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Abstract. An integral intertwining operator is given from certain principal series representations

into spaces of harmonic spinors for Kostant’s cubic Dirac operator. This provides an integral

representation for harmonic spinors on a large family of reductive homogeneous spaces.

Introduction

A realization of the discrete series representations of a semisimple Lie group as an L2-space of

harmonic spinors was given in [14] and [1]. More precisely, suppose G is a non-compact connected

semisimple real Lie group with finite center and K a maximal compact subgroup of G. Write S

for the spin representation of K (after passing to a cover if necessary). For a finite dimensional

K-representation E, the tensor product S ⊗ E determines a homogeneous vector bundle S ⊗ E
over G/K and a geometric Dirac operator (defined in terms of an invariant connection) acting on

smooth sections:

DG/K(E) : C∞(G/K,S ⊗ E)→ C∞(G/K,S ⊗ E).

If G has a non empty discrete series, then the kernel of DG/K(E) on L2-sections is an irreducible

unitary representation in the discrete series of G, and every discrete series representation of G

occurs this way for some K-representation E. (See [10] for a thorough discussion.) A similar

construction of tempered representations is given by ‘partially harmonic’ spinors in [18].

It is therefore natural to study the kernels of Dirac operators on other homogeneous spaces.

In [11] and [12], we addressed this problem in a more general context where G is a connected

real reductive Lie group and K is replaced by connected closed reductive subgroups H for which

the complex ranks of H and G are equal, but H is not necessarily compact. The Dirac operator

DG/K(E) is replaced by Kostant’s cubic Dirac operator ([8]):

DG/H(E) : C∞(G/H,S ⊗ E)→ C∞(G/H,S ⊗ E).

This operator is the sum of a first order term and a zeroth order term, which comes from a degree

three element in the Clifford algebra of the orthogonal complement of the complexified Lie algebra

of H. (The zeroth order term vanishes when H is any symmetric subgroup.) Integral formulas for

harmonic spinors are given in [11] and [12]. The L2-theory is begun in [2].

Key words and phrases. Cubic Dirac operator; harmonic spinors; reductive homogeneous spaces; fundamental
series representations, principal series representations.

2000 Mathematics Subject Classification. Primary 22E46; Secondary 22F30.

1



2 S. MEHDI AND R. ZIERAU

In the present article we consider a larger class of homogeneous spaces by removing the equal

rank condition. Suppose that E = Eµ is a finite dimensional representation of H with highest

weight µ (with respect to some positive system). Under certain conditions on H and µ we prove

the following theorem. This is Theorem 3.9 of Section 3.

Theorem A. There is a parabolic subgroup P in G, a representation W of P and a non-zero

G-equivariant map

P : C∞(G/P,W) → C∞(G/H,S ⊗ Eµ)

with DG/H(Eµ) ◦ P = 0, where C∞(G/P,W) denotes the space of smooth vectors of the principal

series representation IndGP (W ). In particular, the kernel of DG/H(Eµ) contains a smooth represen-

tation of G.

The intertwining operator P is an integral operator; the formula for P is analogous to the classical

Poisson integral formula giving harmonic functions on the disk. The condition on H referred to

above is stated in §3.3 as Assumption 3.4. It is that H is not too small; it guarantees that certain

Dirac cohomology spaces are nonzero. The conditions on µ are very mild regularity conditions.

The representation of P = MAN on W is formed from a fundamental series of M , a character

of A and the trivial action of N . As an important ingredient the fundamental series is realized as

a space of harmonic spinors on M/M ∩H. This is the content of the following proposition (which

occurs as Proposition 2.9 in Section 2).

Proposition B. Every fundamental series representation occurs in the kernel of a Dirac operator

DG/H(E).

The paper is organized as follows. In Section 1 we fix the notation and give some well-known

facts about the spin representations. We also describe a reciprocity for geometric and algebraic

Dirac operators. This is an important technique for relating spaces of harmonic spinors and Dirac

cohomology. In Section 2, we realize certain cohomologically induced representations as submodules

of kernels of geometric Dirac operators and prove Proposition B. Finally, Section 3 is devoted to the

construction of the parabolic subgroup P and the proof of Theorem A. A proof of the reciprocity

between geometric and algebraic harmonic spinors is provided in an appendix.

1. Preliminaries

1.1. The groups and homogeneous spaces. Let G be a connected real reductive Lie group. We

will denote the complexification of Lie(G), the Lie algebra of G, by g (and similarly for other Lie

groups). By a real reductive grup we mean that g is reductive, i.e., g = [g, g] + z, where z denotes

the center of g. Fix a G-invariant nondegenerate bilinear symmetric form 〈 , 〉 on g. If K/Z is a

maximal compact subgroup of G/Z, where Z is the center of G, then K is the fixed point group of

a Cartan involution θ of G. Write g = k+s for the corresponding Cartan decomposition of g, where
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k is the Lie algebra of K and s = k⊥. We take H to be a closed subgroup of G, with complexified

Lie algebra denoted by h, satisfying the following conditions:

H is connected and reductive,

H is θ-stable,(1.1)

〈 , 〉 remains nondegenerate when restricted to h.

In this situation, there is a decomposition

g = h+ q , where q = h⊥.

The restriction of 〈 , 〉 to q remains nondegenerate and [h, q] ⊂ q.

1.2. Spin representation. The construction of the spin representation is briefly reviewed here; we

follow the discussion of [3, Ch. 9]. Let Cl(q) be the Clifford algebra of the complexification of q, i.e.,

the quotient of the tensor algebra of q by the ideal generated by the elements X⊗Y +Y ⊗X−〈X ,Y 〉
with X,Y ∈ q. Let

so(q) =
{

T ∈ End(q) : 〈T (X) , Y 〉+ 〈X ,T (Y )〉 = 0, ∀X,Y ∈ q
}

.

