for the reductive part of Q.
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1.2. Definition. Consider the double fibration

G0/(L0 ∩K0)

D = G0/L0

..........................................................................................................................................................................
......
...

................

πD

G0/K0

................................................................................................................................................................................... .......
......
...

πB

The open orbit D ⊂ Z is said to be of holomorphic type if there are G0–invariant

complex structures on G0/(L0 ∩K0) and G0/K0 such that πD and πB are simultaneously

holomorphic, of nonholomorphic type if there is no such choice.

Now we can state our main result. It is an immediate consequence of Proposition 3.9
and Theorems 3.8 and 5.1 below. For G0 of hermitian type we write B and B for G0/K0

with the two G0–invariant complex structures.

1.3. Theorem. Let G0 be a classical simple Lie group of hermitian type. Let D =
G0(z) ⊂ Z = G/Q be an open G0–orbit. If D is of holomorphic type then the linear cycle

space MD is biholomorphic either to B or to B. If D is not of holomorphic type then MD

is biholomorphic to B ×B.

Theorem 1.3 extends a number of earlier results. In his work on periods of integrals
on algebraic manifolds ([2], [3]), Griffiths set up moduli spaces MD for certain classes of
compact Kaehler manifolds. Wells [8] worked out an explicit parameterization of the MD

when D ∼= SO(2r, s)/U(r) × SO(s). He used that parameterization to verify that the
corresponding MD are Stein, but he drew no connections between the structure of G0

and the structure of MD . Then Wells and Wolf [9] proved that MD is a Stein manifold
whenever the open orbit D = G0(z) ⊂ Z is of the form G0/L0 with L0 compact. This
was done in order to prove Fréchet convergence of certain Poincaré series for construction
of automorphic cohomology related to Griffiths’ period domains, and here some tentative
connections were drawn between the structure of G0 and MD . Patton and Rossi [6] looked
at the case G0 = SU(p, q) where Z is the Grassmannian of (r + s)–planes in Cp+q and
D is the open orbit consisting of the (r + s)–planes of a fixed indefinite signature (r, s).
Thus G0 is of hermitian type and D is not of holomorphic type. This is the first instance
in which close connections are indicated between the structure of G0 and the structure
of MD . Recently Wolf proved that MD is Stein whenever D is an open G0–orbit on Z;
see [12] for the measurable case and [13] for the general case. Also recently, Dunne and
Zierau [1] worked out the cases G0 = SO(2n, 1) with D indefinite hermitian symmetric,
and also the cases G0 = SU(p, q) with D arbitrary. In the SU(p, q) case they found that
MD

∼= B × B. And very recently Novak ([4], [5]) studied the cases where G0 = Sp(n;R)
and D ∼= Sp(n;R)/U(r, s) with n = r + s and rs 6= 0. (Here rs 6= 0 is the condition that
D is not of holomorphic type.) She proved D ∼= B × B in those cases. In the case where
G0 is classical and of hermitian type, Theorem 1.3 confirms a conjecture of Akhieser and
Gindikin [0] that a certain extension of G0/K0 is a Stein manifold. See [15] for a discussion
of applications of Theorem 1.3 to representation theory.



LINEAR CYCLE SPACES IN FLAG DOMAINS 3

The remainder of the introduction is devoted to some preliminary notation and facts.
The Lie algebra of G is denoted by g and we let g0 ⊂ g be the real form of g corresponding
to G0. We consider the Cartan involution θ of G0 corresponding to K0. We extend
θ to a holomorphic automorphism of G and a complex linear automorphism of g, thus
decomposing

(1.4) g = k+ s and g0 = k0 + s0 , decomposition into ± 1 eigenspaces of θ.

The Lie algebra of K0 is k0 , and K = Gθ is the complexification of K0 . K0 is connected
and is the G0–normalizer of k0 , and K is connected because G is connected and simply
connected.

From this point on we assume that G0 is of hermitian symmetric type, that is,

(1.5) s = s+ ⊕ s− where K0 acts irreducibly on each of s± and s− = s+

where ξ 7→ ξ denotes complex conjugation of g over g0. Set S± = exp(s±) . So S− = S+

where g 7→ g also denotes complex conjugation of G over G0 . Then

(1.6)

the p± = k+ s± are parabolic subalgebras of g with p− = p+ ,

the P± = KS± are parabolic subgroups of G with P− = P+ , and

the X± = G/P± are hermitian symmetric flag manifolds.

Note that X− = X+ in the sense of conjugate complex structure, for s+ represents the
holomorphic tangent space of X− and s− = s+ represents the holomorphic tangent space
of X+ . Let x± = 1 · P± ∈ X± , so G0/K0

∼= G0(x±) ⊂ X± . We denote

(1.7)
B = G0/K0 : symmetric space G0/K0 with the complex structure of G0(x−),

B = G0/K0 : space G0/K0 with the (conjugate) complex structure of G0(x+).

The distinction between s− and s+ in (1.5) is made by a choice of positive root system
∆+ = ∆+(g, h) for g relative to a Cartan subalgebra h = h ⊂ k of g. The choice is made
so that s+ is spanned by positive root spaces and consequently s− is spanned by negative
root spaces.

