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Abstract. Let G be a real reductive Lie group and G/H a reductive homogeneous space. We consider

Kostant’s cubic Dirac operator D on G/H twisted with a finite dimensional representation of H. Under

the assumption that G and H have the same complex rank, we construct a nonzero intertwining operator

from principal series representations of G into the kernel of D. The Langlands parameters of these principal

series are described explicitly. In particular, we obtain an explicit integral formula for certain solutions of

the cubic Dirac equation D = 0 on G/H. These results generalize our previous results in [12].

1. Introduction.

In this article we study the kernel of Kostant’s cubic Dirac operator on reductive homogeneous spaces.

For the introduction let G be a connected semisimple linear Lie group and let K be a maximal compact

subgroup. Our results are in fact stated and proved for general connected reductive Lie groups. It is well-

known that there is a natural G-invariant spin structure and connection on the riemannian symmetric space

G/K (or possibly a double cover) giving rise to a Dirac operator. In particular, for a finite dimensional

irreducible K-representation E there are corresponding homogeneous vector bundles E and S ⊗E over G/K

(where S is the spin representation of K) and a Dirac operator on sections:

DG/K(E) : C∞(G/K,S ⊗ E) → C∞(G/K,S ⊗ E).

In the 1970’s it was shown ([13] and [2]) that the kernel of DG/K(E) (on L2 sections) is an irreducible unitary

representation in the discrete series of G, and every discrete series representation occurs this way (for some

bundle E). Recently Kostant has defined a G-invariant differential operator in the following more general

setting. Suppose that H is a closed connected reductive subgroup of G so that the Killing form of g restricts
1
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to a nondegenerate form on h. Write

g = h + q, q = h⊥.

Then the Killing form is nondegenerate (and possibly indefinite) on q, so we may construct the corresponding

Clifford algebra C`(q) and spin representation Sq of h. Then, given a finite dimensional representation E

of h so that Sq ⊗ E integrates to a representation of H, Kostant ([8]) defined the algebraic analogue of a

G-invariant differential operator

D = DG/H(E) : C∞(G/H,Sq ⊗ E) → C∞(G/H,Sq ⊗ E)

called the cubic Dirac operator. This operator is the sum of a first order term (identical to the Dirac operator

onG/K) and a zeroth order term coming from a degree three element of C`(q) (which vanishes whenH = K).

This article studies the kernel of the cubic Dirac operator D. Interest in the cubic Dirac operator and its

kernel comes from several directions. In [11] and [9] a generalization of the Bott-Borel-Weil Theorem is

proved. This, along with the discrete series example mentioned above, shows that a complex structure on

G/H is not necessary for the construction of large families of interesting representations. Instead, the spin

structure and Dirac operator can be used. When G/H has an invariant complex structure then it can be

shown that D = ∂̄+ ∂̄∗, therefore D is related to the Dolbeault cohomology representations (the Aq(λ)’s). It

is reasonable to expect interesting representations in terms of D when there is no complex structure. There

are also interesting recent results in terms of (the algebraic version of) Kostant’s cubic Dirac operator. See,

for example, [7], [10] and [1].

In this article we prove that (under a ‘sufficiently regular’ condition on the highest weight of E) the kernel

of D = DG/H(E) is nonzero. This is done by constructing an intertwining operator from a principal series

representation into the kernel of D. There are several interesting byproducts of this construction. One is

that the Langlands parameters of a constituent in Ker(D) are specified in a natural way. Comparing with

[4] and [3] one sees that, in the case when G/H has a complex structure, this constituent is equivalent to

the corresponding Dolbeault cohomology representation. Also, the intertwining operator gives an explicit

integral formula for solutions to Df = 0 in terms of an integral over a piece of the ‘boundary’ of G/H. The

formula is quite analogous to the classical Poisson integral formula giving harmonic functions on the disk.

The techniques we use are similar to those of [4], [3] and [5]. A special case of the results here are contained

in [12]. However the results here apply to a much larger class of groups and homogeneous spaces. A key step

is the reduction to the case of G/H where H is compact. In this case the kernel of D contains a discrete

series representation. This fact follows from [13], [2] and [16] (with some work); one may also apply [15].

This paper begins with some preliminary material, including a quick review of the key facts we need

concerning the spin representations, the definition of the cubic Dirac operator and a technical lemma. The

intertwining operator we construct maps from a principal series representation of G into the kernel of D.

The principal series is based on a parabolic subgroup which has some special properties with respect to

H. This is discussed in Section 3. The intertwining operator is constructed in Section 4, where the main

theorem, Theorem 4.12, is proved. We remark that Lemma 4.5 is essentially a very general statement about

the existence of intertwining operators. The appendix is somewhat independent of the rest of the paper. We

show that discrete series representations occur in the kernel of D when H is compact. Since this result gets

applied to the ‘M ’ of the parabolic subgroup, we are forced to consider disconnected groups. The appendix

therefore becomes somewhat technical.
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2. Preliminaries

2.1. The groups. Let G be a connected reductive Lie group. By this we mean that G is connected and

has reductive Lie algebra, i.e., g = Lie(G) = z ⊕ [g, g] (with z = the center of g). We will consider a more

general class of groups in the appendix.

As is customary, Lie groups will be denoted by G,H, etc. and their Lie algebras by g, h, etc. The

complexifications of the Lie algebras will be denoted by gC, hC, etc.

Let Z = Z(G) denote the center of G. Note that Z need not be finite. For example, we have included

groups such as GL(n,C) and the simply connected groups of hermitian type. If K/Z is a maximal compact

subgroup of G/Z ' Ad(G) then K is the fixed point group of a Cartan involution θ. We write the Cartan

decomposition as

g = k⊕ s.

Suppose that H is a closed connected reductive subgroup of G. We make two further assumptions on H.

Let 〈 , 〉 be an Ad-invariant nondegenerate symmetric bilinear form on g which coincides with the Killing

form on gss
def.
= [g, g]. Then we assume that the restriction of 〈 , 〉 to h is nondegenerate. There is therefore

an orthogonal decomposition

g = h⊕ q, q
def.
= h⊥. (2.1)

Furthermore, 〈 , 〉q
def.
= 〈 , 〉|q×q is nondegenerate. We also assume that G and H have the same complex

rank:

rank(hC) = rank(gC). (2.2)

2.2. The spin representations. For the remainder of this section we do not requireG orH to be connected.

The (possibly indefinite) nondegenerate form on q defines a Clifford algebra and a spin representation Sq

of so(q). This gives a ‘spin’ representation of h via ad : h → so(q). Note that since q ⊂ gss, 〈 , 〉q is precisely

the Killing form restricted to q, therefore the Clifford algebra and spin representations are independent of

the extension 〈 , 〉 of the Killing form of gss.

Let us briefly recall how one defines the ‘spin’ representation of h. See Section 3 in [12] for the most

relevant facts or Chapter 6 of [6] for a detailed study. Extend 〈 , 〉q linearly to the complexification qC of q,

and use the same symbol to denote this extension. The Lie group SO(q) of orthogonal endomorphisms of q

relative to 〈 , 〉q has Lie algebra

so(q) = {A ∈ End(q) | 〈AX ,Y 〉q + 〈X ,AY 〉q = 0, for all X,Y ∈ q}.