Then the endomorphisms RX,Y : W 7→ 〈Y ,W 〉X − 〈X ,W 〉Y span so(q). The linear extension

of the map RX,Y 7→ 1
2(XY − Y X) is an injective Lie algebra homomorphism of so(q) into Cl2(q),

the subalgebra of degree two elements in the Clifford algebra. Let q+ be a maximally isotropic

subspace of q and write Sq for the exterior algebra ∧q+ of q+. The spin representation (sq, Sq) of

h is defined as the composition map

h
ad→֒ so(q) →֒ Cl2(q) ⊂ Cl(q)

γq→ End(Sq)

where γq denotes the Clifford multiplication. Although the construction is independent of maximal

isotropic subspace q+, the explicit description of a particularly useful q+ will be given in section

3.3 below.

There is an hermitian inner product 〈 , 〉Sq on Sq for which γq(X), X ∈ q ⊂ Cl(q), is skew

hermitian ([17, Lemma 9.2.3]):

(1.2) 〈γq(X)u , v〉Sq = −〈u , γq(X)v〉Sq , ∀X ∈ q, ∀u, v ∈ Sq.

1.3. Geometric Dirac operators. Let E be a finite dimensional representation of h such that

the tensor product Sq ⊗E lifts to a representation of the group H. There is an associated smooth

homogeneous vector bundle over G/H, which we denote by Sq⊗E , whose space of smooth sections

is

C∞(G/H,Sq ⊗ E) ≃
{

C∞(G)⊗ (Sq ⊗ E)
}H

≃ {f : G→ Sq ⊗ E | f is smooth and f(gh) = h−1 · f(g), h ∈ H}.

We remark that G acts by left translations on each of these function spaces.
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Let {Xj} be a fixed basis of q satisfying

(1.3) 〈Xj ,Xk〉 = δjk.

Denote the universal enveloping algebra of g by U(g). Let cq be the degree three element in Cl(q)
defined as the image under the Chevalley isomorphism of the 3-form

(X,Y,Z) 7→ 〈X , [Y,Z]〉

on q. The element
∑

Xj ⊗ (γ(Xj)⊗ 1)− 1⊗ (γ(cq)⊗ 1) in U(g)⊗ End(Sq ⊗ E) is H-invariant so

defines a G-invariant differential operator

DG/H(E) : C∞(G/H,Sq ⊗ E)→ C∞(G/H,Sq ⊗ E)

acting on C∞(G/H,Sq ⊗ E). We refer to DG/H(E) as the geometric (cubic) Dirac operator; it is

given by the following formula:

(1.4) DG/H(E) =
∑

R(Xj)⊗ γ(Xj)⊗ 1− 1⊗ γ(cq)⊗ 1.

Note that DG/H(E) is independent of the basis {Xj} satisfying (1.3) (since each of the two terms

is, by itself, independent of the basis). We will often write DG/H for DG/H(E).

1.4. Dirac cohomology. Associated with a g-module (π, V ), there is an algebraic cubic Dirac

operator DV : V ⊗ Sq −→ V ⊗ Sq defined by

(1.5) DV =
∑

j

π(Xj)⊗ γ(Xj)− 1⊗ γ(cq).

The following formula1 for the square of DV is due to Kostant ([8, Theorem 2.16]):

(1.6) 2D2
V = Ωg ⊗ 1− Ω∆h + ||ρ(g)||2 − ||ρ(h)||2,

where Ωg is the Casimir element for g acting on V and Ω∆h is the Casimir element of h acting in

V ⊗Sq. In the case when h = k the cubic term cq vanishes and formula (1.6) is due to Parthasarathy

(see [14]).

The (cubic) Dirac cohomology of the g-module V is the h-module defined as the quotient

H(h,g)(V ) = ker(DV )/ker(DV ) ∩ Im(DV ).

The Dirac cohomology will also be denoted by HD(V ) when the pair (h, g) is understood.

Finally we note that in the case when V is a unitarizable (g,K)-module, i.e., V has a nonde-

generate (g,K)-invariant positive definite hermitian form 〈 , 〉V , then one gets a nondegenerate

hermitian form on V ⊗ Sq defined by

(1.7) 〈 , 〉V⊗Sq = 〈 , 〉V ⊗ 〈 , 〉Sq

1The factor of 2 in this formula does not appear in [8]. This is because we are taking xy + yx = 〈x , y〉 in the
definition of the Clifford algebra, while xy + yx = 2〈x , y〉 is used in [8].
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with respect to which DV is selfadjoint ([17, Lemma 9.3.3]). In the case where h = k, since the

hermitian form on Ss is positive definite, the form 〈 , 〉V⊗Ss is also positive definite and it follows

that

HD(V ) = ker(DV ).

When h ⊂ k, the same conclusion holds for H
(h,k)
D (V ) for a finite dimensional representation V .

1.5. Algebraic Dirac operators vs. geometric Dirac operators. Let V be a smooth admis-

sible representation of G, VK the space of K-finite vectors in V and V ⋆
K the K-finite dual of VK .

Let E be a finite dimensional representation of k such that the tensor product Ss⊗E with the spin

representation of k lifts to a representation of the group K. Then Ss ⊗ E induces a homogeneous

bundle Ss ⊗ E −→ G/K. There is a vector space isomorphism

HomG(V,C
∞(G/K,Ss ⊗ E)) ≃ HomK(E∗, Ss ⊗ V ∗

K)

given by T 7→ T1, with T1(e
∗)(v) = 〈e∗ , T (v)(1)〉, where e∗ ∈ E∗, v ∈ V and 1 ∈ G is the identity

element. In addition one has
(

DV ∗
K
T1(e

∗)
)

(v) = 〈e∗ ,
(

DG/KT (v)
)

(1)〉, for all e∗ ∈ E∗ and v ∈ V .

One may conclude the following.

Proposition 1.8. HomG(V, ker(DG/K(E))) ≃ HomK(E∗, ker(DV ∗
K
)).

See the appendix for details.

