
HARMONIC SPINORS ON SEMISIMPLE SYMMETRIC SPACES

S. MEHDI AND R. ZIERAU

Abstract. Let G/H be a semisimple symmetric space. We consider a Dirac operator D on G/H twisted
by a finite dimensional H-representation. We give an explicit integral formula for certain solution of the

equation D = 0. In particular, some quotient of standard principal series representations are seen to occur

in the kernel of D.

1. Introduction.

Discrete series representations of semisimple Lie groups occur as L2-spaces of solutions to certain twisted

Dirac operators on riemannian symmetric spaces G/K ([9], [1]). A generalization of this fact is given in [11].

In this article we consider twisted Dirac operators on nonriemannian symmetric spaces G/H. Under the

condition that G and H have equal rank we show that the space of smooth solutions to the twisted Dirac

equation is nonzero. In addition, we give an integral formula representing solutions. The integral formula is

very similar to the classical Poisson integral representation of harmonic functions, and its generalizations.

Our integral formula for the solutions to the Dirac equation is in the form of a G-intertwining operator

from a principal series representation into the sections of a twisted spin bundle on G/H. This operator is

constructed in a way similar to the construction of intertwining maps into Dolbeault cohomolgy represen-

tations (occuring on open orbits in flag varieties). See [3], [2] and [4]. In that situation the image of the

intertwining operator is annihilated by ∂ and ∂
∗
, thus strongly harmonic forms are produced. The results

in this article differ considerably in that no complex structure on G/H plays a role, and in fact no invariant

complex structure exists in general.

Our results should be considered as the opposite extreme from the results mentioned above for discrete

series on G/K in the following sense. Our intertwining operator tells us nothing in the case of H = K.

Indeed, we reduce to this case. It should be noted that the techniques in the case of H = K are quite

different from ours. In particular, for H 6= K the Dirac operator is not elliptic and L2 techniques are not

available.

This article is organized as follows. Section 2 gives some notation and describes the groups which will

arise. In Sections 3 and 4 we review the material about spin representations which we will need, define

the Dirac operator and compute its square. Section 5 gives a construction of the intertwining operator. In

Section 6 we prove that the image of the intertwining operator lies in the kernel of the Dirac operator.

2. Preliminaries.

Let G be a connected linear semisimple Lie group with Lie algebra denoted by g. Let σ be an involution

of G and set

H = (Gσ)0,
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the identity component of the fixed point group of σ. Then the homogeneous space G/H is semisimple

symmetric, not necessarily riemannian. With respect to the involution σ, g decomposes as

g = h⊕ q

where q = {X ∈ g | σ(X) = −X}. Fix a Cartan involution θ commuting with σ and let K = Gθ the

fixed point group of θ. This induces a Cartan involution of g, which we also denote by θ, and a Cartan

decomposition of g

g = k⊕ s

where s = {X ∈ g | θ(X) = −X}. There is a further decomposition of g as

g = (h ∩ k)⊕ (h ∩ s)⊕ (q ∩ k)⊕ (q ∩ s).

We shall assume that the complex rank of G is equal to the complex rank of H:

(2.1) rank(G) = rank(H).

In particular, one can choose a Cartan subalgebra of g in h. More precisely, let a be a maximal abelian

subspace of h ∩ s. From (2.1) one can choose t in h so that a ⊕ t is a σ-stable Cartan subalgebra of both

g and h. This gives a Lie subalgebra m of g such that m ⊕ a is the centralizer of a in g and t is a compact

Cartan subalgebra of m.

Now let Σ(g, a) be the set of restricted roots of g relative to a. As usual, after a choice of positive roots

Σ+(g, a), one defines the nilpotent subalgebra

n =
∑

α∈Σ+(g,a)

gα

where gα is the restricted root space corresponding to α. Denote by M0, A and N the analytic subgroups of

G with Lie algebra m, a and n respectively. Then one obtains a parabolic subgroup P of G with Langlands

decomposition

P = MAN

where M is the closed subgroup ZK(a)M0 of G, with ZK(a) the centralizer of a in K. As M contains a

compact Cartan subalgebra, P is cuspidal.