We can view the complex flag manifold Z = G/Q as the set of G–conjugates of q. Then
gQ = z ∈ Z = G/Q corresponds to Qz = Ad(g)Q = {g ∈ G | g(z) = z} as well as its
Lie algebra qz = Ad(g)q. Since h0 = h ∩ g0 ⊂ k0 is a Cartan subalgebra of g0 , complex
conjugation acts on the root spaces by gα = g−α. Thus a G0–orbit in Z = G/Q is open if
and only if it is of the form G0(z) in such a way that h ⊂ qz . This choice of z in the open
orbit amounts to a choice of G0–conjugate of qz , and some such conjugate must contain
h0 because all compact Cartan subalgebras of g0 are G0–conjugate. In other words, our
standing assumption (1.5) that G0 be of hermitian type, implies that all open G0–orbits
on Z are measurable. It also follows that we may choose a base point z ∈ D so that
K0(z) = K(z), a maximal compact complex submanifold of D. We fix such a base point
and set Y = K(z). See [10].
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Fix an open orbit D = G0(z) ⊂ Z as above. We may suppose h ⊂ q = qz and Q = Qz .
Since D is measurable we decompose q = l+ r− where h ⊂ l , where r− is the nilradical of
q , and where l = q∩ q is a reductive complement (Levi component). Here L0 = G0 ∩Q is
connected and is a real form of the analytic subgroup L ⊂ G with Lie algebra l . Its Lie
algebra is the real form l0 = g0 ∩ l of l.

The orbits of holomorphic type are further characterized by [14, Prop. 1.11], which is
an extension of [12, Prop. 1.3]. It says

1.8. Proposition. The following conditions are equivalent: (a) the open orbit D is of

holomorphic type, (b) either s∩ r+ = s+∩ r+ or s∩ r+ = s−∩ r+ , (c) either s−∩ r+ = 0 or

s−∩ r− = 0 , (d) one of q∩p and q∩p is a parabolic subalgebra of g , (e) there is a positive

root system ∆+(g, h) such that both r+ and s+, or both r+ and s−, are sums of positive

root spaces, (f) there is a positive root system ∆+(g, h) such that q is defined by a subset

of the corresponding simple root system Ψ, and Ψ contains just one g0–noncompact root.

Section 2. An Embedding for the Linear Cycle Space.

The linear cycle space MD is the component of Y = K0(z) = K(z) in {gY | g ∈
G and gY ⊂ D} as in (1.1). Here Y is a maximal compact subvariety of the open orbit
D = G0(z). As before, J = {gY | g ∈ G} so MD is an open submanifold of the complex
homogeneous space MZ

∼= G/J . By [12], Prop. 1.3 we know that if D is of holomorphic
type then J is one of KP± and if D is of nonholomorphic type then J is a finite extension
of K.

Recall the notation (1.6); X−×X+ is a complex flag manifold (G×G)/(P−×P+). Both
the diagonal subgroup δG ⊂ G×G and the product G0×G0 are real forms of G×G, so each
of them acts on the complex flag manifold X−×X+ with only finitely many orbits [10]. Let
(x−, x+) ∈ X−×X+ denote the base point (1P−, 1P+). Thus B×B = (G0×G0)(x−, x+).
Our goal is to identify this with MD in the nonholomorphic case. We start with

2.1. Lemma. (G0 × G0)(x−, x+) ⊂ δG(x−, x+) ⊂ X− × X+ , and both of these orbits

are open in X− ×X+ .

Remark. Novak [5] was the first to see the key role of this sort of embedding.

Proof. Let g1 , g2 ∈ G0 . Use G0 ⊂ S+KS− to write g−1
2 g1 = exp(ξ+)k exp(ξ−) with

k ∈ K and ξ± ∈ s± . Then

(g1x−, g2x+) = δg2(g
−1
2 g1x−, x+) = δg2(exp(ξ+)x−, x+)

= δg2(exp(ξ+)x−, exp(ξ+)x+) = δg2 δ exp(ξ+)(x−, x+) ∈ δG(x−, x+)

shows that (G0×G0)(x−, x+) ⊂ δG(x−, x+) ⊂ X−×X+ . They are open because G0(x−) =
B is open in X− and G0(x+) = B is open in X− , so they all have full dimension. �

The isotropy subgroup of δG at (x−, x+) is {(g, g) ∈ G×G | gx− = x− and gx+ = x+},
in other words {(g, g) ∈ G×G | g ∈ P− ∩ P+ = K}. Thus
(2.2) δG has isotropy subgroup δK at (x−, x+), i.e. δG(x−, x+) ∼= G/K.
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We combine (2.2) with Lemma 2.1. That gives us the first part of

2.3. Proposition. There is a natural holomorphic embedding of B × B into G/K. Let

π : G/K → G/J = MZ be the natural projection. If the open G0–orbit D ⊂ Z is not of

holomorphic type, then π is injective on B ×B.

Proof. Suppose that D is not of holomorphic type. Let g1, g
′
1, g2, g

′
2 ∈ G0 and suppose

π(g1x−, g2x+) = π(g′1x−, g
′
2x+). As in the argument of Lemma 2.1, write

g−1
2 g1 = exp(ξ+)k exp(ξ−) so (g1x−, g2x+) = δg2 δ exp(ξ+)(x−, x+).

Similarly, this time reversing roles of the two factors,

g′1
−1

g′2 = exp(ξ′−)k
′ exp(ξ′+) so (g′1x−, g

′
2x+) = δg′1 δ exp(ξ′−)(x−, x+).

The hypothesis π(g1x−, g2x+) = π(g′1x−, g
′
2x+) now provides j ∈ J such that g2 exp(ξ+) =

g′1 exp(ξ−)j. In other words, (g′1)
−1g2 ∈ S−jS+ .

Let {wi} be a set of representatives of the double coset space WK\WG/WK for the Weyl
groups of G and K. The Bruhat decomposition of G for X+ is G =

⋃
i P−wiP+ , the real

group G0 is contained in the cell P−P+ for wi = 1, and G0 does not meet any other cell
P−wiP+ .