Observe that, for all X and Y in q, the endomorphisms RX,Y defined by

RX,Y (W ) = 〈Y ,W 〉qX − 〈X ,W 〉qY, W ∈ q,

span so(q). There is an embedding of so(q) in the Clifford algebra of qC. Indeed, the Clifford algebra

Cl(q) of qC is defined as the quotient of the tensor algebra T (q) of qC by the ideal I generated by elements

X ⊗ Y + Y ⊗X − 〈X ,Y 〉q, with X and Y in qC:

Cl(q) = T (q)/I.

Then the linear extension of

RX,Y 7→ 1
2
(XY − Y X)
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is an injective Lie algebra homomorphism so(q) → Cl2(q), where Cl2(q) is the Lie algebra defined as the

subspace of Cl(q) generated by the degree 2 elements X1X2, with X1 and X2 in q.

Now suppose that q is even dimensional, as is the case when the equal rank condition (2.2) holds. Then we

may choose two maximal dual isotropic subspaces V and V ∗ of qC with respect to 〈 , 〉q such that qC = V ⊕V ∗.
Denote by ∧V ∗ the exterior algebra of V ∗, equipped with the interior product ı and exterior multiplication

ε :

ı(v)(v∗1 ∧ · · · ∧ v∗l ) = 〈v , v∗1〉qv∗2 ∧ · · · ∧ v∗l − v∗1 ∧ ı(v)(v∗2 ∧ · · · ∧ v∗l )

ε(v∗)(v∗1 ∧ · · · ∧ v∗l ) = v∗ ∧ v∗1 ∧ · · · ∧ v∗l ,

for all v ∈ V, v∗ ∈ V ∗ and v∗1 ∧ · · · ∧ v∗l ∈ ∧lV ∗. Now define a map γ : qC → End(∧V ∗) by

γ(v + v∗)(u) = (ı(v) + ε(v∗))(u),

for all element u in ∧lV ∗. Observing that

γ(X) ◦ γ(Y ) + γ(Y ) ◦ γ(X) = 〈X ,Y 〉q, for all X,Y ∈ qC,

one can extend γ naturally to a map γ̃ on the Clifford algebra of qC:

γ̃ : Cl(q) → End(∧V ∗), X1X2 · · ·Xp 7→ γ(X1) ◦ γ(X1) ◦ · · · ◦ γ(Xp).

Finally, if Sq
def.
= ∧V ∗, the spin representation (σq, Sq) of so(q) is

σq(RX,Y ) =
1
2
[γ(X), γ(Y )], for all X,Y ∈ q.

Now the ‘spin’ representation of h is defined by

sq = σq ◦ ad.

Lemma 2.4 below is a slight extension of the discussion in [12]; we include a proof since it plays a crucial

role in Subsection 2.4.

Suppose {Xj} is a basis of q so that

〈Xj , Xk〉q = ajδjk, aj = ±1. (2.3)

Note that any X ∈ q may be decomposed as X =
∑
aj〈X ,Xj〉qXj .

Lemma 2.4. If T ∈ so(q) then

σq(T ) = −
∑
j<k

ajak〈T (Xj) , Xk〉qγ(Xj)γ(Xk).
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Proof. It suffices to check the identity for T = Ra,b for arbitrary a, b ∈ q. We have

−
∑
j<k

ajak〈Ra,b(Xj) , Xk〉qγ(Xj)γ(Xk)

= −
∑
j<k

ajak〈b ,Xj〉〈a ,Xk〉γ(Xj)γ(Xk) +
∑
j<k

ajak〈a ,Xj〉〈b ,Xk〉γ(Xj)γ(Xk)

= −
∑
j 6=k

ajak〈b ,Xj〉〈a ,Xk〉γ(Xj)γ(Xk), by switching j and k in the 2nd summation,

= −
∑
j,k

ajak〈b ,Xj〉〈a ,Xk〉γ(Xj)γ(Xk) +
∑

j

a2
j 〈b ,Xj〉〈a ,Xj〉γ(Xj)2

= −γ(b)γ(a) +
1
2
〈b , a〉qI

= −1
2
[γ(b), γ(a)]

= σq(Ra,b).

�

2.3. The cubic term. We will need to consider a degree three element in the Clifford algebra Cl(q) in order

to define Kostant’s ‘cubic’ Dirac operator. In order to obtain the most natural results, this degree three

element is a necessary ingredient in the Dirac operator (see (2.7)). For example, the cubic term is needed

for the following: (i) a simple formula for the square of the Dirac operator ([8]), (ii) a generalization of the

Borel-Weil-Bott Theorem ([9]), (iii) a strong connection with infinitesimal character ([7, Section 7], [10] and

[1]) and (iv) Lemma 2.12 below.

There is an alternating 3-form on q defined by

(X,Y, Z) 7→ 〈X , [Y,Z]〉. (2.5)

Using 〈 , 〉q to identify q∗ and q we have that ∧(q∗) ' ∧q embeds naturally into Cl(q). An element (of degree

3), which we call c, is determined by (2.5). It will be useful for us to have an explicit formula for c in terms

of the basis {Xj} of (2.3).

Defining X∗
j ∈ q∗ by X∗

j = 〈Xj , ·〉q gives

〈· , [·, ·]〉 =
∑

j<k<`

ajaka`〈Xj , [Xk, X`]〉X∗
j ∧X∗

k ∧X∗
` .

It follows that

c =
∑

j<k<`

ajaka`〈Xj , [Xk, X`]〉XjXkX`. (2.6)

2.4. The cubic Dirac operator for homogeneous vector bundles. Let E be a finite dimensional

representation of h. We assume that the h-representation Sq ⊗E integrates to a representation of H. Then

there is an associated smooth homogeneous vector bundle over G/H which we denote by Sq ⊗E . The space

of smooth sections is

C∞(G/H,Sq ⊗ E)
def.
= {f : G→ Sq ⊗ E | f is smooth and f(gh) = h−1 · f(g), for g ∈ G, h ∈ H}.

Let {Xj} be a fixed basis satisfying (2.3). Denoting the universal enveloping algebra of g by U(g), an

H-invariant in U(g)⊗ End(Sq ⊗ E) is defined by∑
ajXj ⊗ (γ(Xj)⊗ 1)− 1⊗ (γ̃(c)⊗ 1).
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Letting U(g) act by left invariant differential operators (i.e., (R(X)f)(g)
def.
= d

dtf(g exp(tX))|t=0, for X ∈ g)

a G-invariant differential operator

D : C∞(G/H,Sq ⊗ E) → C∞(G/H,Sq ⊗ E)

is defined by

D =
∑

ajR(Xj)⊗ γ(Xj)⊗ 1− 1⊗ γ̃(c)⊗ 1. (2.7)

Definition 2.8. D is the cubic Dirac operator on C∞(G/H,Sq ⊗ E). Often we will denote D by DG/H or

DG/H(E).

Remark 2.9. D is independent of the basis {Xj} satisfying (2.3). In fact, each of the two terms in (2.7) is,

by itself, independent of basis.

Remark 2.10. As mentioned in the introduction, when h is the fixed points of an involution then c = 0 (as

[q, q] ⊂ h and h ⊥ q). Therefore D is the more familiar operator of [13], [2], [16] and [12].

2.5. A lemma. For the remainder of this section we prove Lemma 2.12, which may (loosely) be thought of

as a statement about ‘induction in stages’.