There is also an isomorphism

HomK(E∗, V ∗
K ⊗ Ss) ≃ HomK(VK ⊗ Ss, E)

given by B 7→ b, with 〈s ,B(e∗)(v)〉 = 〈e∗ , b(v ⊗ s)〉. We also have the identity

〈s ,
(

DV ∗
K
B(e∗)

)

(v)〉 = 〈e∗ , b
(

DVK
(v ⊗ s)

)

〉.

The pairing on the lefthand side is a nondegenerate pairing of the self-dual representation Ss with

itself. From this we may conclude that

HomK(E∗, ker(DV ∗
K
)) ≃ HomK((VK ⊗ S)/Im(DVK

), E).

Now assume that VK is unitarizable. Then DVK
is self adjoint and

(VK ⊗ S)/Im(DVK
) ≃ Im(DVK

)⊥ ≃ ker(DVK
).

We may conclude that ker(DV ∗
K
) ≃

(

ker(DVK
)
)∗
, as K-modules. Therefore, by §1.4,

(1.9) HD(V
∗
K) ≃

(

HD(VK)
)∗
.

The above discussion applies to the Dirac operator on the homogeneous space K/H, when

H ⊂ K, resulting in the statement that

(1.10) HomK(E, ker(DK/H(F))) ≃ HomH(F,H
(h,k)
D (E)).
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2. The fundamental series

An important special case of our main result occurs when H is compact. In this section we see

that in this case (under certain mild conditions) the kernel of DG/H is nonzero. In fact the kernel

contains certain fundamental series representations. This is analogous to the well-know fact that

ker(DG/K) contains a discrete series representation ([14], [1]) when rankC(g) = rankC(k).

2.1. Cartan subalgebras and roots. We assume that h is as in §1.1 and that h ⊂ k. Let th be

a Cartan subalgebra of h. Extend to a Cartan subalgebra t = th + tq of k by choosing tq ⊂ k ∩ q.

Now extend to a Cartan subalgebra t+ a of g by choosing a abelian in s.

Let ∆+ ⊂ ∆(t + a, g) be defined by a lexicographic order with th first, then tq, then a. Such a

positive system has the property that

∆+(h) := {α|th : g(α) ⊂ h, α ∈ ∆+ and α|th 6= 0}

is a positive system of roots in h. Here we are denoting the α-root space in g by g(α).

Note that t+a is a fundamental Cartan subalgebra of g, i.e., is maximally compact. The positive

systems described above may also be described as follows. There is Λ0 ∈ (t + a)∗ with Λ0|a = 0

so that ∆+ = {α : 〈Λ0 , α〉 > 0}. The Borel subalgebras that arise from such a positive system

are the θ-stable Borel subalgebras containing t + a. This gives a positive system of t-roots in k:

∆+(k) = {β ∈ ∆(t, k) : 〈Λ0 , β〉 > 0}.
Suppose that µ ∈ t∗h and that µ is dominant for an arbitrary positive system. Then by choosing

µ as the first basis vector defining a lexicographic order as above, we arrive at positive systems ∆+

and ∆+(h) with the property that µ, extended to be 0 on tq + a, is dominant for both ∆+ and

∆+(h). In §2.3, where we begin with a finite dimensional representation E of h, we may therefore

assume that the highest weight µ of E is ∆+-dominant.

We make the following assumption on H. This is the assumption on H not being to small

mentioned in the introduction; it will be necessary for certain Dirac cohomology spaces to be

nonzero. See §2.3.

Assumption 2.1. There is no root α ∈ ∆(g) so that α|th = 0.

Note that this assumption automatically holds when either H = K or h and g have equal rank.

Under this assumption we may construct the spin representation Sq by choosing a maximal

isotropic subspace q+ of q as follows. Choose any maximal isotropic subspace (tq + a)+ of tq + a,

then set

q+ = (tq + a)+ +
∑

γ

q(γ),

where the sum is over all th-weights γ in q. The assumption tells us that no such γ is zero, so q+

is indeed maximally isotropic.
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We will use the notation of ρ(g) for one half the sum of the roots in ∆+. Similarly ρ(h) denotes

one half the sum of the roots in ∆+(h). We also use the notation ρ(q) for one half the sum of the

th-weights in q+, and similarly for ρ(k ∩ q).

2.2. The fundamental series and its Dirac cohomology. The fundamental series representa-

tions are cohomologically induced representations. They arise as follows. Let b be a θ-stable Borel

subalgebra in g which contains the fundamental Cartan subalgebra t+a. The positive system asso-

ciated with b is described in the previous subsection. Write b = t+a+u for the Levi decomposition

of b. Then a fundamental series representation is a cohomologically induced representation Ab(λ),

for λ ∈ (t + a)⋆, with λ|a = 0 and λ a ∆+-dominant and analytically integral weight, having the

following properties.

(a) The infinitesimal character is λ+ ρ(g).

(b) λ|t +2ρ(s∩u) is the highest weight of a lowest K-type with respect to ∆+(k), where ρ(s∩u)
denotes half the sum of the t-weights in s ∩ u.

(c) Each K-type has highest weight of the form λ|t + 2ρ(s ∩ u) +
∑

γ∈∆(s∩u) nγγ, where nγ are

non negative integers.

It is know from Vogan and Zuckerman ([16, Theorem 2.5]) that these properties uniquely determine

Ab(λ). The fundamental series representations are irreducible and unitarizable ([15], [17, Ch. 6]).

The computation of the Dirac cohomology, with respect to k ⊂ g, is straightforward using

Kostant’s formula (1.6) for the square of DAb(λ) : Ab(λ) ⊗ Ss → Ab(λ) ⊗ Ss and the properties

(a)-(c) above. Although this is contained in Theorem 5.2 of [7], we give the short proof here.