It is crucial for our construction that a is maximal abelian in h ∩ s. Several simple consequences of this,

which we will refer to later, are contained in the following lemma.

Lemma 2.2. Assume a and P = MAN are as above. Then the following statements hold.

(a) P ∩H is a minimal parabolic subgroup of H and

P ∩H = (M ∩H)A(N ∩H).

(b) The orbit H · eP of H in G/P is a closed orbit and

H · eP ' H/H ∩ P ' H ∩K/H ∩M.

(c) M,H ∩M and K ∩M all have the same (complex) rank.

(d) q = (m ∩ q)⊕ (n ∩ q)⊕ (n ∩ q) and m ∩ q = (m ∩ s)⊕ (m ∩ k ∩ q).

We fix once and for all a positive system of ∆(gC , (a⊕ t)C) with the property that the restriction to a of

a positive root is a positive restricted root. This determines a positive root system ∆(hC , (a⊕ t)C). We will
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denote by ρ(g) the half sum of positive (a⊕ t)C-roots. Note that a positive system of t-roots for m may be

specified arbitrarily.

Observe that the discrete series of M is nonempty. So let (δ,W ) be a discrete series representation of M

in some Hilbert space W . Let ν be a linear form on a, and denote by ρg the half-sum of (restricted) positive

roots:

ρg =
1
2

∑
α∈Σ+(g,a)

α.

As usual, one can form the nonunitary principal series representation πδ,ν of G as the induced representation

IndGMAN (δ⊗eν⊗1) of G from the irreducible P -representation δ⊗eν⊗1 on W ⊗Cν (normalized induction).

The induced representation space is the space of smooth sections of the homogeneous vector bundle for

W ⊗Cν+ρg . This space of sections is denoted by C∞(G/P,W ⊗Cν+ρg) and consists of smooth functions

f : G→W ⊗Cν+ρg such that

(2.3) f(gman) = (δ(m)−1 ⊗ e−(ν+ρg)(ln(a)))(f(g)), ∀g ∈ G and ∀man ∈ P = MAN.

We shall refer to δ and ν as the Langlands parameters of the nonunitary principal series representation πδ,ν
of G (page 132 of [7]).

3. The spin representations.

We apply the general construction of Clifford algebras and spin representations associated to a vector space

with a nondegenerate (possibly indefinite) symmetric bilinear form. A good reference for this construction

is Chapter 6 of [5]. Note that under our equal rank assumption (2.1) q is even dimensional. Let 〈 , 〉q be

the restriction of the Killing form of g to q. Extend 〈 , 〉q linearly to the complexification qC of q and use

the same symbol 〈 , 〉q to denote this extension. Let V and V ∗ be two dual maximal isotropic subspaces of

qC relative to 〈 , 〉q. Denote by ∧V ∗ the exterior algebra of V ∗:

∧V ∗ =

dim(q)
2⊕
l=0

∧lV ∗,

equipped with the interior product ı and exterior multiplication ε :

ı(v)(v∗1 ∧ · · · ∧ v∗l ) = 〈v , v∗1〉qv∗2 ∧ · · · ∧ v∗l − v∗1 ∧ ı(v)(v∗2 ∧ · · · ∧ v∗l )

ε(v∗)(v∗1 ∧ · · · ∧ v∗l ) = v∗ ∧ v∗1 ∧ · · · ∧ v∗l ,

for all v ∈ V, v∗ ∈ V ∗ and v∗1∧· · ·∧v∗l ∈ ∧lV ∗. On the other hand, the Clifford algebra Cl(qC) of qC is defined

as the quotient of the tensor algebra T (qC) of qC by the ideal I generated by elementsX⊗Y+Y⊗X−〈X ,Y 〉q,

X and Y in qC:

Cl(qC) = T (qC)/I.

Now define a map γ by

(3.1) γ : qC → End(∧V ∗), v + v∗ 7→ ı(v) + ε(v∗)

where, as usual, End(∧V ∗) denotes the vector space of complex linear endomorphisms of ∧V ∗. Observing

that

γ(X) ◦ γ(Y ) + γ(Y ) ◦ γ(X) = 〈X ,Y 〉q, ∀X,Y ∈ qC,
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one can extend γ naturally to a map γ̃ on the Clifford algebra of qC by

γ̃ : Cl(qC)→ End(∧V ∗), X1X2 · · ·Xp 7→ γ(X1) ◦ γ(X1) ◦ · · · ◦ γ(Xp).