ConsiderH ⊂ L ⊂ G, reductive groups so that 〈 , 〉 is nondegenerate on h and l. Then there are orthogonal

decompositions

g = l + r,where r = l⊥,

g = h + q and

q = (q ∩ l) + r.

As 〈 , 〉 is nondegenerate on q (respectively, r and q∩ l) the spin representation Sq (respectively, Sr and Sq∩l)

of h (respectively, l and h ∩ l) is defined. Note that as h-representations

Sq ' Sr ⊗ Sq∩l.

There is a G-equivariant isomorphism

C∞(G/H,Sq ⊗ E) ' C∞(G/L,Sr ⊗ C∞(L/H,Sq∩l ⊗ E)). (2.11)

This isomorphism is given as follows. First identify Sq with Sr⊗Sq∩l. Then for f ∈ C∞(G/H,Sq⊗E) define

Ff by

Ff (g)(k) = (k ⊗ 1)f(gk), for any g ∈ G and k ∈ L.

(By k ⊗ 1 we mean k acting on the first factor of Sr ⊗ (Sq∩l ⊗ E).) One easily checks that Ff is in the

right-hand side of (2.11).

The Dirac operator on the left-hand side of (2.11) may be pushed over to a differential operator on the

right-hand side, which we will temporarily denote by D̃. Thus, D̃ is determined by

D̃Ff = FDf .

As several Dirac operators will appear below we will index them by the corresponding homogeneous spaces.

Lemma 2.12.
(
D̃Ff

)
(g) =

(
DG/LFf

)
(g) +DL/H

(
Ff (g)

)
.
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Proof. Let {Xj} be a basis of r and {Yk} a basis of q ∩ l so that

〈Xj , Xk〉 = ajδjk and 〈Yk , Yi〉 = bkδki

with aj and bk equal to ±1. Together the Xj and Yk form a basis of q satisfying (2.3).

Claim 1: F(
P

ajR(Xj)⊗γ(Xj)⊗1)f (g) =
(
(
∑
ajR(Xj)⊗ γ(Xj)⊗ 1)Ff

)
(g).

Claim 2: F(
P

biR(Yi)⊗γ(Yi)⊗1)f (g)(e) =
(
(
∑
biR(Yi)⊗γ(Yi)⊗1)Ff

)
(g)(e)−

( ∑
bisq∩l(Yi)⊗γ(Yi)

)
(Ff (g))(e).

Claim 3: Indexing the cubic term by the appropriate tangent space we have

cq = cr + cq∩l +
∑

i,j<k ajakbi〈Yi , [Xj , Xk]〉YiXjXk.

Before proving the three claims we will show how they imply the lemma. It is enough to show the two

sides are equal when evaluated at k = e.(
D̃Ff

)
(g)(e) =

(
FDf )(g)(e)

= F(
P

ajR(Xj)⊗γ(Xj)⊗1)f (g)(e) + F(
P

bjR(Yj)⊗γ(Yj)⊗1)f (g)(e)− F(1⊗γ̃(cq)⊗1)f (g)(e)

=
(
DG/LFf

)
(g)(e) +

(
DL/HFf (g)

)
(e)−

( ∑
i,j<k

biajak〈Yi , [Xj , Xk]〉γ(Yi)γ(Xj)γ(Xk)

+
∑

i

bisq(Yi)⊗ γ(Yi)
)
Ff (g)(e).

To see that the last two terms cancel take T = ad(Yi) in Lemma 2.4.

Now we turn to the proofs of the three claims.

Proof of Claim 1. For X ∈ r,(
F(R(X)⊗γ(X)⊗1)f (g)

)
(k) = (k ⊗ 1)

(
(R(X)⊗ γ(X)⊗ 1)f

)
(gk)

= (k ⊗ 1)γ(X)
d

dt
f(gk exp(tX))|t=0

= γ(Ad(k)X)(k ⊗ 1)
d

dt
f(g exp(tAd(k)X)k)|t=0

= γ(Ad(k)X)
d

dt
Ff (g exp(tAd(k)X))(k)|t=0

=
(
(R(Ad(k)X)⊗ γ(Ad(k)X)⊗ 1)Ff

)
(g)(k).

Now (
F(

P
ajR(Xj)⊗γ(Xj)⊗1)f (g)

)
(k) =

(
(
∑

ajR(Ad(k)X)⊗ γ(Ad(k)Xj)⊗ 1)Ff

)
(g)(k)

=
(
(
∑

ajR(Xj)⊗ γ(Xj)⊗ 1)Ff

)
(g)(k)

by Remark 2.9.

Proof of Claim 2. For Y ∈ q ∩ l,(
F(R(Y )⊗γ(Y )⊗1)f

)
(g)(k) = (k ⊗ 1)

(
(R(Y )⊗ γ(Y )⊗ 1)f

)
(gk)

= (k ⊗ 1)(1⊗ γ(Y ))
d

dt
f(gk exp(tY ))|t=0

=
d

dt
(k ⊗ 1)(1⊗ γ(Y ))(exp(−tY )k−1 ⊗ 1)Ff (g)(k exp(tY ))|t=0

= −(1⊗ γ(Y ))(sq∩l(Ad(k)(Y ))⊗ 1)Ff (g)(k) + (1⊗ γ(Y ))
(
R(Y )Ff (g)

)
(k).



8 HARMONIC SPINORS

Proof of Claim 3. Since [l ∩ q, l ∩ q] ⊂ l and l ⊥ r, terms of the form YjYkXl do not occur in the formula

(2.6) for cq. Therefore

cq =
∑

j<k<l

bjbkbl〈Yj , [Yk, Yl]〉YjYkYl +
∑

j<k<l

ajakal〈Xj , [Xk, Xl]〉XjXkXl

+
∑

k<l, all j

bjakal〈Yj , [Xk, Xl]〉YjXkXl

= cl∩q + cr +
∑

k<l, all j

bjakal〈Yj , [Xk, Xl]〉YjXkXl.

�

3. A special parabolic subgroup

The subgroup H determines a special parabolic subgroup of G as follows. Let a be a maximal abelian

subspace of s∩ h and Σ(g, a) the set of a-roots in g. Fix a positive system Σ+ = Σ+(g, a). The subalgebra a

extends to a Cartan subalgebra a + tM of h. We may choose tM ⊂ h ∩ k. By the equal rank condition (2.2)

a+ tM is a Cartan subalgebra of g, therefore defines a root system ∆ = ∆(gC, (a⊕ tM )C). Choose a positive

system of roots ∆+ ⊂ ∆ with the compatibility property that

β ∈ ∆+ and β|a 6= 0 =⇒ β|a ∈ Σ+.

Now set

n =
∑

α∈Σ+

gα and n =
∑

α∈Σ+

g−α

and

m = tM +
∑

β∈∆,β|a=0

gβ .

Then (since a is the split part of a Cartan subalgebra of g) p = m + a + n is a parabolic subalgebra. Denote

by Me, A and N the analytic subgroups of G with Lie algebras m, a and n. There is a unique θ-stable

subgroup M so that ZG(a) = MA. The identity component of M is Me. Then P = MAN is the Langlands

decomposition of our special parabolic subgroup. We remark that without the equal rank condition (2.2) it

is not clear how to define a useful parabolic subgroup.

The following lemma contains facts which are easily checked (and are essentially contained in [12]). We

use the following notation:

ρ(g) =
1
2

∑
β∈∆+

β and ρg =
1
2

∑
α∈Σ+

α.