Since D is of nonholomorphic type J ⊂ NGu
(K0)K, so we may write j = nk with

n ∈ NGu
(K0) and k ∈ K. Express n = wk0 with w ∈ {wi} and k0 ∈ K0 . Then

j = k′′wk′′′ ∈ KwK with k′′, k′′′ ∈ K, so (g′1)
−1g2 = exp(ξ′−)k

′′wk′′′ exp(−ξ+) ∈ P−wP+.
In particular G0 meets P−wP+ , so w = 1 ∈ WK and j ∈ K. This shows g2 exp(ξ+)K =
g′1 exp(ξ

′
−)K. Now

(g1x−, g2x+) = δg2 δ exp(ξ+)(x−, x+) = δg′1 δ exp(ξ′−)(x−, x+) = (g′1x−, g
′
2x+)

as asserted. That completes the proof. �

Section 3. B × B ⊃ MD .

In this Section we prove: (a) MD ⊂ B ×B when the open orbit D = G0(z) ⊂ Z is not
of holomorphic type and (b) MD = B or B when D is of holomorphic type. Here G0 is of
hermitian symmetric type. That is the standing hypothesis in this paper.

3.1. Lemma. One or both of ∆(r+ ∩ s± , h) contains a long root of g.

Proof. If all the roots of g are of the same length there is nothing to prove. Now assume
that there are two root lengths. The only cases are (i) G0 = Sp(n;R) up to a covering and
(ii) G0 = SO(2, 2k+ 1) up to a covering.

Consider case (i). D = G0(z) ⊂ Z is open and q = qz . The positive root system is
adapted to q = l + r− , so r− is spanned by negative root spaces. Let γ be the maximal
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root. Then γ ∈ ∆(r+, h) and γ is long. Every compact root of g0 = sp(n;R) is short. So
γ is noncompact, hence contained in one of s± . Now Lemma 3.1 is proved in case (i).

Consider case (ii). Then g has a simple root system of the form {α1, . . . , αk+1} with α1

noncompact and the other αi compact. Here αi = ǫi− ǫi+1 for 1 ≦ i ≦ k and αk+1 = ǫk+1

with the ǫi mutually orthogonal and of the same length. The noncompact positive roots
are the α1+· · ·+αm with 1 ≦ m ≦ k+1 and the (α1+· · ·+αm)+2(αm+1+· · ·+αk+1). All
are long except for α1+ · · ·+αk+1 = ǫ1 , which is short. Now at least one of ∆(r+∩ s± , h)
contains a long root unless both r+ ∩ s+ = gǫ1 and r+ ∩ s− = g−ǫ1 . That is impossible
because r+ is nilpotent. Now Lemma 3.1 is proved in case (ii), and that completes the
proof. �

Interchange s+ and s− if necessary so that ∆(r+∩s+ , h) contains at least one long root.
The G0–orbit structure of X± is given in [11]. This is summarized as follows. Construct

(3.2)
Ψg = {γ1, . . . , γt} :

maximal set of strongly orthogonal noncompact positive roots of g

as in [14, (3.2)]: γ1 is the maximal root and, at each stage, the next γi+1 a maximal root
in ∆+(s+ , h) that is orthogonal to {γ1, . . . , γi}. Then Ψg consists of long roots, and any
maximal set of strongly orthogonal long roots in ∆+(s+ , h) is W (K0, H0)–conjugate to
Ψg. In fact, any two subsets of Ψg with the same cardinality are W (K0, H0)–conjugate.
In particular, by modifying the choice of z within K(z) we may assume that

(3.3) Ψg meets ∆(r+ , h).

Using the notation and normalizations of [14], Section 3 we have

e−γ : root vector for γ ∈ ∆(h)

xγ , yγ, hγ : spanning g[γ] ≃ sl2

cγ , cΓ =
∏

γ∈Γ

cγ : Cayley transforms

G[Γ] =
∏

γ∈Γ

G[γ], G[γ] = three dimensional subgroup corresponding to g[γ].

The G0 orbits on X− are all of the form

(3.4) G0cΓc
2
Σ(x−), Γ,Σ disjoint subsets of Ψg.

The boundary of B = G0(x−) ⊂ X− consists of the orbits in (3.4) with Σ = ∅. The
boundary orbits are described further by

(3.5) G0(cΓx−) = K0G0[Ψ
g \ Γ](cΓx−).

One may use the Cayley transforms to gain some information about the the G0–orbit
structure of Z = G/Q. In particular we use the following fact.
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3.6. Lemma. Suppose Γ ⊂ Ψg ∩∆(r+ , h). If Γ ∩∆(r+ , h) is non–empty, then cΓ(z) is
not contained in any open G0–orbit on Z.

Proof. The isotropy subgroup of G0 at cΓ(z) has Lie algebra g0∩ q′ where q′ = Ad (cΓ)q.
If γ ∈ Γ∩∆(r+ , h) then, by [14, (3.5)], Ad (cΓ)(e−γ) = Ad (cΓ)(

1
2
(xγ+

√
−1yγ)) =

1
2
(xγ−√

−1hγ). But xγ ,
√
−1hγ ∈ g0 , so now Ad (cΓ)(e−γ) ∈ g0 ∩ q′. Evidently Ad (cΓ)(eγ) /∈

g0 ∩ q′. Conclusion: g0 ∩ q′ is not reductive. As the G0–orbits on Z are measurable, now
G0(cΓ(z)) cannot be open in Z ([10], Theorem 6.3). �

We’ll also need a topological lemma:

3.7. Lemma. Let X1 and X2 be topological spaces, let Bi ⊂ Xi be open subsets, and

let M ⊂ (X1 ×X2) be a connected open subset such that (i) M meets B1 × B2 and (ii)
M ∩ (bd (B1)×B2) = ∅ = M ∩ (B1 × bd (B2)). Then M ⊂ (B1 ×B2).

Proof. (X1×X2)\M is closed in (X1×X2) because M is open, contains (bd (B1)×B2)∪
(B1 × bd (B2)) by (ii), and thus contains the closure of (bd (B1) × B2) ∪ (B1 × bd (B2)).
That closure contains the boundary of the open set B1 ×B2 . Thus

M =
(
M ∩ (B1 ×B2)

)
∪
(
M ∩

(
(X1 ×X2) \ closure (B1 ×B2)

))
.