First, by the unitarizability of Ab(λ), the Dirac cohomology is ker(DAb(λ)) = ker(D2
Ab(λ)

). Let

Fτ be the finite dimensional highest weight representation of k with highest weight τ with respect

to ∆+(k). By Kostant’s formula (1.6), Fτ occurs in ker(DAb(λ)) if Fτ occurs in Ab(λ) ⊗ Ss and

||λ+ ρ(g)|| = ||τ + ρ(k)||.
The t-weights of Ss are all weights of the form 1

2(±γ1 ± · · · ± γk) with γi ∈ ∆(s ∩ u). Each

weight occurs with multiplicity 2d, where d is the greatest integer in dim(a)/2. We use the notation

〈A〉 =∑α∈A α, for any set A of weights. With this notation the t-weights in Ss are

∆(Ss) = {〈A〉 − ρ(s ∩ u) : A ⊂ ∆(s ∩ u)}

= {ρ(s ∩ u)− 〈A〉 : A ⊂ ∆(s ∩ u)}.

Each constituent of Ab(λ)⊗ Ss has highest weight of the form

τ = λ|t + 2ρ(s ∩ u) +
∑

γ∈∆(s∩u)

nγγ + (〈A〉 − ρ(s ∩ u))

= λ|t + ρ(s ∩ u) +
∑

γ∈∆(s∩u)

mγγ, for some nonnegative integers mγ .
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Now

||τ + ρ(k)||2 = ||λ+ ρ(g) +
∑

γ∈∆(s∩u)

mγγ||2

= ||λ+ ρ(g)||2 + ||
∑

γ∈∆(s∩u)

mγγ||2 +
∑

γ∈∆(s∩u)

mγ〈λ+ ρ(g) , γ〉.

For this to equal ||λ + ρ(g)||2 one must have mγ = 0 (because 〈λ + ρ(g) , γ〉 > 0 and mγ ≥ 0).

Therefore, all nγ = 0 and 〈A〉 = 0. So τ = λ|t + ρ(s ∩ u) and the multiplicity is 2d, where d is the

greatest integer in dim(a)/2. This proves the following statement.

Proposition 2.2. Let Ab(λ) be the cohomologically induced representation described in (a)-(c)

above. Then

(2.3) H(k,g)(Ab(λ)) = 2dFλ|t
+ρ(s∩u).

Now let µ ∈ t∗ be ∆+(k)-dominant and integral. Let Eµ be the irreducible finite dimensional

representation of k with highest weight µ. Define λµ ∈ (t+ a)∗ by λµ|t = µ− ρ(s∩ u) and λµ|a = 0.

Then, as described at the end of §2.1, the positive system ∆+ can be chosen so that λµ is ∆+-

dominant. With such a choice of ∆+ we have the following corollary, which is a consequence of

Prop. 1.8 and equation (1.9).

Corollary 2.4. Suppose µ is ∆+(k)-dominant and Ss ⊗ Eµ lifts to a representation of K. Then

the kernel of DG/K : C∞(G/K,S ⊗ Eµ) → C∞(G/K,S ⊗ Eµ) contains a smooth G-representation

infinitesimally equivalent to Ab(λµ).

Proof. Since λµ+ρ is ∆+-dominant, Prop. 2.2 gives HomK

(

Eµ,H
(g,k)(Ab(λµ))

)

6= 0. Now Prop. 1.8

(along with (1.9)) gives

Hom(g,K)

(

Ab(λµ), ker(DG/K(Eµ))
)

6= 0.

�

2.3. Induction in stages. Now assume that H ⊂ K. Let Fµ be the irreducible finite dimensional

representation of H having highest weight µ ∈ t∗h. As described at the end of §2.1, we may assume

that the extension of µ (by 0 on tq + a) is ∆+-dominant, and therefore its restriction to t is ∆+(k)-

dominant. Let Eξ be the irreducible finite dimensional representation of k of highest weight ξ ∈ t∗.

In [13] it is shown that Fµ ⊂ H
(h,k)
D (Eξ) if and only if µ = w(ξ + ρ(k))− ρ(h) for some w ∈W (k)

having the property that w(ξ + ρ(k))|tq = 0.

Define

ξ|th = µ− (ρ(k) − ρ(h))|th
ξ|tq = −ρ(k)|tq .

(2.5)

Then ξ + ρ(k) is ∆+(k)-dominant. By taking w = e above, we have Fµ ⊂ H
(h,k)
D (Eξ). We may

conclude from (1.10) that Eξ ⊂ ker
(

DK/H(Fµ)
)

.
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Our goal now is to realize a fundamental series representation in the kernel of DG/H(Fµ). The

induction in stages argument begins with the identification

C∞(G/H,Sq⊗Fµ) ≃ C∞(G/K,Ss ⊗ C∞(K/H,Sk∩q ⊗Fµ)),

f ←→ Ff ,
(2.6)

with (Ff (g))(k) = (k ⊗ 1) · f(gk). In [12] it is shown that

(2.7)
(

FDG/Hf

)

(g) =
(

DG/KFf

)

(g) +DK/H

(

Ff (g)
)

.

With ξ defined as in (2.5), we have seen that Eξ may be realized as a subspace of ker
(

DK/H(Fµ)
)

⊂
C∞(K/H,Sk∩q⊗Fµ). Therefore, when restricted to C∞(G/K, Eξ), under the identification of (2.6),

(2.8) DG/K(Ff ) = FDG/H (f).

Proposition 2.9. The kernel of DG/H(Fµ) contains a smooth representation infinitesimally equiv-

alent to a cohomologically induced representation Ab(λµ) with

λµ|th = µ− ρ(q), λ|a = 0 and λ|tq = −ρ(k)|tq .

Proof. Let ξ be as in (2.5) and realize Eξ ⊂ ker(DK/H(Fµ)). So we may consider

C∞(G/K,Ss ⊗ Eξ) ⊂ C∞(G/K,Ss ⊗ C∞(K/H,Sk∩q ⊗Fµ))

≃ C∞(G/H,Sq ⊗Fµ).

By (2.8)

ker
(

DG/K(Eξ)
)

⊂ ker
(

DG/H(Fµ)
)

.