Similar notation is used for other subspaces of g invariant under a + tM or a. We use the further notation:

µa
def.
= µ|a and µt

def.
= µ|tM

, when µ ∈ (a + tM )∗.

Lemma 3.1. For the special parabolic subgroup defined above the following hold.

(1) The subgroup P ∩ H of H is a minimal parabolic subgroup of H having Langlands decomposition

P ∩H = (M ∩H)A(N ∩H).

(2) Under the action of H on G/P , H · eP is a closed orbit and

H · eP ' H/H ∩ P ' H ∩K/H ∩M.

(3) The complex ranks of M,M ∩ H and M ∩ K are all equal. Therefore P is a cuspidal parabolic

subgroup in the sense that M has nonempty relative discrete series.
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(4) The following decompositions hold:

q = (m ∩ q) + (n ∩ q) + (n ∩ q)

m = (m ∩ h) + (m ∩ q)

m ∩ q = m ∩ s + m ∩ k ∩ q

m ∩ k = m ∩ k ∩ q + m ∩ h.

Observe that our choice of ∆+ determines a positive system of tM -roots in m. Using the same notation

of ρ( ) for
1
2

the sum of positive tM -roots in a tM -invariant subspace we have (from part (4))

ρ(m) = ρ(m ∩ h) + ρ(m ∩ q) (3.2)

ρ(m ∩ q) = ρ(m ∩ s) + ρ(m ∩ k ∩ q), and (3.3)

ρ(m ∩ h) = ρ(m ∩ k)− ρ(m ∩ k ∩ q).

We will need some technical facts about finite dimensional representations of H and their restrictions to

M ∩H. We let ∆(q) (resp. ∆(h)) denote the a + tM -roots in q (resp. h), and set ∆+(q) = ∆+ ∩∆(q) and

∆+(h) = ∆+ ∩∆(h). Let Eµ be the irreducible finite dimensional representation of h with highest weight µ

(with respect to the positive system ∆+(h)). We assume that Sq ⊗ Eµ integrates to a representation of H

and give the following decomposition in irreducibles. For any subset Q ⊂ ∆+(q) set

〈Q〉 def.
=

∑
β∈Q

β.

Note that the set of weights of Sq is {ρ(q)− 〈Q〉 : Q ⊂ ∆+(q)} = {〈Q〉 − ρ(q) : Q ⊂ ∆+(q)}. We impose the

condition on µ that for all α ∈ ∆+(h)

〈µ+ ρ(g)− 〈Q〉 , α〉 ≥ 0, for all Q ⊂ ∆+(q) and

〈µ+ ρ(g)− 2ρ(m ∩ k ∩ q) , α〉 > 0.
(3.4)

Let Q = {Q : 〈µ+ ρ(g)− 〈Q〉 , α〉 > 0 for all α ∈ ∆+(h)}. We therefore have the following decomposition as

H-representations:

Sq ⊗ Eµ '
⊕
Q∈Q

Eµ+ρ(q)−〈Q〉. (3.5)

By (3.4) Eµ+ρ(q)−2ρ(m∩k∩q) occurs in Sq ⊗ Eµ. We set

V0
def.
= (Eµ+ρ(q)−2ρ(m∩k∩q))n∩h,

a constituent in the M ∩H-representation (Sq⊗Eµ)n∩h. This M ∩H-representation is described as follows.

Some care must be taken since M and M ∩ H are in general disconnected. By Cor. A.15, M ∩ H =

ZM∩H(m ∩ h)(M ∩ H)e, where ZM∩H(m ∩ h) is the centralizer of m ∩ h in M ∩ H and (· · · )e denotes the

connected component containing the identity. Therefore, the irreducible finite dimensional representations

of M ∩H may be described in terms of

(i) (σγ , Uγ), the irreducible finite dim. representation of (M ∩H)e with some highest weight γ and

(ii) (τ, Uτ ), an irreducible representation of ZM∩H(m ∩ h)

satisfying

(iii) ZM∩H(m ∩ h) ∩ (M ∩H)e (= the center of (M ∩H)e) acts by the same scalars under τ and σγ .

Then any irreducible finite dimensional representation of M ∩H occurs on

Uτ,γ
def.
= Uτ ⊗ Uγ
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with well-defined action given by (τ ⊗ σγ)(zh) = τ(z)⊗ σγ(h) for some choice of τ and γ. Now, since V0 is

irreducible and ρ(q)t = ρ(m ∩ q), we may conclude that

V0 ' Uτ,µt+ρ(m∩q)−2ρ(m∩k∩q) (3.6)

for some τ ∈ ZM∩H(m ∩ h)b (
def.
= the set of irreducible representations of ZM∩H(m ∩ h)).

For the following recall that there is a natural embedding Sm∩q ⊂ Sq.

Lemma 3.7. With τ as in (3.6), the following hold.

(1) Sm∩q ⊂
(
Sq

)n∩h

(2) V0 ⊂ Sm∩q ⊗ Uτ,µt

Proof. See [12, Lemma 3.8]. �

4. The intertwining operator

Let µ ∈ (a + tM )∗ satisfy the ‘sufficiently regular’ condition described in (4.3) below and let (σµ, Eµ) be

an irreducible finite dimensional representation of h with highest weight µ. We assume as in the previous

sections that Sq ⊗ Eµ integrates to a representation of H. Our goal is to give an explicit formula for a

nonzero G-intertwining operator

C∞(G/P,W ⊗Cρg) → C∞(G/H,Sq ⊗ Eµ) (4.1)

so that the image lies in the kernel of DG/H(Eµ). It turns out that W will be of the form (relative discrete

series)⊗eν ⊗ 1. Here P is the parabolic subgroup of Section 3 and

C∞(G/P,W ⊗Cρg) = {f : G→W | f(gman) = a−ρgm · f(g)}

is the space of smooth sections of the homogeneous vector bundle W ⊗Cρg .

Due to the disconnectedness of M it is simpler to construct an intertwining operator with domain

C∞(G/P+,W⊗Cρg) instead of C∞(G/P,W⊗Cρg), where P+ is described as follows. SetM+ = ZM (m)Me,

ZM (m) = {m ∈M : Ad(m) = I on m}. Then P+ def.
= M+AN .

The relative discrete series representations of M may be described in terms of

(i) a relative discrete series representation π(λ;Me) of Me with Harish-Chandra parameter λ, and

(ii) a finite dimensional representation τ1 of ZM (m)

satisfying

(iii) ZM (m) ∩Me = Z(Me) acts by the same scalars under τ1 and π(λ;Me).

This gives a relative discrete series representation π(τ1, λ;M+)
def.
= τ1 ⊗ π(λ;Me) of M+. Finally,

π(τ1, λ;M) = IndM
M+(π(τ1, λ;M+))

is an irreducible representation in the relative discrete series of M (and all representations in the relative

discrete series are of this form.) See [17] for a thorough discussion of the relative discrete series for reductive

groups. Now by induction in stages

C∞(G/P, π(τ1, λ;M)⊗ eν+ρg ⊗ 1) ' C∞(G/P+, π(τ1, λ;M+)⊗ eν+ρg ⊗ 1).

We conclude that there is no loss of generality in considering intertwining operators

C∞(G/P+,W ⊗Cρg) → C∞(G/H,Sq ⊗ Eµ) (4.2)
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in place of (4.1).