As M is connected and meets B1 ×B2 , now M ⊂ (B1 ×B2). �

Now we come to the main result of this Section:

3.8. Theorem. Let G0 be of hermitian type, let Z = G/Q be a complex flag manifold,

and let D = G0(z) ⊂ Z = G/Q be an open G0–orbit that is not of holomorphic type.

View B ×B ⊂ MZ as in Proposition 2.3 and MD ⊂ MZ as usual. Then MD ⊂ B ×B.

Proof. Retain the notation of §2. Suppose that (g1x−, g2x+) belongs to the boundary of
B×B in X−×X+ . The closure of G0KS− in G is contained in S+KS− , and similarly the
closure of G0KS+ in G is contained in S−KS+ . So the boundary of B×B in X−×X+ is
contained in G/K. That allows us to write g−1

2 g1 = exp(ξ+)k exp(ξ−) with ξ± ∈ s± and
k ∈ K, as before. We will prove that g2 exp(ξ+)Y 6⊂ D, that is, g2 exp(ξ+)Y /∈ MD . The
Theorem will follow. The proof breaks into three cases, according to the way (g1x−, g2x+)
sits in the boundary of B ×B.

Case 1. Here g1x− ∈ bd (B) and g2x+ ∈ B with g1, g2 ∈ G. We may suppose g2 ∈ G0 .
Then g−1

2 g1x− also belongs to the boundary ofB inX−, so g
−1
2 g1x− ∈ k0G0[Ψ

g\Γ](cΓ(x−))
for some k0 ∈ K0 and Γ ⊂ Ψg by (3.5). Thus g−1

2 g1(x+) = k0g0cΓ(x−), g0 ∈ G0[Ψ
g \ Γ].

Using [14, (3.4)], [14, (3.5)], and strong orthogonality of Ψg, decompose

g0 =
∏

Ψg\Γ

(
exp(ξ+,ψ)kψ exp(ξ−,ψ)

)
and cΓ =

∏

Γ

(
exp(

√
−1eγ) exp(

√
2hγ) exp(

√
−1e−γ)

)
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with ξ±,ψ ∈ g±ψ . Set ξ±,γ =
√
−1e±γ for γ ∈ Γ. Now

(g1x−, g2x+) = δg2 δ exp(Ad (k0)ξ
′
+)(x−, x+) where ξ′+ =

∑
ψ∈Ψg

ξ+,ψ .

At the cost of changing k0 withinK0 , and in view of (3.3), we may assume Γ∩∆(r+, h) 6= ∅.
Then cΓ(z) = cΓ∩∆(r+,h)(z) is not contained in any open G0–orbit on Z, by Lemma 3.6.
In particular cΓ(z) /∈ D. Now exp(ξ+)(k0z) = exp(Ad(k0)(ξ

′
+))(k0z) = k0 exp(ξ

′
+)(z) =

k0g0cΓ(z) /∈ D, thus g2 exp(ξ+)Y 6⊂ D.

Case 2. Here g1x− ∈ B and g2x+ ∈ bd (B). The argument is exactly as in Case 1, but
with the rôles of B and B reversed. Here note that this reversal of rôles replaces Ψg by
−Ψg and cΓ by c−Γ .

Case 3. Here g1x− ∈ bd (B) and g2x+ ∈ bd (B). Then MD is connected, MD meets B×B
because Y ∈ MD ∩ (B×B), and MD ∩

(
bd (B)×B

)
= ∅ = MD ∩

(
B× bd (B)

)
by Cases

1 and 2. Case 3 now follows from Lemma 3.7. �

The same type of argument applies to prove the following.

Proposition 3.9. Suppose D is of holomorphic type. ThenMD is biholomorphic to either

B or B

Proof. We may assume that MZ = X− = G/KS− by switching s± if necessary. It is
clear that gY ⊂ D for g ∈ G0, so B ⊂ MD. Now suppose that gx− (for some g ∈ G)
is in the boundary of B ⊂ X−. Then gx− = g0cΓ(x−) for some g0 ∈ G0 and some
Γ 6= ∅. Conjugating by an element of K0 we may assume Γ ∩ ∆(r+, h) 6= ∅. Now, for
Γ′ = Γ ∩∆(r+, h), gY contains g0cΓ(z) = g0cΓ′(z). By Lemma 3.6 that is not in an open
orbit. �

Section 4. A Reduction for the Inclusion B × B ⊂ MD .

We reduce to the case where Q is a Borel subgroup of G:

4.1. Proposition. Suppose that, if Q is a Borel subgroup of G, then B × B ⊂ MD

whenever D is an open G0–orbit on G/Q that is not of holomorphic type. Then the same

is true when Q is any parabolic subgroup of G.

Proof. The maximal compact subvariety in the open orbit D = G(z) ⊂ Z is Y = K(z) =
K0(z). We may, and do, take Q to be the G–stabilizer of z; in other words we assume
that q = qz . Let Q′ ⊂ Q be any parabolic subgroup of G contained in Q such that
G0 ∩ Q′ contains a compact Cartan subgroup H0 ⊂ K0 of G0, let Z ′ = G/Q′ be the
corresponding flag manifold, and let π : Z ′ → Z denote the associated G–equivariant
projection gQ′ 7→ gQ. Write z′ ∈ Z ′ for the base point 1Q′. Then D′ = G0(z

′) is open in
Z ′ because g0 ∩ q′ contains a compact Cartan subalgebra of g0 . We have set things up so
that Y ′ = K(z′) = K0(z

′) is a maximal compact subvariety of D′.
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Since D is not of holomorphic type, both intersections r− ∩ s± are nonzero. But r− is
contained in the nilradical r′− of q′. Now both intersections r′− ∩ s± are nonzero, so D′ is
not of holomorphic type.