Applying (2.4),

Ab(λµ) ⊂ ker(DG/K(Eξ)) ⊂ ker(DG/H(Fµ)),

since λµ|t = ξ|t − ρ(s). �

Note that the λµ appearing in the proposition, is such that λµ + ρ(g) is dominant, but need not

be regular. Therefore, Ab(λµ) may equal 0. The further condition that λµ be dominant will ensure

that Ab(λµ) is nonzero.

The following lemma will be important in §3.4. Note that the map evale : C
∞(G/H,Sq⊗Fµ)→

Sq ⊗ Fµ given by evale(f) = f(e) (with e the identity element of G) is an H-homomorphism.

Assuming

(i) 〈µ+ ρ(h)− 〈B〉 , β〉 ≥ 0, for all β ∈ ∆+(h) and B ⊂ ∆(q+);

(ii) 〈µ+ ρ(h)− 2ρ(k ∩ q) , β〉 > 0, for all β ∈ ∆+(h),

Steinberg’s formula for the decomposition of the tensor product of two finite dimensional repre-

sentations of H tells us that Sq ⊗ Fµ contains the irreducible representation of H having highest

weight µ+ ρ(q) − 2ρ(k ∩ q). Let V0 be the corresponding isotypic subspace of Sq ⊗ Fµ.

Lemma 2.10. Realizing Ab(λµ) ⊂ ker(DG/H(Fµ)), we have evale(Ab(λµ)) ⊂ V0.
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Proof. We first give the proof for the case H = K. In this case q = s and k∩q = 0, so λµ = µ−ρ(s).

The possible K-types in Ab(λµ) have the form λµ + 2ρ(s) +
∑

nγγ = µ + ρ(s) +
∑

nγγ, with

γ ∈ ∆+(s), nγ ≥ 0. On the other hand, the K-constituents of Sq ⊗ Fµ = Ss ⊗ Fµ all have highest

weights of the form µ + ρ(s) − 〈B〉, B ⊂ ∆+(s). Since the image of evale must consist of K-types

common to Ab(λµ) and Sq ⊗ Fµ, the only possibility is that all nγ = 0 and 〈B〉 = 0. Therefore,

evale(Ab(λµ)) is contained in the isotypic subspace with highest weight µ+ρ(s) = µ+ρ(q)−2ρ(k∩q),
i.e., evale(Ab(λµ)) ⊂ V0.

Now consider arbitrary H ⊂ K. Since f(e) = (Ff (e))(e), we first consider Ff 7→ Ff (e). By the

H = K case, Ff (e) is in the isotypic subspace of Ss⊗Eξ of type Eξ+ρ(s) (with ξ as in (2.5)) . Now,

evaluation at e gives an H-homomorphism Eξ+ρ(s) → Sq ⊗ Fµ. Again we compare the H-types.

The highest weights of H-constituents of Eξ+ρ(s) are of the form ξ + ρ(s) − 〈A〉, A ⊂ ∆+(h). But

ξ+ ρ(s)− 〈A〉 = µ− ρ(k∩ q) + ρ(s)− 〈A〉 = µ+ ρ(q)− 2ρ(k∩ q)− 〈A〉. The H-types in Sq⊗Fµ are

of the form µ+ ρ(q)−〈B〉, B ⊂ ∆(k∩ q+). The only way for us to have µ+ ρ(q)− 2ρ(k∩ q)−〈A〉 =
µ+ ρ(q)− 〈B〉 is for 〈B〉 = 2ρ(k ∩ q) + 〈A〉. As B ⊂ ∆(k∩ q+), this means that B = ∆(k∩ q+) and
〈A〉 = 0. We conclude that the image of evale|Ab(λµ) is contained in V0. �

3. The main theorem

Let H be an arbitrary subgroup of G satisfying (1.1). We associate to H a parabolic subgroup

P in G. The main result is the construction of an integral intertwining map P : C∞(G/P,W) →
ker(DG/H). The precise statement is contained in Theorem 3.9.

3.1. Roots and positive systems. We need to make some choices of Cartan subalgebras and

positive root systems, which will be used in the construction of our intertwining operator. These

choices are compatible with those made in §2.1, where the special case of h ⊂ k was considered.

Consider the complexified Lie algebra h of the reductive groupH and the decomposition g = h+q.

Choose a maximal abelian subspace ah of h ∩ s. Define l = zg(ah), the centralizer of ah in g. A

Cartan subalgebra of g is chosen as follows.

• Let th be a Cartan subalgebra of h ∩ k ∩ l. Note that ah + th is a Cartan subalgebra of h,

since ah is maximal abelian in h ∩ s.

• Extend th to a Cartan subalgebra t = th + tq of k ∩ l with tq ⊂ q ∩ k ∩ l. Note that t is not

necessarily a Cartan subalgebra of k.

• Finally, choose aq ⊂ q∩s∩ l so that ah+ t+aq is a Cartan subalgebra of l. Write a := ah+aq.

Since rankC(g) = rankC(l), we see that a+ t is also a Cartan subalgebra of g.

Remarks. (1) When h ⊂ k, ah = {0}. Therefore l = g and a+ t is a fundamental Cartan subalgebra

of both g and l, as in §2.1.
(2) When rankC(h) = rankC(g) (as in [12]) t = th and a = ah.
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Let ∆ := ∆(a + t, g) be the set of a + t-roots in g. For any α ∈ ∆ we will write g(α) for the

corresponding root space.

Let ∆+ be any positive system of roots in ∆ := ∆(a + t, g) given by a lexicographic order with

a basis of ah first, then (in order) bases of th, tq and aq.

A positive system of (ah + th)-roots in h is chosen using the lexicographic order with the same

basis of ah as above, followed by the basis of th. Call this positive system ∆+(h).

3.2. The parabolic subgroup. Having fixed a positive system of roots ∆+ in g we may define a

parabolic subalgebra of g as follows. Set

Σ+ := {α ∈ ∆+ : α|ah 6= 0}.