Throughout the remainder of this paper we assume the following condition on µ holds:

〈µ , β〉 > C, for all β ∈ ∆+, (4.3)

where C is some sufficiently large positive constant. It suffices for C to be large enough so that (3.4) holds

and (A.12), applied to µt + ρ(m ∩ h) and m in place of λ+ ρ(k) and g, holds.

The following proposition is contained in Theorem A.23 and Corollary A.24.

Proposition 4.4. Let µ satisfy (4.3), and let V0 and τ be as in Lemma 3.7. Then for τ1 ∈ ZM (m)b satisfying

HomZM∩H(m)(τ1, τ) 6= 0, the relative discrete series representation π(τ1, µt + ρ(m ∩ h);M+) may be realized

as a subspace of Ker
(
DM+/M+∩H(Uτ,µt)

)
. Furthermore, defining π0 to be the projection Sm∩q⊗Uτ,µt → V0

(see Lemma 3.7), we have

f 7→ π0(f(e))

π(τ1, µt + ρ(m ∩ h);M+) → V0

is a nonzero M+ ∩H-homomorphism.

The following lemma contains a (sufficient) condition for the existence of a nonzero intertwining operator

as in (4.2). We write g ∈ G = K exp(m ∩ s)AN as g = κ(g)m(g)eH(g)n(g). Observe that if h ∈ H then

h = κ(h)eH(h)n(h) is the Iwasawa decomposition, as H ∩ P is a minimal parabolic subgroup of H.

Lemma 4.5. Let (σµ, Eµ) be as above and let W be a representation of P+ = M+AN . Let t ∈ Hom(W ⊗
Cρg , Sq ⊗ Eµ) be M+ ∩H and N ∩H equivariant and satisfy the following a−equivariance condition

t(exp(X) · (w ⊗ 1)) = e2ρh(X)(sq ⊗ σµ)(exp(X))t(w ⊗ 1), for all X ∈ a, w ∈W.

Suppose further that t 6= 0. Then

(Ptφ)(g) =
∫

H∩K

(sq ⊗ σµ)(`)t(φ(g`))d`

defines a nonzero G-intertwining operator

Pt : C∞(G/P+,W ⊗Cρg) → C∞(G/H,Sq ⊗ Eµ).

Proof. We must check that Pt satisfies the correct transformation property under H.

(Ptφ)(gh) =
∫

H∩K

` · t
(
φ(gκ(h`)eH(h`)n(h`))

)
d`

=
∫

H∩K

` · t
(
(eH(h`)n(h`))−1 · φ(gκ(h`))

)
d`

=
∫

H∩K

`(eH(h`)n(h`))−1e−2ρh(H(h`)) · t(φ(gκ(h`)))d`

=
∫

H∩K

h−1κ(h`)t(φ(gκ(h`)))e−2ρh(H(h`))d`

= h−1 ·
∫

H∩K

`1 · t(φ(g`1))d`1, by the standard integration formula for the

change of variables ` 7→ κ(h`) in H ∩K.

Pt is clearly intertwining for the G-actions (by left translation of functions).

To see that Pt is nonzero, let w0 ∈ W and v∗ ∈ (Sq ⊗ Eµ)∗ be such that 〈v∗ , t(w0)〉 = 1. Since the

(complex valued) function Y 7→ 〈v∗ , exp(Y ) · t(w0)〉 is continuous on the orthogonal complement (h ∩ m)⊥



12 HARMONIC SPINORS

of h ∩ m in h ∩ k, there exists a neighborhood U of 0 in (h ∩ m)⊥ such that Re(〈v∗ , exp(Y ) · t(w0)〉) > 0,

∀Y ∈ U . Now let ψ be a positive real valued smooth function on (h ∩ m)⊥ with support on U such that

ψ(0) = 1. Define, using the local coordinates (exp(Y ),m) ∈ exp(U)× (H ∩M) on H ∩K, a smooth section

φ̃ ∈ C∞(H ∩K/H ∩M,W) by

φ̃(l) =

{
ψ(Y )(m−1 · w0), if l = exp(Y )m ∈ exp(U)× (H ∩M)
0, if l 6∈ exp(U)× (H ∩M).

Now pull φ̃ back to some smooth section φ ∈ C∞(K/M,W). We have:

〈v∗ , (Ptφ)(e)〉 =
∫

H∩K

〈v∗ , l · t(φ̃(l))〉dl =
∫
U
ψ(Y )〈v∗ , exp(Y ) · t(w0)〉dY.

So 〈v∗ , (Ptφ)(e)〉 6= 0, since its real part is positive. Therefore Pt is nonzero.

�

Remark 4.6. The lemma holds with M in place of M+.

We now specify the representation W of P+ which we will need. Set W = δ ⊗ eν ⊗ 1 with

δ = π(τ1, µt + ρ(m ∩ h);M+) and

ν = µa + ρh,
(4.7)

for some τ1 ∈ ZM (m)b with HomZM∩H(m)(τ1, τ) 6= 0 and τ as in (3.6).

We now make precise a choice of t as in the lemma. Viewing W as a space of harmonic spinors as in

Proposition 4.4 we define t : W ⊗Cρg → Sq ⊗ Eµ to be evaluation at e ∈ G followed by projection:

t : φ 7→ π0(φ(e)). (4.8)

Lemma 4.9. The hypotheses of Lemma 4.5 are satisfied by t.

Proof. Equivariance under M+ ∩ H is clear. Equivariance under N ∩ H follows from the fact that V0 =(
Eµ+ρ(q)−2ρ(m∩k∩q)

)n∩h
. The stated equivariance with respect to a holds because(

µ+ ρ(q)− 2ρ(m ∩ k ∩ q)
)
|a + 2ρh = µa + ρq + 2ρh = (µa + ρh) + ρg.

The fact that t 6= 0 is contained in Prop. 4.4. �

Definition 4.10. Using t as defined in (4.8) we set P = Pt. Therefore, P is the nonzero G-intertwining

operator

P : C∞(G/P+,W ⊗Cρg) → C∞(G/H,Sq ⊗ Eµ)

given by (
Pφ

)
(g) =

∫
H∩K

` · π0(φ(g`)(e))d`. (4.11)

We now come to our main theorem.

Theorem 4.12. For each φ ∈ C∞(G/P+,W ⊗Cρg), DG/H

(
Pφ

)
= 0.

Proof. Observe that if {Xj} is a basis of q satisfying (2.3) then
∑
ajR(Xj)⊗γ(Xj) is H-invariant. Therefore( ∑

ajR(Xj)⊗ γ(Xj)(Pφ)
)
(g)

=
∫

H∩K

( ∑
ajR(Xj)⊗ γ(Xj)

)
` · π0(φ( · `)(e))|gd`

=
∫

H∩K

` ·
( ∑

ajR(Xj)⊗ γ(Xj)
)
π0(φ( · )(e))|g`d`.
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In particular we need to show that( ∑
ajR(Xj)⊗ γ(Xj)− 1⊗ γ̃(c)

)
π0(φ( · )(e))|g` = 0.

Since DG/H is independent of basis of q (subject to (2.3)) we are free to choose such a basis in a special

way. To do this let {Ej} be a basis of n ∩ q and {Ēj} a basis of n ∩ q so that

〈Ej , Ēk〉q = δjk and 〈Ej , Ek〉q = 〈Ēj , Ēk〉q = 0.

