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Abstract. The Dirac cohomology of a finite dimensional representation
of a complex semisimple Lie algebra g, with respect to any quadratic sub-
algebra h, is computed. This generalizes a formula obtained by Kostant in
the case where g and h have equal rank, and by Huang, Kang and Pandžić
in the case where h is the fixed points of an involution.

Introduction

The Dirac operator has played an important role in the representation theory

of semisimple Lie groups, dating back to Parthasarathy’s work on the discrete

series [6]. The late 1990’s saw renewed interest in representation theoretic

Dirac operators with the definition of a cubic Dirac operator [4], a notion of

Dirac cohomology and the proof of a conjecture of Vogan [2]. There has been

recent activity in computing Dirac cohomology for various representations of

a semisimple Lie algebra g, usually with respect to a symmetric subalgebra

k. In this article the Dirac cohomology of a finite dimensional representation

of g with respect to an arbitrary quadratic subalgebra h ⊂ g is computed.

This generalizes results in [5] and [3], which may be thought of as analogues of

Kostant’s version of the Borel-Weil Theorem. The case of finite dimensional

modules, which has its own interest, plays an important role in the computa-

tion of Dirac cohomology of infinite dimensional modules through induction.

Fix a nondegenerate invariant symmetric bilinear form 〈 , 〉 on a complex

semisimple Lie algebra g. Let h be a reductive subalgebra of g for which the

restriction of 〈 , 〉 to h remains nondegenerate. Such a reductive subalgebra is

often called a quadratic subalgebra. The Lie algebra g splits into an orthogonal

sum

g = h⊕ q.
1
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A spin representation of so(q) on a space of spinors S is therefore defined; and

the map ad : h→ so(q) induces the spin representation of h on S.

Consider now the following element c of degree three in the Clifford algebra

Cl(q) of q defined by the Chevalley isomorphism(
q× q× q −→ C

)
−→ Cl(q)(

(X, Y, Z) 7→ 〈X, [Y, Z]〉
)
7→ c.

Given a g-module (π,W ), there is a ‘first order’ operator

DW : W ⊗ S −→ W ⊗ S

defined by

DW =
∑
j

π(Xj)⊗ γ(Xj)− 1⊗ γ(c)

known as the (algebraic) cubic Dirac operator associated with W , where {Xj}
is an orthonormal basis of q and

γ : Cl(q) −→ End(S)

is the Clifford multiplication. Then the (cubic) Dirac cohomology of the g-

module W is defined as the quotient

H(W ) = Ker(DW )/Ker(DW ) ∩ Im(DW ).

The Dirac cohomology H(W ) for a finite dimensional g-module W was com-

puted by Kostant in [5] when g and h have equal rank. Later Huang, Kang and

Pandžić [3] computed the Dirac cohomology when h is the fixed points of an

involution (and rank(h) ≤ rank(g)). In this paper, we generalize the formula

for the Dirac cohomology of a finite dimensional g-representation when h is an

arbitrary quadratic subalgebra.

1. The spin representation

Let g be a complex semisimple Lie algebra and h a quadratic subalgebra.

Let g = h⊕q, as in the introduction. Fix a Cartan subalgebra t of h and extend

it to a Cartan subalgebra t + a of g, with a ⊂ q. By choosing a lexicographic

order one gets a positive system of roots ∆+ in ∆ = ∆(g, t + a). Then one
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may check that the following property holds for this positive system.

There exists a regular ∆+-dominant ξ ∈ (t + a)∗ so that

if α ∈ ∆+ and γ
def.
= α|t 6= 0, then 〈ξ|t, γ〉 > 0.

(C)

We will be concerned with positive systems satisfying (C). Note that if

rank(g) = rank(h), then every positive system satisfies (C). For a positive

system ∆+ we write

n =
∑
α∈∆+

g(α)

and ρ for half the sum of the roots in ∆+. Denote by ∆(V ) the set of t-weights

in a t-stable vector space V .

Lemma 1.1. If ∆+ satisfies (C), then

(1) Each t-weight in g is the restriction of a root in ∆.

(2) n = (n ∩ h) + (n ∩ q)

(3) ∆+(h)
def.
= {β ∈ ∆(h) : 〈ξ, β〉 > 0} is a positive system of ∆(h).

(4) ∆(n ∩ h) = ∆+(h).

Proof. Suppose γ 6= 0 is a t-weight in g. The γ-weight space is∑
α∈∆, α|t=γ

g(α). (1.2)

The first statement follows from this. Since both h and q are t-stable we have

h(γ) =
( ∑
α|t=γ

g(α)
)
∩ h and q(γ) =

( ∑
α|t=γ

g(α)
)
∩ q

and the γ-weight space in g is the direct sum h(γ) + q(γ).