Then

p := l+ n, where n :=
∑

α∈Σ+

g(α),

is a parabolic subalgebra of g. Thanks to the choice of ∆+, p is the complexification of a (real)

subalgebra of Lie(G). We define P to be the connected subgroup of G corresponding to this real

parabolic Lie algebra.

It will be convenient for us to write l = m+ ah with

m =
∑

α∈∆,α|ah=0

g(α) + (aq + t).

Therefore,

(3.1) p = m+ ah + n.

However, this is not (typically) the Langlands decomposition of p. Note that aq ⊂ l ∩ s, but it

can happen that some (but not all) of aq lies in the center of l. The decomposition (3.1) gives a

corresponding decomposition of P , which we write as P = MAhN .

Lemma 3.2. p ∩ h is a minimal parabolic subalgebra of h. In particular, m ∩ h ⊂ k and l ∩ h =

l ∩ h ∩ k+ ah.

Proof. The Borel subalgebra of h defined by ah + th and ∆+(h) is contained in (p∩ h), so p∩ h is a

parabolic subalgebra. Since ah is maximal abelian in h∩ s, l∩ h = zh(ah) = l∩ h∩ k+ ah. Therefore,

p ∩ h is minimal. �

We set n =
∑

α∈Σ+ g(−α), so l+ n is the parabolic subalgebra opposite to p.

Lemma 3.3. The following hold.

(a) l = l ∩ h+ l ∩ q.

(b) m = m ∩ h+m ∩ q.

(c) q = q ∩ l+ q ∩ n+ q ∩ n.
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(d) m ∩ q = m ∩ q ∩ k+m ∩ s.

Proof. (a) This is clear since h and q are ah-stable and l is the 0-weight space of ah.

(b) This follows from (a) since

m ⊂ l = l ∩ h+ l ∩ q

= m ∩ h+ aq +m ∩ q.

(c) Since ah acts on q, q is a sum of ah-weight spaces. If X ∈ q is a weight vector, then the weight

is α|ah , for some α ∈ ∆ ∪ {0}. Therefore, X ∈ l, n or n.

(d) Since ah is θ-stable, so is m. Therefore, m∩q is also θ-stable. It follows that m∩q∩ k+m∩q∩ s.
By Lem. 3.2, m ∩ h ∩ s = 0. Therefore, m ∩ q ∩ s = m ∩ s and (d) follows. �

We need to fix a positive system in ∆(t + aq,m). Since we will be applying §2 to H ∩M ⊂ M

in place of H ⊂ G, we will need a choice of ∆+(m) as in §2.1. We therefore define ∆+(m) using

the lexicographic order with the same bases of th, tq and aq (in that order) that were used in the

lexicographic order defining ∆+ earlier. Observe that t+ aq is a fundamental Cartan subalgebra of

m. Using the basis of th gives a lexicographic order that in turn gives a positive system ∆+(m∩ h).
We make the following assumption on H, which is analogous to and consistent with Assumption

2.1.

Assumption 3.4. There is no root β ∈ ∆(th + tq + aq,m) so that β|th = 0.

3.3. The representation Sq⊗Eµ. Let µ ∈ (ah+ th)
∗ be ∆+(h)-dominant and integral. Let Eµ be

the irreducible finite dimensional h-representation with highest weight µ. We consider the tensor

product Sq ⊗ Eµ, a representation of h.

The construction of the spin representation in §1.2 requires a choice of maximal isotropic subspace

of q. This is done as follows. Choose some maximal isotropic subspace (aq + tq)
+ of aq + tq and set

q+ = (aq + tq)
+ +

∑

β∈∆+(m∩q)

m(γ) + q ∩ n.

Then q+ is maximally isotropic in q by Lemma 3.3(c) and the fact that l ∩ q = m ∩ q.

Note that the (ah + th)-weights in q+ are the weights in q that are positive with respect to the

lexicographic order for the same bases of ah and th used in the definition of ∆+ above. It follows

that

ρ(m ∩ q) := ρ(m)|th − ρ(m ∩ h)

is 1/2 the sum of the th-weights in m ∩ q+.

The weight

ρ(q) :=
1

2

∑

γ∈∆(q+)

γ,
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with each weight occurring as many times as its multiplicity in q+, is ∆+(h)-dominant. The set of

weights of Sq is

∆(Sq) = {ρ(q) − 〈A〉 : A ⊂ ∆(q+)}

= {〈A〉 − ρ(q) : A ⊂ ∆(q+)}.

The subgroup H ∩M ⊂M satisfies the conditions of (1.1). Therefore, there is a spin represen-

tation Sm∩q. Using the maximal isotropic subspace m ∩ q+ of m ∩ q one easily sees that Sq∩m is

naturally contained in Sq as h ∩ m-representation. The set of weights of Sm∩q with respect to the

Cartan subalgebra th of m ∩ h is

∆(Sm∩q) = {ρ(m ∩ q)− 〈B〉 : B ⊂ ∆(m ∩ q+)}.

Lemma 3.5. The following hold.

(a) Sq∩m ⊂ (Sq)
h∩n, the n ∩ h-invariants in Sq.

(b) As a subspace of Sq, ah acts on Sq∩m by ρ(q)|ah .
(c) ρ(q)|th = ρ(m ∩ q).

Proof. The proof of the first statement is as in [11, Lemma 3.8]. The second follows since the

weights of Sm∩q ⊂ Sq are of the form ρ(q) − 〈B〉 with B ⊂ ∆(m ∩ q+). But 〈B〉|ah = 0, since the

weights in m vanish on ah. The last statement follows from ρ(q)|th − ρ(m ∩ q) = ρ(n ∩ q)|th = 0,

which follows from the fact that ∆(n ∩ q) is stable under −θ. �

Now consider Eµ (with ∆+(h)-dominant integral µ ∈ (ah + th)
∗). Set Fµ|th

:=
(

Eµ

)n∩h
, an

irreducible representation of m ∩ h of highest weight µ|th .
For the remainder of this article we make the following assumptions on µ.