Now let

{Zi} be a basis of m ∩ q so that 〈Zi , Zi′〉q = aiδii′ (with ai = ±1)

Y ±j
def.
=

1√
2
(Ej ± Ēj).

Note that 〈Y ±j , Y ±k 〉 = ±δjk. We choose the basis {Xj} to be {Zi, Y
±
j }. This is a basis satisfying (2.3) and

DG/H =
∑

aiR(Zi)⊗ γ(Zi) +
∑ (

R(Y +
j )⊗ γ(Y +

j )−R(Y −j )⊗ γ(Y −j )
)
− 1⊗ γ̃(c)⊗ 1.

The following lemma puts c into a more useful form.

Lemma 4.13. For Zi, Ej and Ēj as above

c = cm∩q +
∑

ai〈Zi , [Ej , Ēk]〉ZiĒjEk +
∑

〈Ej , [Ek, Ēl]〉ĒjĒkEl +
∑

〈Ej , [Ēk, Ēl]〉ĒjEkEl.

Proof. This is a straightforward computation from (2.6). �

In the realization of the spin representation given in Subsection 2.2 we take V to be the maximal isotropic

subspace which is spanned by root vectors for positive roots in q. Therefore

R(Y +
j )⊗ γ(Y +

j )−R(Y −j )⊗ γ(Y −j ) = R(Ej)⊗ ε(Ēj) +R(Ēj)⊗ ı(Ej)

and we may write

DG/H =
∑

aiR(Zi)⊗ γ(Zi)− 1⊗ γ̃(cm∩q) +
∑

(R(Ej)⊗ ε(Ēj) +R(Ēj)⊗ ı(Ej))

−
∑

ai〈Zi , [Ej , Ēk]〉γ(Zi)ε(Ēj)ı(Ek)

−
∑ (

〈Ej , [Ek, Ēl]〉ε(Ēj)ε(Ēk)ı(El)− 〈Ej , [Ēk, Ēl]〉ε(Ēj)ı(Ek)ı(El)
)
.

(4.14)

We apply this to π0(φ( · )(e)) and see that each term is zero. Indeed, for any X ∈ m ∩ q

R(X)π0

(
φ( · )(e)

)
|g =

d

ds
π0

(
φ(g exp(sX))(e)

)
|s=0

=
d

ds
π0

(
φ(g)(exp(sX))

)
|s=0

= R(X)π0

(
φ(g)( · )

)
|e.

Therefore ( ∑
aiR(Zi)⊗ γ(Zi)− γ̃(cm∩q)

)
π0(φ( · )(e))|g =

(
DM+/M+∩H(π0φ(g))

)
(e) = 0,

since φ(g) ∈W ⊂ Ker(DM+/M+∩H).

Since φ is in the principal series representation, φ is invariant under the right action of N . Therefore,(
R(Ej)⊗ ε(Ēj)

)
π0(φ( · )(e)) = 0.

Now observe that for v ∈ V0 ⊂ Sm∩q⊗Uτ,µt (Lemma 3.7), ı(Ej)v = 0 since Ej ⊥ m∩q. As image(π0) = V0

each of the remaining terms in (4.14) annihilates π0(φ( · )(e)).
�
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Appendix A. The relative discrete series

For the appendix G is of a more general type than in the body of the paper. We give a description

of relative discrete series representations of G as spaces of harmonic spinors on G/H, where H ⊂ K is

a subgroup of G having the same complex rank as G. Our interest is in a description of discrete series

representations of the group M of Section 3. It will therefore suffice to consider groups G satisfying the

following conditions. We let ZG(g)
def.
= {g ∈ G : Ad(g) = Idg} and Ge be the connected component of G

containing the identity. Then we require G to satisfy:

(A.1)

(1) For all g ∈ G, Ad(g) is an inner automorphism of gC,

(2) G is reductive in the sense that g = z⊕ [g, g], (z
def.
= center of g),

(3) There is a closed normal subgroup Z ⊂ ZG(g) so that:

G/ZGe is finite and Ge/Z ∩Ge is compact.

This class of groups is studied in detail in [17] and [16]. If MAN is the Langlands decomposition of any

cuspidal parabolic subgroup of the group G, then M also satisfies (A.1). See [17, pages 11-13] for a discussion

of such hereditary properties of various conditions on G.

It follows that G/ZG(g) contains a maximal compact subgroup K/ZG(g) and K satisfies the following

properties.

(A.2)

(1) K is the fixed point group of an involution θ,

(2) ZG(g) is a subgroup of K, so ZG(g) = ZK(g),

(3) K meets every connected component of G and K ∩Ge = Ke.

As in Section 2, the Cartan decomposition of g under the differential of θ is written as

g = k⊕ s, s = k⊥.

We now assume that G, in addition to satisfying (A.1), has a nonempty relative discrete series. Therefore,

there exists a Cartan subalgebra of g contained in k. We fix such a Cartan subalgebra t.

Define G+ def.
= ZG(g)Ge. It follows from (A.2(3)) above that

G+ ∩K = ZG(g)Ke.

The irreducible finite dimensional representations of G+ ∩K may therefore be described as follows. Fix a

positive system of roots in ∆(k, t). Suppose

(A.3)

(1) (σλ, Fλ) is the irreducible finite dim. representation of Ke with some highest weight λ ∈ t∗,

(2) (τ, Fτ ) is an irreducible finite dimensional representation of ZG(g),

(3) ZG(g) ∩Ke = Z(Ge), the center of Ge, acts by the same scalars under τ and σλ.

Then there is a well-defined representation of G+ ∩ K given by (τ ⊗ σλ)(zk) = τ(z) ⊗ σλ(k) acting on

Fτ,λ
def.
= Fτ ⊗Fλ. This representation is irreducible and every irreducible representation of G+ ∩K is of this

form.

It is known that the relative discrete series representations of G+ occur as L2 spaces of harmonic spinors

on G+/G+ ∩K. See [16], [2] and [13]. The following proposition is a version of these results which contains

the precise statements we need. Before stating the proposition we make a few observations. Since ZG(g)

centralizes g, Ad(z)|s = I ∈ SO(s). Therefore, ZG(g) acts on Ss by some character (with values ±1), so we

may define τ ′ to be this character times τ . Under this convention it follows that Ss⊗Fτ,λ = τ ′⊗(Ss⊗Fλ), as

representations of G+ ∩K. Then, Ss ⊗ Fτ,λ contains the irreducible constituent Fτ ′,λ+ρ(s) with multiplicity
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one. We may therefore define the projection

π1 : Ss ⊗ Fτ,λ → Fτ ′,λ+ρ(s). (A.4)

Remark A.5. The statements of this appendix hold in a slightly more general setting than described above.

Suppose that (σλ, Fλ) is an irreducible representation of the Lie algebra k with highest weight λ and assume

that Ss ⊗ Fλ integrates to a representation of Ke. (Thus, we do not assume that Ss and Fλ each integrates

to a representation of Ke.) Now let τ ′ be a finite dimensional irreducible representation of ZG(g) so that

on Z(Ge) both τ ′ and σs ⊗ σλ act by the same scalars. Then, throughout our discussion, we may replace

Ss ⊗ Fτ,λ by τ ′ ⊗ (Ss ⊗ Fλ) and the results will still hold.