Next, let SO(q) be the Lie group of orthogonal endomorphisms of q relatively to 〈 , 〉q with Lie algebra

so(q) = {A ∈ End(q) | 〈AX ,Y 〉q + 〈X ,AY 〉q = 0, ∀X,Y ∈ q}.

For all X and Y in q, define the endomorphism RX,Y by

RX,Y (W ) = 〈Y ,W 〉qX − 〈X ,W 〉qY, W ∈ q,

and observe that

RX,Y ∈ so(q), ∀X,Y ∈ q.

In fact, these RX,Y generate the Lie algebra so(q). Then one can define an injective Lie algebra homomor-

phism, which embeds so(q) in the Clifford algebra of qC (Lemma 6.2.2 of [5]) by

Φ : so(q)→ Cl2(qC), RX,Y 7→
1
2

(XY − Y X),

where Cl2(qC) is the Lie algebra defined as the subspace of Cl(qC) generated by the elements X1X2, with

X1 and X2 in q. Next, let S+
q and S−q be the following vector subspaces of ∧V ∗:

S+
q =

⊕
l even

∧lV ∗ and S−q =
⊕
l odd

∧lV ∗.

Obviously, both S+
q and S−q are invariant under the γ̃-action of Cl2(qC):

γ̃(a)(S±q ) ⊂ S±q , ∀a ∈ Cl2(qC).

Next, consider the two involutions α and ∗ in Cl(q) defined by

α(γ(v1) · · · γ(vk)) = (−1)kγ(v1) · · · γ(vk), ∀vj ∈ q

and

(γ(v1) · · · γ(vk))∗ = (−1)kγ(vk) · · · γ(v1), ∀vj ∈ q.

The spin group of q with respect to 〈 , 〉q is the subset of the Clifford algebra defined by

Spin(q)
def.
= {u = v1 · · · vk | vj ∈ q, u · u∗ = 1, α(u)γ(q)u∗ = γ(q), k even} ⊂ Cl(q).

Observe that the Lie algebra spin(q) of Spin(q) is (Theorem 6.3.6 of [5])

spin(q) = Φ(so(q)),

so that

σ±(Φ(X))
def.
= γ̃(Φ(X))|

S
±
q

, X ∈ so(q)

defines a representation of spin(q) in S±q . The representations (σ+, S+
q ) and (σ−, S−q ) are called the half-spin

representations of spin(q).

Now we describe the weights of the half-spin representations of spin(q). Let {ej} and {e∗j} be bases of V

and V ∗ respectively, such that

〈ej , ek〉q = 〈e∗j , e∗k〉q = 0, ∀ j, k, and

〈ej , e∗k〉q = ±δjk.
(3.2)
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It is easy to see that the algebra

(3.3) C = span{Rej ,e∗j | 1 ≤ j ≤
dim(q)

2
}

is a Cartan subalgebra of so(q), and Φ(C) is a Cartan subalgebra of spin(q). Observe that

Φ(〈ej , e∗j 〉qRej ,e∗j ) = 〈ej , e∗j 〉qı(ej)ε(e∗j )−
1
2
.

For each integer l in {1, · · · , dim(q)
2 } and each set I = {1 ≤ i1 ≤ i2 ≤ · · · ≤ il ≤ dim(q)

2 }, define the element

uI = e∗i1 ∧ e
∗
i2 ∧ · · · ∧ e

∗
il
,

with u∅ = 1. Then one obtains

σ±(Φ(〈ej , e∗j 〉qRej ,e∗j ))uI =

{
− 1

2uI , j ∈ I
1
2uI , j 6∈ I

so uI is a weight vector of weight

(3.4) λI =
1
2

(
∑
j 6∈I

εj −
∑
j∈I

εj)

where

(3.5) εj(Φ(〈ek , e∗k〉qRek,e∗k)) = δjk.