Now suppose α ∈ ∆+ and Xα ∈ g(α) ⊂ n. There are two cases. First

γ = α|t 6= 0. Then (by the above) Xα ∈ h(γ) +q(γ). By (C) all roots restricting

to γ are positive, so h(γ), q(γ) ⊂ n. Therefore, Xα ∈ (n ∩ h) + (n ∩ q). When

γ = 0, Xα ∈ q, so Xα ∈ n ∩ q. This proves (2).

Part (3) follows from (1.2). The last statement is now clear. �

Now let us turn to the spin representation built from q and the invariant

form on q. For this discussion we consider any positive system ∆+ satisfying

(C). This determines ∆+(h) as in the preceding lemma.
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We use the construction of the spin representation as given in [1]. For this

we need a maximally isotropic subspace of q. Observe that

q = (n ∩ q) + a + (n− ∩ q),

where

n− =
∑
α∈∆+

g(−α).

Therefore, if we choose a maximal isotropic subspace a+ in a, then

q+ = (n ∩ q) + a+

is a maximally isotropic subspace of q. Then, by [1, Proposition 6.2.4], the

weights of the spin representation may be written as follows. List the weights

of q+ as

γ1, γ2, . . . , γN .

Here the weights are to be listed with the multiplicity with which they occur

in q+. In particular, N = [dim(q)/2], the greatest integer in dim(q)/2. The

weights of the spin representation S are

1

2
(±γ1 ± γ2 ± · · · ± γN).

It follows immediately that if m is the number of weights γi that are zero, then

the multiplicity of each weight is a multiple of 2m. Therefore, S ' 2m · S0, for

some h-representation S0.

Alternatively, using the notation 〈A〉 =
∑

γ∈A γ, we have

∆(S) = {ρ(n ∩ q)− 〈A〉 : A ⊂ ∆(n ∩ q)}.

Note that, by Lemma 1.1, ρ(n ∩ q) = ρ− ρ(h), where ρ(h) = ρ(∆+(h)).

Lemma 1.3. For any ∆+ satisfying (C), the spin representation S has a

highest weight vector, with respect to ∆+(h), of weight ρ(n ∩ q). This weight

occurs in S with multiplicity exactly 2m.

Proof. For the first statement it suffices to show that ρ(n∩q)+β is not a weight

of S when β ∈ ∆+(h). Suppose otherwise. Then ρ(n∩q) +β = ρ(n∩q)−〈A〉,
for some A ⊂ ∆(n∩q). Thus β = −〈A〉. Taking the inner product with ξ gives

〈ξ, β〉 = −
∑

γ∈A〈ξ, γ〉. But the lefthand side is positive while the righthand

side is nonpositive by (C).
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Verifying the multiplicity statement is similar. Suppose that ρ(n ∩ q) =

ρ(n∩q)−〈A〉. Then 0 = 〈A〉. Taking the inner product with ξ gives 〈ξ, γ〉 = 0,

for each γ ∈ A (by (C)). But (again by (C)), this means that γ = 0. �

We mention that if we were to take a different ∆+ satisfying (C) that de-

termines the same ∆+(h), then we would have another highest weight (with

respect to the same ∆+(h)) of multiplicity 2m in S. This follows from the fact

that the spin representation of so(q) is independent of the maximal isotropic

subspace used in the construction.

2. Dirac cohomology

Let E be an irreducible finite dimensional representation of g. We now fix

a positive system ∆+(h).

Definition 2.1. Let P be the set of positive systems ∆+ so that ∆+ satisfies

(C) and so that the corresponding ξ|t is dominant for ∆+(h). In other words

∆+(h) is the positive system in ∆(h) associated to ∆+ (as in Lemma 1.1(3)).

Lemma 2.2. Let ∆+ ∈ P. If λ is the highest weight of E with respect to ∆+,

then λ|t is a highest weight (with respect to ∆+(h)) for a constituent of the

restriction of E to h.

Proof. Let eλ be the highest weight vector of the g-representation E. This

vector is annihilated by n. Therefore is annihilated by n ∩ h. But ∆(n ∩ h) =

∆+(h) by Lemma 1.1(4). �

Now we consider the Dirac cohomology of the representation E. As ex-

plained in [2, Remark 3.2.4], since E is finite dimensional,

H(E) = Ker(D) = Ker(D2). (2.3)

It follows from [5] (see also [2]) that any constituent F of the h-representation

H(E) must have infinitesimal character described as follows. Choose a positive

system ∆+ ∈ P and let λ be the highest weight of E. Write W (resp. W (h))

for the Weyl group for g (resp. h). Then the infinitesimal character of F is the

W (h)-orbit of w(λ+ ρ)|t, for some w ∈ W with w(λ+ ρ)|a = 0. In particular,

the highest weight of F (with respect to ∆+(h)) is µ = w(λ+ρ)|t−ρ(h), where
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w is in

W 1
λ

def.
= {w ∈ W : w(λ+ ρ)|a = 0 and w(λ+ ρ)|t is ∆+(h)-dominant}.