If g ∈ G with gY ′ ⊂ D′ then gK0 ⊂ G0Q
′, so gK0 ⊂ G0Q and thus gY ⊂ D. In other

words, π maps MD′ to MD . This map is an injection equivariant for the correspondence
of Proposition 2.3. If the inclusion holds for Z ′ then B ×B ⊂ MD′ ⊂ MD , so it holds for
Z. The assertion of the Proposition is the case where Q′ is a Borel subgroup. �

Section 5. B × B ⊂ MD when G is Classical.

In this section we prove a partial counterpart of Theorem 3.6:

5.1. Theorem. Suppose that G is a classical group and that its real form G0 is of

hermitian type. Let Z = G/Q be a complex flag manifold, and let D = G0(z) ⊂ Z = G/Q
be an open G0–orbit that is not of holomorphic type. View B×B ⊂ MZ as in Proposition
2.3 and MD ⊂ MZ as usual. Then B ×B ⊂ MD .

We run through the classical cases. By Proposition 4.1 we may assume that Q is a Borel
subgroup so that Z is the full flag. In each case, the standard basis of Cm will be denoted
{e1, . . . , em}. Without further comment we will decompose vectors as v =

∑
vjej . We

will have symmetric bilinear forms (·, ·) or antisymmetric bilinear forms ω(·, ·) on C
m and

the term isotropic will refer only to those bilinear forms. We will also have hermitian forms
〈·, ·〉 on Cm, and the term signature will refer only to those hermitian forms. In each case
the flag manifold Z is described as a flag of subspaces z = (z1 ⊂ · · · ⊂ zm) in some Cm

with dim zj = j, usually with m = 2n or m = n. As we run through the cases, B and B
are described in terms of such flags, as in [11]. Then we give explicit descriptions of (i) the
embeddings of Section 2, (ii) the full flag and its open G0–orbits, and (iii) we describe the
G-action on MZ , in such a way that the result of Theorem 5.1 is easily visible.

If {f1, . . . , fℓ} is a linearly independent subset in a vector space V then [f1 ∧ · · · ∧ fℓ]
denotes its span.

Type I: B = {Z ∈ Cp×q | I −Z∗Z >> 0}. Here G = SL(n;C) and G0 = SU(p, q), indef-
inite unitary group defined by the hermitian form 〈u, v〉 =

∑p
j=1 vjwj −

∑q
j=1 vp+jwp+j

with p+ q = n.

The hermitian symmetric flag X− = G/KS− is identified with the Grassmannian of
q–planes in Cn, the base point x− = [ep+1 ∧ · · · ∧ ep+q ], and B = G0(x−) consists of the
negative definite q–planes. Similarly, X+ = G/KS+ is identified with the Grassmannian
of p–planes in Cn, x+ = [e1 ∧ · · · ∧ ep], and B = G0(x+) consists of the positive definite
p–planes. The embedding

B ×B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Section 2 is given by

(5.2)
B ×B = {(V,W ) ⊂ (X− ×X+) | V negative definite and W positive definite}
and G/K = G(x−, x+) = {(V,W ) ∈ (X− ×X+) | V and W transverse in C

n}.
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The full flag manifold is Z = {z = (z1 ⊂ · · · ⊂ zn−1) | dim zj = j}. By Witt’s
Theorem, if two subspaces U, U ′ ⊂ Cn have the same signature and nullity (relative to
the hermitian form 〈·, ·〉) then there exists g ∈ U(p, q) with gU = U ′, and of course
we can scale and choose g ∈ G0 = SU(p, q). It follows that the G0–orbits on the full
flag Z = G/Q are determined by the rank and signature sequences of the subspaces in
the flag. Let r = (r1, . . . , rn−1) and s = (s1, . . . , sn−1) consist of integers such that
0 ≦ r1 ≦ · · · ≦ rn−1 ≦ p, 0 ≦ s1 ≦ · · · ≦ sn−1 ≦ q, and rj + sj = j for all j. Then r and s
define a point zr,s ∈ Z and an open G0–orbit Dr,s ⊂ Z by

(5.3)
zr,s = (zr,s,1, . . . , zr,s,n−1) where zr,s,j = [e1 ∧ · · · ∧ erj ∧ ep+1 ∧ · · · ∧ esj ] and

Dr,s = G0(zr,s) = {z = (z1, . . . , zn−1) | zj has signature (rj, sj) for all j}.
Each pair r, s is obtained by choosing p of the numbers from 1 to p+q, the indices at which

rj > rj−1, so the number of pairs r, s is
(
n

p

)
= n!

p!q! , which is the quotient |WG|/|WK | of
the orders of the Weyl groups. As these Dr,s are distinct open orbits, it follows from [10,
Corollary 4.7] that they are exactly the open G0–orbits on Z.

Fix r and s. Let (V,W ) ∈ G/K ⊂ (X− ×X+). Define

(5.4) YV,W = {z ∈ Z | dim zj ∩ V = sj and dim zj ∩W = rj for all j}.
We set D = Dr,s so Y = K(zr,s) = Yx−,x+

. If g ∈ G then gY = Ygx−,gx+
. If (V,W ) ∈

B × B then YV,W ⊂ Dr,s , so YV,W ∈ MDr,s
. Thus (V,W ) 7→ YV,W defines a map η :

B × B → MDr,s
. If r1 = · · · = rq = 0 then rq+j = j for 1 ≦ j ≦ p and η(V,W ) depends

only on V ; if s1 = · · · = sp = 0 then sp+j = j for 1 ≦ j ≦ q and η(V,W ) depends only on
W ; those are the cases where Dr,s is of holomorphic type. In the nonholomorphic cases, η

injects B ×B into MDr,s
and we have B ×B ⊂ MDr,s

. Theorem 5.1 is verified when B is
of type I.