Observe that each such weight has multiplicity one, and there are only two dominant weights, namely λ∅

and λ{ dim(q)
2 }. Actually, σ+ (resp. σ−) is an irreducible highest weight representation of spin(q) with highest

weight λ∅ (resp. λ{ dim(q)
2 }) with respect to an appropriate positive system of C-roots. Both σ± lift to

representations of the group Spin(q).

We now consider the ‘spin’ representations of h and H. These are essentially the restrictions of σ± to

h ⊂ so(q). Since 〈 , 〉q is Ad(H)-invariant, we obtain the Lie group homomorphism

ζ : H → SO(q), h 7→ Ad(h)|q ,

whose differential deζ at the identity is a homomorphism of Lie algebras:

deζ = ad : h→ so(q).

For the above construction we have arbitrarily chosen dual isotropic subspaces V and V ∗, and a special

basis (as in (3.2)). Now we would like to be more specific about these choices. Since a ⊕ t ⊂ h, each root

space (gC)α, for α in ∆(gC, (a⊕ t)C), is σ-stable so that

(gC)α = ((gC)α ∩ hC)⊕ ((gC)α ∩ qC).

But, as (gC)α is one-dimensional, one has (gC)α ⊂ hC or (gC)α ⊂ qC. In the first case, we shall say that

α is an h-root of gC, while in the second case α is called a q-root of gC. We denote the sets of h-roots and

q-roots respectively by ∆(hC, (a⊕ t)C) and ∆(qC, (a⊕ t)C). As in Lemma 2.2, q = (m∩q)⊕ (n∩q)⊕ (n∩q).

Set V equal to the span of the root vectors for positive q-roots and V ∗ equal to the span of the root vectors

for the negative q-roots. Then V and V ∗ are isotropic and the basis in (3.2) may be chosen to consist of

root vectors (properly normalized).

We define the half-spin representations of h as the representations (s+, S+
q ) and (s−, S−q ), where

s± = σ± ◦ Φ ◦ (deζ).
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The description of the set Π(S±q ) of weights of the half-spin representations of h is as follows. As an h-

representation the set of weights of qC relative to (a⊕ t)C is precisely the set of q-roots of gC. By definition,

deζ composed with the standard representation of so(q) is exactly the adjoint action of h on q. We may

assume that

deζ((a⊕ t)C) ⊂ C,

so that the pullback (deζ)∗ of deζ is a bijection between the set of weights relative to C of the standard

representation of so(q) on qC, and ∆(qC, (a⊕ t)C). Enumerating the roots in ∆+(qC, (a⊕ t)C) as

{α1, α2, . . . , αm}, with m =
dim(q)

2
we see that the sets Π(S±q ) of weights of the half-spin representations S±q of h are

Π(S+
q ) = {1

2
(±α1 ± α2 ± · · · ± α dim(q)

2
) | even number of minuses }

and

Π(S−q ) = {1
2

(±α1 ± α2 ± · · · ± α dim(q)
2

) | odd number of minuses }.

In particular, each such weight is of multiplicity one. It is useful to observe that one can rewrite these weights

as follows. Let F be any subset of ∆+(qC, (a ⊕ t)C) and denote by < F > the sum of the elements of F .

Let ρ(q) be the half-sum of positive q-roots of gC:

ρ(q) =
1
2

∑
α∈∆+(qC,(a⊕t)C)

α.

Then any weight of S+
q (resp. S−q ) under h is of the form ρ(q)− < F > for some subset F of ∆+(qC, (a⊕ t)C)

of even (resp. odd) cardinality. We may write

Π(S+
q ) = {ρ(q)− < F >| F ⊂ ∆+(qC, (a⊕ t)C) and #F even}

and

Π(S−q ) = {ρ(q)− < F >| F ⊂ ∆+(qC, (a⊕ t)C) and #F odd}.