Proposition A.6. Suppose λ + ρ(k) is dominant for ∆+(k, t) and nonsingular for ∆(g, t). Let ∆+ be a

positive system of roots in g for which λ+ρ(k) is dominant regular. Assume also that λ+ρ(s) is analytically

integral. Then there is a positive constant C1 so that whenever

〈λ , β〉 > C1, for all β ∈ ∆+, (A.7)

Ker(DG+/G+∩K

(
Fτ,λ

)
) contains, with multiplicity one, a subrepresentation infinitesimally equivalent to a

relative discrete series representation of G+. Denoting this subrepresentation by W τ ′,λ+ρ(k),

f 7→ π1(f(e))

W τ ′,λ+ρ(k) → Fτ ′,λ+ρ(s)

is a nonzero G+ ∩K-homomorphism.

Remark A.8. The representation W τ ′,λ+ρ(k) is infinitesimally equivalent to a relative discrete series repre-

sentation π(τ ′, λ + ρ(k);G+) having infinitesimal character λ + ρ(k) and containing the G+ ∩K-type with

highest weight λ+ ρ(s).

Proof. By [16], Ker
(
DG+/G+∩K(Fτ,λ)

)
contains a relative discrete series representation (the L2 harmonic

spinors). Denoting this space by W τ ′,λ+ρ(k) we have

1 ≤ dim HomG+

(
W τ ′,λ+ρ(k),Ker(DG+/G+∩K(Fτ,λ))

)
≤ dim HomG+

(
W τ ′,λ+ρ(k), C∞(G+/G+ ∩K,Ss ⊗Fτ,λ)

)
= dim HomG+∩K

(
W τ ′,λ+ρ(k), Ss ⊗ Fτ,λ

)
(A.9)

= 1. (A.10)

To see the last equality we check that

the only G+ ∩K-type occurring in both W τ ′,λ+ρ(k) and Ss ⊗ Fτ,λ is Fτ ′,λ+ρ(s). (A.11)

For this, we apply the Dirac inequality ([14, Proposition 2.6]) along with (A.7). We will use the following

nonsingularity condition:

〈λ+ ρ(k) , β〉 > 〈〈Q〉 , β〉, for all Q ⊂ ∆+(s), β ∈ ∆+(k)

〈λ , β〉 > 〈〈Q〉 , β〉, for all Q ⊂ ∆+(s), β ∈ ∆+(s).
(A.12)

This follows from (A.7) when the constant C1 is

C1 = max
Q⊂∆+(s),β∈∆+

〈〈Q〉 , β〉.
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The Dirac inequality states that for any irreducible, unitarizable (g,K)-module V of infinitesimal character

Λ, if δ is the highest weight of a K−type occurring in Ss ⊗ V , then

||Λ|| ≤ ||δ + ρ(k)||. (A.13)

Note that the infinitesimal character of W τ ′,λ+ρ(k) is Λ = λ + ρ(k) and the possible K−types of Ss ⊗ Fτ,λ

have highest weights of the form λ+ ρ(s)−〈Q〉, for Q ⊂ ∆+(s). Now suppose that such a K−type occurs in

W τ ′,λ+ρ(k). By the first condition in (A.12), δ = (λ+ ρ(s)−〈Q〉)− ρ(s) = λ−〈Q〉 occurs in Ss⊗W τ ′,λ+ρ(k),

therefore, by (A.13)

||λ+ ρ(k)|| ≤ ||λ+ ρ(k)− 〈Q〉||.

However this inequality can only hold when Q = ∅ (as λ satisfies the second part of (A.12)). Now (A.11)

follows.

Since the isomorphism of hom’s which gives (A.9) is evaluation at e ∈ G, we may conclude from (A.11)

that evaluation at e followed by projection to Fτ ′,λ+ρ(s) is nonzero on W τ ′,λ+ρ(k).

�

Now suppose that H satisfies (A.1), H ⊂ K and rank(hC) = rank(kC). We may assume that our Cartan

subalgebra t is contained in h. Since our goal is to realize relative discrete series representations of G as

harmonic spinors on G/H we will apply Lemma 2.12 to H ⊂ G+ ∩K ⊂ G. Proposition A.6 takes care of

one step. The other step is essentially the corresponding statement for compact groups, which will follow

from [11, Theorem 4]. The exact statement is contained in Proposition A.16 below. We will first need a few

facts related to the disconnectedness of G and H.

Lemma A.14. Let Te be the analytic subgroup of H with Lie algebra t. Any automorphism of g fixing t

(pointwise) is Ad(t) for some t ∈ Te.

Proof. Let ζ be such an automorphism. Since ζ fixes t, ζ must be inner. In Int(gC), ζ lies in the Cartan

subgroup containing Ad(Te). Since the Cartan subgroups in a connected complex group are connected,

ζ = Ad(exp(H1 + iH2)) for some H1,H2 ∈ t. By using the fact that ζ(g) ⊂ g and considering the action on

root vectors one sees that ad(H2) = 0. �

We obtain the following corollary.

Corollary A.15. Let H be as above.

(1) H = H+ = ZH(h)He.

(2) H = ZH(g)He.

(3) ZH(k)Ke = ZH(g)Ke.

Proof. The first statement follows from the facts that Ad(h) is inner for any h ∈ H and H ⊂ K. The second

statement follows from the first and the Lemma. Statement (3) follows from the lemma. �

Since H = ZH(g)He the finite dimensional irreducible representations of H are of the form (τ ⊗ σµ, Eτ,µ)

with τ an irreducible representation of ZH(g), σµ the irreducible finite dimensional representation of He with

some highest weight µ satisfying the condition that τ and σµ act by the same scalars on ZH(g) ∩He. (See

(A.3).) Let Eτ,µ → K/H be the associated homogeneous vector bundle over K/H.
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Proposition A.16. Let K ′ = ZH(k)Ke and let Fµ−ρ(k∩q) be the irreducible finite dimensional representation

of Ke of highest weight µ− ρ(k ∩ q). Then

Ker
(
DK/H(Eτ,µ)

)
' IndK

K′

(
τ ′ ⊗ Fµ−ρ(k∩q)

)
.

Proof. Our proof is a reduction to the case where K is a compact connected semisimple group and H is a

connected subgroup, which is handled in [11, Theorem 4].

The first step is to determine Ker
(
DKe/He

(Eµ)
)
. We may write

Ke = Z1Kss and He = Z1(He ∩Kss)

where Kss is the compact semisimple Lie group with Lie algebra kss
def.
= [k, k] and Z1 = exp(z(k)), z(k) =

center of k. Note that He ∩Kss and Kss are connected compact groups of equal rank. Decomposing µ as

µ = µz + µss ∈ z(k)∗ + (t ∩ kss)∗ we have

C∞(Ke/He,Sk∩q ⊗ Eµ) ' eµz ⊗ C∞(Kss/He ∩Kss,Sk∩q ⊗ Eµss)

and

Ker
(
DKe/He

(Eµ)
)
' eµz ⊗ Fµss−ρ(k∩q), by [11, Theorem 4]

= Fµ−ρ(k∩q).

Observe that K ′/H ' Ke/He, so

C∞(K ′/H,Sk∩q ⊗ Eτ,µ) ' τ ′ ⊗ C∞(Ke/He,Sk∩q ⊗ Eµ)

and

Ker
(
DK′/H(Eτ,µ)

)
' τ ′ ⊗Ker

(
DKe/He

(Eµ)
)

Now apply Lemma 2.12 to H ⊂ K ′ ⊂ K to get

Ker
(
DK/H(Eτ,µ)

)
' IndK

K′

(
τ ′ ⊗ Fµ−ρ(k∩q)

)
.