Type II: B = {Z ∈ Cn×n | Z = tZ and I −Z ·Z∗ >> 0}. Here G = Sp(n;C) and G0 =
Sp(n;R). These are the complex and real symplectic groups, defined by the antisymmetric
bilinear form ω(v, w) =

∑n
j=1(vjwn+j − vn+jwj) on C2n and R2n, respectively. Here it is

more convenient to realize G0 as G ∩ U(n, n) where U(n, n) is the unitary group of the
hermitian form 〈v, w〉 = ∑n

j=1 vjwj −
∑n
j=1 vn+jwn+j , and we do that.

The hermitian symmetric flag X− = G/KS− is identified with the Grassmannian of ω–
isotropic n–planes in C2n, the base point x− = [en+1 ∧· · ·∧e2n], and B = G0(x−) consists
of the negative definite ω–isotropic n–planes. Similarly, X+ = G/KS+ is identified with
the Grassmannian of ω–isotropic n–planes in C2n, x+ = [e1 ∧ · · · ∧ en], and B = G0(x+)
consists of the positive definite ω–isotropic n–planes. The embedding

B ×B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Section 2 is given by

(5.5)
B ×B = {(V,W ) ⊂ (X− ×X+) | V negative definite and W positive definite}
and G/K = G(x−, x+) = {(V,W ) ∈ (X− ×X+) | V and W transverse in C

2n}.

The full flag is Z = {z = (z1 ⊂ · · · ⊂ zn−1) | each zj is isotropic with dim zj = j}. One
extends Witt’s Theorem from (C2n, 〈·, ·〉) to prove
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5.6. Lemma. Let U1, U2 ⊂ C
2n be ω–isotropic subspaces of the same nondegenerate

signature for 〈·, ·〉. Then there exists g ∈ G0 with gU1 = U2 .

Somewhat as in the Type I case it will follow that the open G0–orbits on the full flag
Z = G/Q are determined by the signature sequences of the subspaces in the flag. Let
r = (r1, . . . , rn) and s = (s1, . . . , sn) consist of integers such that 0 ≦ r1 ≦ · · · ≦ rn ≦ n,
0 ≦ s1 ≦ · · · ≦ sn ≦ n, and rj + sj = j for all j. Then r and s define a point zr,s ∈ Z and
a G0–orbit Dr,s ⊂ Z by

(5.7)
zr,s = (zr,s,1 ⊂ · · · ⊂ zr,s,n) where zr,s,j = [e1 ∧ · · · ∧ erj ∧ e2n−sj+1 ∧ · · · ∧ e2n]

and Dr,s = G0(zr,s) = {z = (z1 ⊂ · · · ⊂ zn) | zj has signature (rj , sj) for all j}.
The last equality uses Lemma 5.6.

5.8. Proposition. The Dr,s are exactly the open G0–orbits on Z, and they are distinct.

Proof. The G0–stabilizer of zr,s is the maximal torus consisting of diagonal unitary ma-
trices, so Dr,s is open in Z by dimension. If Dr,s = Dr′,s′ then (5.7) forces r = r′ and
s = s′. Now the open orbits Dr,s are distinct. Each pair r, s is obtained by choosing a
set of numbers from 1 to n, the indices at which rj > rj−1, so the number of pairs r, s
is 2n, which is the quotient |WG|/|WK | of the orders of the Weyl groups. As these Dr,s

are distinct open orbits, it follows from [10, Corollary 4.7] that they are exactly the open
G0–orbits on Z. �

Fix r and s. Let (V,W ) ∈ G/K ⊂ (X− ×X+). Define

(5.9) YV,W = {z ∈ Z | dim zj ∩ V = sj and dim zj ∩W = rj for all j}.
We set D = Dr,s so Y = K(zr,s) = Yx−,x+

. If g ∈ G then gY = Ygx−,gx+
. If (V,W ) ∈

B × B then YV,W ⊂ Dr,s , so YV,W ∈ MDr,s
. Thus (V,W ) 7→ YV,W defines a map η :

B×B → MDr,s
. If r1 = · · · = rn = 0 then η(V,W ) depends only on V ; if s1 = · · · = sn = 0

then η(V,W ) depends only on W ; those are the cases where Dr,s is of holomorphic type.

In the nonholomorphic cases, η injects B × B into MDr,s
and we have B × B ⊂ MDr,s

.
Theorem 5.1 is verified when B is of type II.

Type III: B = {Z ∈ C
n×n | Z = −tZ and I−Z ·Z∗ >> 0}. HereG = SO(2n;C), special

orthogonal group defined by the symmetric bilinear form (v, w) =
∑n
j=1(vjwn+j+vn+jwj)

on C2n, and G0 = SO∗(2n), the real form with maximal compact subgroup U(n). We
realize G0 as G∩U(n, n) where U(n, n) is the unitary group of the hermitian form 〈v, w〉 =∑n
j=1 vjwj −

∑n
j=1 vn+jwn+j .

The hermitian symmetric flags X± = G/KS± are identified with the two choices of
connected component in the Grassmannian of isotropic (relative to (·, ·)) n–planes in C

2n.
The components in question are specified by orientation. X− has base point x− = [en+1 ∧
· · · ∧ e2n], X− = G(x−), and B = G0(x−) consists of the negative definite isotropic n–
planes in X− . Similarly, X+ has base point x+ = [e1 ∧ · · · ∧ en], and X+ = G(x+), and
B = G0(x+) consists of the positive definite isotropic n–planes in X+ . The embedding

B ×B ⊂ G/K = G(x−, x+) ⊂ X− ×X+
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of Section 2 is given by

(5.10)
B ×B = {(V,W ) ⊂ (X− ×X+) | V negative definite and W positive definite}
and G/K = G(x−, x+) = {(V,W ) ∈ (X− ×X+) | V and W transverse in C

2n}.