Let (τµ, Eµ) be an irreducible highest weight representation of h with highest weight µ. Then the tensor

products S±q ⊗ Eµ are h-modules under the actions s± ⊗ τµ. In particular, any weight occurring in the

decomposition into irreducibles of the h-modules S±q ⊗Eµ is of the form µ+ ρ(q)− < F >. We assume that

our weight µ satisfies the following inequalities. For each simple root α ∈ ∆+(hC, (a⊕ t)C),

〈µ+ ρ(q)− < F > +ρ(h) , α〉 ≥ 0, for every F ⊂ ∆+(qC, (a⊕ t)C)

〈µ+ ρ(q)− 2ρ(m ∩ k ∩ q) + ρ(h) , α〉 > 0.
(3.6)

Then the weight µ + ρ(q)− < F > +ρ(h) is dominant, relative to ∆+(hC, (a ⊕ t)C), for all subsets F of

∆+(qC, (a ⊕ t)C). Thus, applying the Steinberg formula (page 111-112 of [7]), the decomposition of the

h-modules S±q ⊗ Eµ into irreducible h-modules is as follows:

(3.7) S±q ⊗ Eµ =
∑
F⊂F±

Eµ+ρ(q)−<F>,

where F± = {F ⊂ ∆+(qC, (a⊕ t)C) : #F is even (or odd) and µ+ ρ(g)− < F > is dominant regular}.
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We will use the following technical lemma in the proof of Theorem 6.2. There we will be considering

the spin representations of m ∩ h. Observe that the killing form restricted to m ∩ q is nondegenerate, so we

may construct spin representations on m ∩ h on S±m∩q in the same manner in which we constructed the spin

representations of h on S±q above. We choose the dual isotropic subspaces to be spanned by root vectors

for positive (respectively negative) m ∩ q-roots. Therefore there is a natural embedding S±m∩q ⊂ S±q as

m∩ h-representations. For any irreducible h-representation Eµ of highest weight µ we set Uµt = (Eµ)n∩h, an

irreducible representation of m ∩ h on h of highest weight µt
def.
= µ|t.

Lemma 3.8. Consider S±m∩q ⊂ S±q as above. Set V
def.
=
(
Eµ+ρ(q)−2ρ(m∩k∩q)

)n∩h

, a constituent in S+
q ⊗Eµ

by taking F = ∆+(m ∩ k ∩ q) in (3.7). Then the following hold.

(a) S±m∩q ⊂
(
S±q

)n∩h

.

(b) V ⊂ S±m∩q ⊗ Uµt .

Proof. (a) By [5], equation (6.2.1), as h-representations ∧2q ∼= so(q) via X ∧ Y 7→ RX,Y .

Claim: ad(n ∩ h) is spanned by RX,Y with X and Y root vectors for q-roots α and β with α + β positive

and nonzero on a.

By the isomorphism above the weights in so(q) are all of the form α + β for some q-roots α and β. The

weighs occurring in n ∩ h satisfy α+ β > 0 and (α+ β)|a 6= 0. The claim follows.

In particular, for such X and Y there are three possibilities:

(i) X,Y ∈ n ∩ q,

(ii) X ∈ n ∩ q, Y ∈ n ∩ q and α+ β > 0,

(iii) X ∈ m ∩ q, Y ∈ n ∩ q.

Let u ∈ S±m∩q. We check that s±(RX,Y )(u) = 1
2 (γ(X)γ(Y )− γ(Y )γ(X))(u) = 0 for each of the possibilities.

For (i) this is clear since γ(X) = ı(X) and γ(Y ) = ı(Y ) for X,Y ∈ n ∩ q, and ı(X)(u) = ı(Y )(u) = 0, since

n ∩ q ⊥ m ∩ q. For (ii), again γ(X) = ı(X) is zero on u and

s±(RX,Y )(u) =
1
2

(
ı(X)ε(Y )− ε(Y )ı(X)

)
(u)

=
1
2
ı(X)ε(Y )(u)

=
1
2
ı(X)(Y ∧ u)

=
1
2
〈X ,Y 〉qu−

1
2
Y ∧ ı(X)u

= 0

since X ⊥ Y (as α 6= −β). For (iii),

s±(RX,Y )(u) =
1
2

(
γ(X)ı(Y )− ı(Y )γ(X)

)
(u)

= −1
2
ı(Y )γ(X)u

= 0,

since γ(X)(u) ∈ S±m∩q.

(b) It will be enough to show that the highest weight vector in Eµ+ρ(q)−2ρ(m∩k∩q) lies in S+
m∩q ⊗ Uµt .