If E ⊗ S contains an h-constituent with such a highest weight, then this con-

stituent lies in Ker(D2) by Kostant’s formula for the square of D ([4, Theorem

2.16]). Recall that Kostant’s formula is

2D2 = Ωg ⊗ 1− Ω∆h + (||ρ||2 − ||ρ(h)||2),

where Ωg is the Casimir element for g acting on E and Ω∆h is the Casimir

element of h acting in E⊗S. It follows from (2.3) that this constituent occurs

in H(E). The following lemma is a corollary of this discussion.

Lemma 2.4. The following are equivalent.

(a) There is a root α ∈ ∆ so that α|t = 0.

(b) No element of t∗ (⊂ (t + a)∗) is ∆-regular.

Each implies that H(E) = 0 for any irreducible finite dimensional representa-

tion of g.

Proof. Equivalence of (a) and (b) is straightforward. Let Eλ be the irreducible

highest weight representation of g with highest weight λ with respect to some

∆+ in P. If H(Eλ) 6= 0, then above discussion tells us that W 1
λ 6= ∅. So there

is a w ∈ W so that w(λ + ρ)|a = 0. Therefore, w(λ + ρ) is a regular element

in t∗, contradicting (b). �

Note that if W 1
λ = ∅, then H(Eλ) = 0.

Theorem 2.5. Let Eλ be the irreducible highest weight representation of g

with highest weight λ with respect to some ∆+ in P. Let W 1
λ be as above. Then

H(Eλ) =
⊕
w∈W 1

λ

2m · Fw(λ+ρ)|t−ρh

where m = [(rank(g)− rank(h))/2].

Proof. When W 1
λ = ∅ the statement of the theorem holds since both sides are

zero. So we assume that W 1
λ 6= ∅. Then there is a ∆-regular element (namely

w(λ + ρ)) in t∗, so by the lemma no root restricts to 0 on t. Therefore, the

multiplicities of weights in S are 2m, m = [dim(a)/2] = [(rank(g)−rank(h))/2].

It follows, as in §1, that S ' 2m · S0 and

∆(S0) = {ρ(n ∩ q)− 〈A〉 : A ⊂ ∆(n ∩ q)},
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each weight occurring exactly once.

By the discussion preceding the above lemma, the theorem will be proved

once we show that each Fw(λ+ρ)|t−ρ(h) occurs in E ⊗ S0 exactly once.

Observe that if w ∈ W 1
λ , then w∆+ ∈ P (as w∆+ is defined by ξ = w(λ+ρ)).

With respect to w∆+, Eλ has highest weight wλ. Since ∆+ may be replaced

by w∆+ in our discussion of the h-representation S in §1, we may conclude

that

∆(S0) = {ρ((w · n) ∩ q)− 〈A〉 : A ⊂ ∆((w · n) ∩ q)},
and ρ((w · n) ∩ q) is the highest weight of a constituent of S0.

Now it is immediate, from Lemma 2.2, that w(λ)|t + ρ((w · n) ∩ q) is the

highest weight of a constituent of E ⊗ S0. Note that w(λ + ρ)|t − ρ(h) =

w(λ)|t + ρ((w · n) ∩ q). We need to check that this constituent occurs with

multiplicity one. Writing this weight as an arbitrary sum of weights in Eλ and

S0, we have

w(λ)|t + ρ((w · n) ∩ q) = (w(λ)− 〈B〉)|t + (ρ((w · n) ∩ q)− 〈A〉),

where A ⊂ ∆((w · n) ∩ q) and B ⊂ w∆+. It follows that

w(λ+ ρ)|t = w(λ+ ρ)|t − 〈B〉 − 〈A〉,

so 〈B〉 + 〈A〉 = 0. Taking the inner product with the w∆+-regular element

ξ = w(λ+ ρ) gives ∑
α∈B

〈ξ, α|t〉+
∑
γ∈A

〈ξ, γ〉 = 0.

All 〈ξ, γ〉 and 〈ξ, α〉 that occur are nonnegative, so zero. Therefore, by (C), no

α’s can occur. Since no roots restrict to 0, no γ’s occur. Therefore, the weight

w(λ+ ρ)|t − ρh occurs just once in Eλ ⊗ S0. �
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