Z = {z = (z1 ⊂ · · · ⊂ zn) | each zj is isotropic with zn ∈ X− and dim zj = j} is the
full flag. Here of course the zj are linear subspaces of C2n. One could require zn ∈ X+

instead, with the same results, but it is necessary to make a choice. Witt’s Theorem
extends from (C2n, 〈·, ·〉) as follows.

5.11. Lemma. Let U1, U2 ⊂ C2n be (·, ·)–isotropic subspaces of the same nondegenerate

signature for 〈·, ·〉. If dimUi = n then assume also that the Ui are contained in the same

X± . Then there exists g ∈ G0 with gU1 = U2 .

As in the Type II case it will follow that the open G0–orbits on the full flag Z = G/Q are
determined by the signature sequences of the subspaces in the flag. Let r = (r1, . . . , rn−1)
and s = (s1, . . . , sn−1) consist of integers such that 0 ≦ r1 ≦ · · · ≦ rn−1 ≦ n− 1, 0 ≦
s1 ≦ · · · ≦ sn−1 ≦ n− 1, and rj + sj = j for all j. Then r and s specify integers rn
and sn such that (i) rn−1 ≦ rn ≦ n, (ii) sn−1 ≦ sn ≦ n, (iii) rn + sn = n, and (iv)
[e1 ∧ · · ·∧ ern ∧ e2n−sn+1 ∧ · · ·∧ e2n] ∈ X− . In effect, (iv) is a parity condition on rn . Now
r and s define a point zr,s ∈ Z and a G0–orbit Dr,s ⊂ Z by

(5.12)

zr,s = (zr,s,1 ⊂ · · · ⊂zr,s,n) where

zr,s,j = [e1 ∧ · · · ∧ erj ∧ e2n−sj+1 ∧ · · · ∧ e2n](j < n),

zr,s,n ∈ X− ,

and Dr,s = G0(zr,s) = {z = (z1 ⊂ · · · ⊂ zn) | zj has signature (rj, sj) for all j}.
The last equality uses Lemma 5.11.

5.13. Proposition. The Dr,s are exactly the open G0–orbits on Z, and they are distinct.

Proof. The G0–stabilizer of zr,s is the maximal torus consisting of diagonal unitary ma-
trices, so Dr,s is open in Z by dimension. If Dr,s = Dr′,s′ then (5.12) forces r = r′ and
s = s′. Now the open orbits Dr,s are distinct. Each pair r, s is obtained by choosing a set
of numbers from 1 to n − 1, the indices at which rj > rj−1, so the number of pairs r, s is
2n−1, which is the quotient |WG|/|WK | of the orders of the Weyl groups. As these Dr,s

are distinct open orbits, it follows from [10, Corollary 4.7] that they are exactly the open
G0–orbits on Z. �

Fix r and s. Let (V,W ) ∈ G/K ⊂ (X− ×X+). Define

(5.14) YV,W = {z ∈ Z | dim zj ∩ V = sj and dim zj ∩W = rj for all j}.
We set D = Dr,s so Y = K(zr,s) = Yx−,x+

. If g ∈ G then gY = Ygx−,gx+
. If (V,W ) ∈

B × B then YV,W ⊂ Dr,s , so YV,W ∈ MDr,s
. Thus (V,W ) 7→ YV,W defines a map η :

B×B → MDr,s
. If r1 = · · · = rn = 0 then η(V,W ) depends only on V ; if s1 = · · · = sn = 0

then η(V,W ) depends only on W ; those are the cases where Dr,s is of holomorphic type.

In the nonholomorphic cases, η injects B × B into MDr,s
and we have B × B ⊂ MDr,s

.
Theorem 5.1 is verified when B is of type III.
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Type IV: B = {Z ∈ C
n | 1 + |tZ · Z|2 − 2Z∗ · Z > 0 and I − Z∗ · Z > 0}. Here

G = SO(2+n;C), special orthogonal group defined by the symmetric bilinear form (v, w) =∑2
j=1 vjwj−

∑2+n
j=3 vjwj on C2+n, and G0 is the identity component of SO(2, n). We view

G0 as the identity component of G ∩ U(2, n) where U(2, n) is defined by the hermitian
form 〈v, w〉 = (v, w).

The hermitian symmetric flags X± = G/KS± are each identified with the space of (·, ·)
isotropic lines in C2+n. X± has base point x± = [e1 ± ie2]. B = G0(x−) and B = G0(x+),
and each consists of the 〈·, ·〉 positive definite (·, ·) isotropic lines. The embedding

B ×B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Section 2 is given by

(5.15)
B ×B = {(V,W ) ∈ (X− ×X+) | V and W positive definite}
and G/K = G(x−, x+) = {(V,W ) ∈ (X− ×X+) | V 6⊥ W}.

Here “positive definite” refers to the hermitian form 〈·, ·〉 and “⊥” refers to the symmetric
bilinear form (·, ·).

The full flag manifold Z is a connected component of Z̃ = {z = (z1 ⊂ · · · ⊂ zm) |
zj isotropic subspace of C2+n and dim zj = j}. Here m = [n2 ]+1. If n is odd then Z = Z̃,

in other words Z̃ is connected. If n is even then Z̃ has two topological components. In
any case

Z+ = G([(e1 + ie2) ∧ (e3 + ie4) ∧ · · · ∧ (e2m−1 + ie2m)])

is a connected component in the variety of all maximal isotropic subspaces of C2+n, and

(5.16) Z = {z = (z1 ⊂ · · · ⊂ zm) | zj isotropic in C
2+n, dim zj = j, and zm ∈ Z+}.

Witt’s Theorem extends from (C2+n, 〈·, ·〉) as follows.

5.17. Lemma. Let U1, U2 ⊂ C
2+n be (·, ·)–isotropic subspaces of the same nondegenerate

signature for 〈·, ·〉. Then there exists g ∈ O(2 + n;C) ∩ U(2, n) with gU1 = U2 .