As in (3.7) S+
m∩q ⊗ Uµt contains the irreducible m ∩ h-representation of highest weight µt + ρ(m ∩ q) −

2ρ(m ∩ h ∩ q). Denote by u+ the highest weight vector of this constituent.



8 S. MEHDI AND R. ZIERAU

Claim: Viewing u+ as in S+
q ⊗ Eµ, u+ is a highest weight vector for the irreducible h-representation

Eµ+ρ(q)−2ρ(m∩k∩q) ⊂ S+
q ⊗ Eµ.

Since u+ is a highest weight vector for m ∩ h and is killed by n ∩ q, u+ is a highest weight vector for an

h-subrepresentation of S+
q ⊗Eµ. We need to check that it has weight µ+ ρ(q)− 2ρ(m∩ k∩ q). The t-weight

is correct. To see this note that by the choice of ∆+(gC, (a ⊕ t)C) following Lemma 2.2, ρ(q)|t = ρ(m ∩ q).

Therefore

(3.9) (µ+ ρ(q)− 2ρ(m ∩ k ∩ q))|t = (µ+ ρ(m ∩ q)− 2ρ(m ∩ k ∩ q))|t.

We must calculate the a-weight of u+. For any t-weight vector u ∈ S+
m∩q ⊗Uµt we may write u = uF ⊗ ũ

where uF = X−α1 ∧ · · · ∧X−αj , with F = {αi} ∈ ∆(m ∩ h), and ũ are t-weight vectors. However, by (3.4)

uF has a⊕ t-weight (ρ(q)− < F >)|a. This weight is (ρ(q)− 2ρ(m ∩ k ∩ q))|a, as roots in m restrict to 0 on

a. Since ũ ∈
(
Eµ

)n∩h

, the a-weight of ũ is µ|a. Therefore the a-weight of u is (µ+ ρ(q)− 2ρ(m ∩ k ∩ q))|a.

�

Finally, we need to make the following integrability assumption.

Assumption 3.10. The h-representations s± ⊗ τµ on S±q ⊗ Eµ lift to representations of H.

As H is connected, the decomposition in (3.7) holds as H representations.

4. The twisted Dirac operator on G/H and its square.

Let (τ1, E1) and (τ2, E2) be two finite dimensional representations of H. Denote the corresponding ho-

mogeneous vector bundles on G/H by E1 → G/H and E2 → G/H. The spaces of smooth sections are

(4.1) C∞(G/H, Ej) = {f : G→ Ej |f(gh) = τj(h−1)f(g), for all g ∈ G, h ∈ H}.

Equivariant differential operators C∞(G/H, E1) → C∞(G/H, E2) may be described as follows. Let U(g) be

the enveloping algebra of g and Hom(E1, E2) the space of complex linear maps from E1 to E2. Then H acts

on the tensor product U(g)⊗Hom(E1, E2) by

h · (u⊗ T ) = Ad(h)(u)⊗ (τ2(h) ◦ T ◦ τ−1
1 (h)), for h ∈ H, u⊗ T ∈ U(g)⊗Hom(E1, E2),

where Ad is the adjoint action of G on g, naturally extended to U(g). Then any
∑
uj ⊗ Tj ∈ {U(g) ⊗

Hom(E1, E2)}H (the H-invariants) defines a G-equivariant differential operator

Df
def.
= (

∑
R(uj)⊗ Tj)(f)

def.
=
∑

Tj(R(uj)f).

Here R(u) is the right action of u ∈ U(g) extending the action of g by left invariant vector fields:

R(X)(f)(g) =
d

dt
f(g exp(tX))|t=0 , ∀g ∈ G,X ∈ g.

For the Dirac operator we fix a basis {Xj} of q satisfying

(4.2) 〈Xj , Xk〉q = ±δjk.