(i) 〈µ+ ρ(m ∩ h)− 〈B〉 , β〉 ≥ 0, for all β ∈ ∆+(m ∩ h) and B ⊂ ∆+(m ∩ q).

(ii) 〈µ+ ρ(m ∩ h)− 2ρ(m ∩ k ∩ q) , β〉 > 0, for all β ∈ ∆+(m ∩ h).
(3.6)

By Steinberg’s formula for the decomposition of a tensor product of finite dimensional repre-

sentations, we see that Sm∩q ⊗ Fµ|th
contains the irreducible highest weight representation of

m ∩ h having highest weight µ+ ρ(m ∩ q)− 2ρ(m ∩ k ∩ q). Let V0 be the isotypic subspace of type

Fµ+ρ(m∩q)−2ρ(m∩k∩q) . Note that the assumption of (2.1) and the definition of V0 are consistent with

§2.3.
Observe that

V0 ⊂ Sm∩q ⊗ Fµ|th
⊂ (Sq ⊗Eµ)

n∩h ,

by Lemma 3.5. It also follows from Lem. 3.5 parts (a) and (c), that ah acts on V0 (as a subspace

of Sq ⊗ Eµ) by the weight (µ+ ρ(q))|ah .
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3.4. Harmonic spinors. Let P be the parabolic subgroup of G associated to H as in §3.2. Fix

µ ∈ (ah+ th)
∗ and assume that Sq⊗Eµ lifts to a representation of the group H. Therefore, we have

a smooth homogeneous vector bundle Sq ⊗ Eµ → G/H and a cubic Dirac operator

DG/H(Eµ) : C∞(G/H,Sq ⊗ Eµ)→ C∞(G/H,Sq ⊗ Eµ).

Our goal is to construct an intertwining operator from a representation induced from P to

ker
(

DG/H(Eµ)
)

. Let W be a representation of P . Write the induced representation as

C∞(G/P,W) =
{

ϕ : G→W : ϕ is smooth and ϕ(gp) = p−1ϕ(g), p ∈ P, g ∈ G
}

.

The action of g ∈ G is by left translation on functions: (g · f)(g1) = f(g−1g1). The following is

essentially Lemma 4.2 of [12], it is easily proved using a standard change of variables formula (e.g.,

[4, Lem. 5.19]).

Lemma 3.7. Let W be some representation of P . If t ∈ HomP∩H(W ⊗ C−2ρ(h)|ah
, Sq ⊗ Eµ) is

nonzero, then

(Ptϕ)(g) =
∫

H∩K
ℓ · t(ϕ(gℓ)) dℓ

is a nonzero G-intertwining map

Pt : C∞(G/P,W) → C∞(G/H,Sq ⊗ Eµ).

Given the bundle Sq ⊗ Eµ → G/H we now make our choice of P -representation W and homo-

morphism t.

Let Fµ|th
be the irreducible representation of H ∩M of highest weight µ|th . Suppose that µ

satisfies the assumptions of (3.6). Then, by §2.3 applied to H ∩ M ⊂ M , ker(DM/H∩M (Fµ))

contains a representation W infinitesimally equivalent to Ab∩m(λµ) with

λµ|th = µ|th − ρ(m ∩ q), λµ|aq = 0 and λµ|tq = −ρ(m ∩ k).

By Lemma 2.10, evaluation at the identity is nonzero on W and has image in V0. Give W the

trivial N -action and define ah to act by (µ+ρ(q)+2ρ(h))|ah . Take t to be evaluation at the identity:

t(w ⊗ 1) = w(e).

Lemma 3.8. t ∈ HomP∩H(W ⊗C−2ρ(h)|ah
, Sq ⊗ Eµ).

Proof. Evaluation is an M ∩H-homomorphism. The action of ah on W ⊗C−2ρ(h) is by (µ+ρ(q))|ah .
The action on the image of t is by (µ + ρ(q))|ah , as pointed out at the end of §3.3. The action of

N ∩H on both W ⊗C−2ρ(h) and the image of t is trivial. �

When these conditions are satisfied and t is chosen as above, our main theorem, stated as

Theorem A in the introduction, is the following.

Theorem 3.9. The intertwining map Pt has image in the kernel of DG/H(Eµ). In particular,

ker(DG/H(Eµ)) 6= 0.
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Proof. The first observation is that

(

DG/H(Ptϕ)
)

(g) =

∫

H∩K

(

∑

i

aiR(Xi)⊗ γ(Xi)

)

ℓ · t(ϕ( · ℓ))|g dℓ

∫

H∩K
ℓ ·
(

∑

i

aiR(Xi)⊗ γ(Xi)

)

t(ϕ(·))|gℓ dℓ.

As t is evaluation at e, it suffices to show that

(3.10)
∑

i

(aiR(Xi)⊗ γ(Xi))ϕ(·)(e) = 0

for ϕ ∈ C∞(G/P,W).

We now choose the basis Xi in a suitable way. Let {Ej} be a basis of q ∩ n and {Ej} a basis of

q ∩ n such that

〈Ej , Ek〉 = δjk

〈Ej , Ek〉 = 〈Ej , Ek〉 = 0,

and let {Zj} be a basis of m ∩ q so that

〈Zj , Zk〉 = δjk.