As in the earlier cases it will follow that the open G0–orbits on the full flag Z = G/Q
are determined by the signature sequences of the subspaces in the flag. Let 1 ≦ k ≦ m,
and define points z±k ∈ Z and G0–orbits D

±
k ⊂ Z, by

(5.18)

z±k = (z±k,1 ⊂ · · · ⊂ z±k,m) where

z±k,j = [(e3 + ie4) ∧ · · · ∧ (e2j+1 + ie2j+2] for j < k,

z±k,j = [(e1 ± ie2) ∧ (e3 + ie4) ∧ · · · ∧ (e2j−1 + ie2j ] for j ≧ k

and D±
k = G0(z

±
k )

= {z ∈ Z | zj has signature (0, j) for j < k, (1, j − 1) for j ≧ k,

and zj meets G0(x±) for j ≧ k}.
The last equality uses Lemma 5.17.
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5.19. Proposition. The D±
k are exactly the open G0–orbits on Z, and they are distinct.

The D+
k ∪D−

k are the open (O(2 + n;C) ∩ U(2, n))–orbits on Z.

Proof. The G0–stabilizer of z
±
k is the maximal torus consisting of independent rotations of

the planes [e1 ∧ e2] through [e2m−1 ∧ e2m], so Dk is open in Z by dimension. If Dǫ
k = Dǫ′

k′

(ǫ, ǫ′ = ±) then (5.18) shows that (k, ǫ) = (k′, ǫ′). Now the open G0–orbits D
±
k are distinct,

and the D+
k ∪D−

k are open (O(2 + n;C) ∩ U(2, n))–orbits on Z.

There are 2m pairs k, ǫ. Whether n is even or odd, the quotient |WG|/|WK | of the
orders of the Weyl groups is 2m. As the D±

k are distinct open orbits, it follows from [10,
Corollary 4.7] that they are exactly the open G0–orbits on Z. �

Fix k and ǫ. Let (V,W ) ∈ G/K = (X− × X+). So V = [v] and W = [w] where
v, w ∈ C

2+n are isotropic vectors with (v, w) 6= 0. Define

(5.20)

YV,W = {z ∈ Z | dim zj ∩ [v ∧ w] = 0 and dim zj ∩ [v ∧ w]⊥ = j for j < k,

dim zj ∩ [v ∧ w] = 1 and dim zj ∩ [v ∧ w]⊥ = j − 1 for j ≧ k,

v ∈ zj if ǫ = + and j ≧ k; w ∈ zj if ǫ = − and j ≧ k}.

Here ⊥ refers to the symmetric bilinear form. Also, note that the only isotropic vectors in
[v ∧ w] are the multiples of v and the multiples of w.

We set D = D±
k so Y = K(z±k ) = Yx−,x+

. If g ∈ G then gY = Ygx−,gx+
.

5.21. Lemma. If (V,W ) ∈ B ×B then YV,W ⊂ D±
k , so YV,W ∈ MD±

k
.

Proof. First consider D+
k . Let z′ ∈ YV,W . For j ≧ k we have v ∈ z′j . As V ∈ B it is

positive definite for 〈·, ·〉, so we need only check that z′j ∩ [v ∧ w]⊥ is negative definite for
〈·, ·〉.

Let u ∈ z′j ∩ [v ∧ w]⊥. Here ⊥ refers to the symmetric bilinear form (·, ·). If 〈u, u〉 ≧ 0

then U = [u] is in the closure of B or in the closure of B. In the first case the pair
(U,W ) sits in G/K by the remarks at the beginning of the proof of Theorem 3.8. Then
(u, w) 6= 0, contradicting u ∈ [v, w]⊥. Similarly, in the second case the pair (V, U) ∈ G/K,
so (v, u) 6= 0, contradicting u ∈ [v ∧ w]⊥. We have verified that z′j ∩ [v ∧ w]⊥ is negative
definite for 〈·, ·〉. �

Now (V,W ) 7→ YV,W defines a map η : B × B → MD±

k
. If k = 1 and ǫ = + then

η(V,W ) depends only on V ; if k = 1 and ǫ = − then η(V,W ) depends only on W ; those
are the cases where D±

k is of holomorphic type. In the nonholomorphic cases, η injects

B ×B into MD
±

k
and we have B ×B ⊂ MD

±

k
. Theorem 5.1 is verified when B is of type

IV, and that completes its proof. �
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9. R. O. Wells and J. A. Wolf, Poincaré series and automorphic cohomology on flag

domains, Annals of Math. 105 (1977), 397–448.

10. J. A. Wolf, The action of a real semisimple Lie group on a complex manifold, I:
Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969),
1121–1237.

11. J. A. Wolf, Fine structure of hermitian symmetric spaces, in “Symmetric Spaces”, ed.
W. M. Boothby and G. L. Weiss, Dekker, 1972, 271–357.

12. J. A. Wolf, The Stein condition for cycle spaces of open orbits on complex flag mani-

folds, Annals of Math. 136 (1992), 541–555.

13. J. A. Wolf, Exhaustion functions and cohomology vanishing theorems for open orbits

on complex flag manifolds, Mathematical Research Letters 2 (1995), 179–191.

14. J. A. Wolf and R. Zierau, Cayley transforms and orbit structure in complex flag

manifolds, Transformation Groups 2 (1997), 391–405.

15. J. A. Wolf and R. Zierau, Holomorphic double fibration transforms, The Mathematical
Legacy of Harish–Chandra, Proceedings of Symposia in Pure Mathematics, American
Mathematical Society, to appear.



16 J. A. WOLF & R. ZIERAU

Department of Mathematics Department of Mathematics
University of California Oklahoma State University
Berkeley, California 94720–3840 Stillwater, Oklahoma 74078

jawolf@math.berkeley.edu zierau@math.okstate.edu