�

Remark A.17. If K is replaced by G+ ∩K in the proposition then

IndG+∩K
K′

(
τ ′ ⊗ Fµ−ρ(k∩q)

)
'

⊕
τ1∈S(τ)

(
τ1 ⊗ Fµ−ρ(k∩q)

)
, (A.18)

for some S(τ) ⊂ ZK(g)b. The set S(τ) is easily described as follows: τ1 occurs in the induced representation

IndG+∩K
K′ (Fτ ′,µ−ρ(k∩q)) if and only if HomZH(g)(τ1, τ ′) 6= 0. Therefore

S(τ) = {τ1 ∈ ZK(g)b : HomZH(g)(τ1, τ ′) 6= 0}. (A.19)

Continuing with the case where K is replaced by G+ ∩ K, let Fτ1,µ−ρ(k∩q) be one of the constituents

occurring in Ker
(
DG+∩K/H(Eτ,µ)

)
. Then

HomG+∩K

(
Fτ1,µ−ρ(k∩q),Ker

(
DG+∩K/H(Eτ,µ)

))
6= 0,

which gives (by evaluation at e ∈ H) a nonzero H-homomorphism

Fτ1,µ−ρ(k∩q) → Sk∩q ⊗ Eτ,µ. (A.20)

The only H-constituent which Fτ1,µ−ρ(k∩q)|H and Sk∩q ⊗ Eτ,µ have in common is Eτ ′,µ−ρ(k∩q). (To see this

note that the He-constituents in Fτ1,µ−ρ(k∩q) have highest weights of the form µ− ρ(k ∩ q)−
∑
mγγ,mγ ≥
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0, γ ∈ ∆+(k) and the highest weights of theHe-constituents in Sk∩q⊗Eτ,µ are of the form µ+〈Q〉−ρ(k∩q), Q ⊂
∆+(k∩q). The only way these can be equal is if all mγ = 0 and Q = ∅.) Now we may conclude that evaluation

at e ∈ H (map (A.20)) followed by the projection

π2 : Sk∩q ⊗ Eτ,µ → Eτ ′,µ−ρ(k∩q) (A.21)

is nonzero. We summarize as follows.

Corollary A.22. Let τ and µ be as in Proposition A.16. Let S(τ) = {τ1 ∈ ZK(g)̂ : HomZH(g)(τ1, τ ′) 6= 0}.
Then

Ker
(
DG+∩K/H(Eτ,µ)

)
'

⊕
τ1∈S(τ)

Fτ1,µ−ρ(k∩q)

and on any constituent Fτ1,µ−ρ(k∩q)

f 7→ π2(f(e))

F τ1,µ−ρ(k∩q) → Eτ ′,µ−ρ(k∩q)

is nonzero.

We are now ready to put Propositions A.6 and A.16 together for our final result. It follows from part (2)

of Corollary A.15 that H ⊂ G+ ∩K ⊂ G+. Therefore, H ⊂ G+ ∩K and we have (by (2.11)):

C∞(G+/H,Sq ⊗ Eτ,µ) ' C∞(G+/G+ ∩K,Ss ⊗ C∞(G+ ∩K/H,Sk∩q ⊗ Eτ,µ)).

Now ⊕
τ1∈S(τ)

W τ1,µ+ρ(h) ⊂ Ker
(
DG+/G+∩K(⊕τ1∈S(τ) Fτ1,µ−ρ(k∩q))

)
,by Proposition A.6,

' Ker
(
DG+/G+∩K

(
Ker

(
DG+∩K/H

)))
,by Corollary A.22,

⊂ Ker
(
DG+/H(Eτ,µ)

)
,by Lemma 2.12.

We have established the following theorem.

Theorem A.23. Suppose H ⊂ K, G and H satisfy (A.1), rank(gC) = rank(hC), µ+ρ(q) ∈ t∗ is analytically

integral, µ satisfies (3.4) and τ ∈ ZH(g)b is compatible with σµ as above. Then for τ1 ∈ S(τ), π(τ1, µ +

ρ(h);G+) is equivalent to a subrepresentation W τ1,µ+ρ(h) of Ker
(
DG+/H(Eτ,µ)

)
.

Since µ+ ρ(g)− 〈Q〉 is ∆+(h)-dominant for all Q ⊂ ∆+(q) and is dominant regular when Q = ∆+(k ∩ q)

(compare with (3.4)), Eτ ′,µ−2ρ(k∩q)+ρ(q) is a constituent of multiplicity one in Sq ⊗ Eτ,µ. (Note: µ − ρ(k ∩
q) + ρ(s) = µ− 2ρ(k ∩ q) + ρ(q).) We may define

π0 : Sq ⊗ Eτ,µ → Eτ ′,µ−2ρ(k∩q)+ρ(q)

to be the corresponding projection.

Corollary A.24. For any constituent W τ1,µ+ρ(h) as in the theorem

f 7→ π0(f(e))

W τ1,µ+ρ(h) → Eτ ′,µ−ρ(k∩q)+ρ(s)

is a nonzero homomorphism.
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Proof. Recall from (A.4) and (A.21) there are projections

π1 : Ss ⊗ Fτ,λ → Fτ ′,λ+ρ(s), for λ = µ− ρ(k ∩ q)

π2 : Sk∩q ⊗ Eτ,µ → Eτ ′,µ−ρ(k∩q).

Consider also

π′ : Ss ⊗ Eτ ′,µ−ρ(k∩q) → Eτ ′,µ−2ρ(k∩q)+ρ(q).

Note that π0 = π′ ◦ (1⊗ π2) since each map is nonzero and dim
(
HomH(Sq ⊗Eτ,µ, Eτ ′,µ−2ρ(k∩q)+ρ(q))

)
= 1.

Let us use the following (temporary) notation:

W0 ' Fτ1,µ−2ρ(k∩q)+ρ(q) : G+ ∩K-type in W τ1,µ+ρ(h) see Proposition A.6,

w+ : highest weight vector in W0,

v+ : highest weight vector in Fτ1,µ−ρ(k∩q),

u+ : highest weight vector in Eτ ′,µ−ρ(k∩q),

s+ : highest weight vector in Ss.

Consider

W0
ı1→ Ss ⊗ Fτ1,µ−ρ(k∩q)

ı2→ Ss ⊗ Eτ ′,µ−ρ(k∩q)
π′

−→ Eτ ′,µ−2ρ(k∩q)+ρ(q) (A.25)

f −→ Ff (e) −→ (1⊗ π2)(Ff (e)(e)) → π′(1⊗ π2)(Ff (e)(e)) = π0(f(e)).

We claim that this is nonzero. For this we follow w+ through each homomorphism. Note that the

µ − 2ρ(k ∩ q) + ρ(q)-weight space occurs in each representation in (A.25). By Proposition A.6 the image

of ı1 is Fτ ′1,µ−2ρ(k∩q)+ρ(q), so contains ı1(w+) = s+ ⊗ v+. By Corollary A.22, ı2 is nonzero, therefore

ı2(s+ ⊗ v+) = s+ ⊗ u+. Also, π′(s+ ⊗ u+) is a highest weight vector in Eτ ′,µ−2ρ(k∩q)+ρ(q). Therefore,

π′ · ı2 · ı1(w+) 6= 0. �
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