Setting

Y +
j =

1√
2
(Ej + Ej) and Y −

j =
1√
2
(Ej − Ej),

we get an orthogonal basis {Zj} ∪ {Y ±
j } of q as required in (1.3). The (geometric) Dirac operator

DG/H(Eµ) may be written as follows (equation (4.7) in [12]):

DG/H(Eµ) =
∑

i

(

R(Zi)⊗ γ(Zi)⊗ 1− γ(cm∩q)
)

+
∑

j

(

R(Ej)⊗ ǫ(Ej)⊗ 1 +R(Ej)⊗ ı(Ej)⊗ 1
)

− 1⊗
(

∑

j

〈Zi , Zi〉〈Zi , [Ej , Ek]〉γ(Zi)ǫ(Ej)ı(Ek)

+
∑

〈Ej , [Ek, Eℓ]〉ǫ(Ej)ǫ(Ek)ı(Eℓ) +
∑

〈Ej , [Ek, Eℓ]〉ǫ(Ej)ı(Ek)ı(Eℓ)
)

⊗ 1,

(3.11)

where ı (resp. ǫ) stands for the interior (resp. exterior) product (resp. multiplication) and cm∩q is

the cubic term for H ∩M ⊂M .

Now insert (3.11) into (3.10). The first term vanishes as follows. First note that

(

R(Zi)ϕ(·)
)

(e)|g =
d

ds
ϕ(g exp(sZi))(e)|s=0

=
d

ds

(

exp(sZi))
−1ϕ(g)

)

(e)|s=0, by M -equivariance of ϕ,

=
d

ds
ϕ(g)(exp(sZi))|s=0, by the definition of M action on W,

= R(Zi)
(

ϕ(g)(·)
)

|e.
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Now,

(

∑

i

R(Zi)⊗ γ(Zi)− γ(cm∩q)
)

ϕ(·)(e)|g

=
∑

i

ai
(

R(Zi)ϕ(g)
)

|e − γ(cm∩q)ϕ(g)(e)

=
(

DM/M∩Hϕ(g)
)

(e)

= 0, since ϕ(g) ∈W ⊂ ker(DM/M∩H).

By the right P = MAhN -equivariance defining C∞(G/P,W), R(Ej)ϕ = 0, so the next terms in

(3.11) vanish. Since the image of t is contained in Sm∩q ⊗ Fµ|th
and each Ej is orthogonal to m ∩ q

(so that ı(Ej)Sm∩q = 0), the remaining terms are 0. �

Appendix: Geometric vs. algebraic Dirac operators

For the convenience of the reader we provide here a proof of Proposition 1.8. Recall that V denotes

a smooth admissible representation of G, VK the space of K-finite vectors in V , V ⋆
K the K-finite

dual of VK and Ss is the spin representation for k. Let E be a finite dimensional representation

of k such that the tensor product E ⊗ Ss lifts to a representation of the group K, and denote by

E⋆ the dual of E. The K-representation E ⊗ Ss induces a homogeneous bundle Ss ⊗ E −→ G/K

over G/K whose space of smooth sections, on which G acts by left translations, is denoted by

C∞(G/K,Ss ⊗ E). The map

HomG(V,C
∞(G/K,Ss ⊗ E)) Ψ−→ HomK(E⋆, Ss ⊗ V ⋆

K)

defined by Ψ(T )(e⋆)(v) = 1⊗ e⋆T (v)(1), is an isomorphism, where 1 denotes the identity G.

Next, as in Section 1, consider the (cubic) Dirac operators

DG/K(E) : C∞(G/K,Ss ⊗ E) −→ C∞(G/K,Ss ⊗ E) and DV ⋆
K
: Ss ⊗ V ⋆

K −→ Ss ⊗ V ⋆
K ,

and define the maps

D∗ : HomG(V,C
∞(G/K,Ss ⊗ E)) −→ HomG(V,C

∞(G/K,Ss ⊗ E))

and

D∗ : HomK(E⋆, Ss ⊗ V ⋆
K) −→ HomK(E⋆, Ss ⊗ V ⋆

K)

by

(D∗(T ))(v) = DG/K(E)(T (v)),

(D∗(A))(e
⋆) = DV ⋆

K
(A(e⋆)).
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We claim that the following diagram is commutative

HomG(V,C
∞(G/K,Ss ⊗ E)) HomK(E⋆, Ss ⊗ V ⋆

K)

HomG(V,C
∞(G/K,Ss ⊗ E)) HomK(E⋆, Ss ⊗ V ⋆

K)

-

-

? ?

Ψ

Ψ

D∗ D∗

Indeed one has

Ψ(D∗(T ))(e
⋆)(v) = (1⊗ e⋆)

(

(D∗(T ))(v)(1)
)

= (1⊗ e⋆)
(

DG/K(T (v))(1)
)

and

DG/K(T (v))(1) =
∑

i

d

dt
|t=0(γ(Xi)⊗ 1)(T (v)(exp(tXi)(1)) − (γ(cs)⊗ 1)(T (v)(1))

=
∑

i

d

dt
|t=0 (γ(Xi)⊗ 1)(T (exp(−tXi)v)(1)) − (γ(cs)⊗ 1)(T (v)(1))

= −
∑

i

(γ(Xi)⊗ 1)(T (Xiv)(1)) − (1⊗ γ(cs))(T (v)(1))

which means that

Ψ(D∗(T ))(e
⋆)(v) = −

∑

i

(γ(Xi)⊗ e⋆)(T (Xiv)(1)) − (γ(cs)⊗ e⋆)(T (v)(1)).

On the other hand, one has:
(

(D∗(Ψ(T ))(e⋆)
)

(v) =
(

DV ⋆
K
(Ψ(T )(e⋆))

)

(v)

= −
∑

i

(

(γ(Xi)⊗Xi)(Ψ(T )(e⋆)
)

(v)− (γ(cs)⊗ 1)(Ψ(T )(e⋆)(v))

= −
∑

i

(γ(Xi)⊗ 1)(Ψ(T )(e⋆)(Xiv)) − (γ(cs)⊗ 1)(Ψ(T )(e⋆)(v))

= −
∑

i

(γ(Xi)⊗ e⋆)(T (Xiv)(1)) − (γ(cs)⊗ e⋆)(T (v)(1)).

We deduce the following isomorphism relating algebraic and geometric harmonic spinors:

HomG(V, ker(DG/K(E))) Ψ≃ HomK(E⋆, ker(DV ⋆
K
)),

therefore proving Proposition 1.8.
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