We also fix an irreducible H-representation (τµ, Eµ) of highest weight µ ∈ (a ⊕ t)∗ satisfying Assumption

3.10. Then by the invariance of 〈 , 〉q under H

(4.3)
dim(q)∑
j=1

〈Xj , Xj〉qXj ⊗ γ(Xj)⊗ 1
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is an H-invariant in U(g) ⊗ Hom(S±q ⊗ Eµ, S
∓
q ⊗ Eµ). Therefore, there are well defined G-equivariant

differential operators D± : C∞(G/H,S±q ⊗ Eµ)→ C∞(G/H,S∓q ⊗ Eµ) defined by

(4.4) D± =
dim(q)∑
j=1

〈Xj , Xj〉qR(Xj)⊗ γ(Xj)⊗ 1.

These are our ‘twisted Dirac’ operators. (See Prop. 3.2 of [9] for the case of riemannian symmetric spaces,

i.e., for σ = θ.) Note that the expression in (4.3) is independent of basis satisfying (4.2).

Now let 〈 , 〉h be the restriction to h of the Killing form of g. Let {Yj} be a basis of h so that

〈Yj , Yk〉h = ±δjk, ∀j, k.

Then the Casimir elements ΩG of G and ΩH of H are respectively defined by

ΩH =
dim(h)∑
j=1

〈Yj , Yj〉hY 2
j and ΩG = ΩH +

dim(q)∑
j=1

〈Xj , Xj〉qX2
j .

Proposition 4.5. The ‘square’ of the Dirac operator is

D∓ ◦D± =
1
2

(R(ΩG)⊗ 1⊗ 1 + 1⊗ s±(ΩH)⊗ 1− 1⊗ 1⊗ τµ(ΩH))

acting on {C∞(G)⊗ S±q ⊗ Eµ}H ∼= C∞(G/H,S±q ⊗ Eµ).

Proof. We have

D∓ ◦D± =
1
2

∑
j

〈Xj , Xj〉qR(X2
j )⊗ 1⊗ 1

+
1
2

∑
i,j

〈Xi , Xi〉q〈Xj , Xj〉qR([Xi, Xj ])⊗ γ(Xi)γ(Xj)⊗ 1.

Decomposing [Xi, Xj ] in the above basis {Yj} of h, we see that

D∓ ◦D± =
1
2

∑
j

〈Xj , Xj〉qR(X2
j )⊗ 1⊗ 1

+
1
2

∑
k

∑
i,j

〈[Xi, Xj ] , Yk〉h〈Yk , Yk〉h〈Xi , Xi〉q〈Xj , Xj〉qR(Yk)⊗ γ(Xi)γ(Xj)⊗ 1.

On the other hand, as for the Lie algebra so(q), one can also embed h in Cl2(qC) using the map Φ ◦ ζ so

that

(Φ ◦ ζ)(Y ) =
∑
i<j

cij(Y )XiXj ∀Y ∈ h.

To determine the coefficients cij(Y ), observe that

[XiXj , Xk] = 〈Xj , Xk〉qXi − 〈Xi , Xk〉qXj

thus

cij(Y ) = 〈Xi , Xi〉q〈Xj , Xj〉q〈[Y,Xj ] , Xi〉q.

Hence one obtains that

s±(Y ) =
1
2

∑
i,j

〈Xi , Xi〉q〈Xj , Xj〉q〈[Y,Xj ] , Xi〉qγ(Xi)γ(Xj),
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because 〈[Y,Xi] , Xj〉qXiXj = 〈[Y,Xj ] , Xi〉qXjXi. In particular, by invariance of the Killing form of g,

〈[Xi, Xj ] , Yk〉h + 〈Xj , [Xi, Yk]〉q = 0, so that

D∓ ◦D± =
1
2

∑
j

〈Xj , Xj〉qR(X2
j )⊗ 1⊗ 1−

∑
k

〈Yk , Yk〉hR(Yk)⊗ s±(Yk)⊗ 1.

Finally, since

(R⊗ s± ⊗ 1)(Y 2
k ) = 1⊗ s±(Y 2

k )⊗ 1 +R(Y 2
k )⊗ 1⊗ 1 + 2R(Yk)⊗ s±(Yk)⊗ 1, ∀k,

one gets that

D∓ ◦D± =
1
2
(
R(ΩG)⊗ 1⊗ 1 + 1⊗ s±(ΩH)⊗ 1−

∑
k

〈Yk , Yk〉h(R⊗ s± ⊗ 1)(Y 2
k )
)
.

The conclusion comes from the identity

(R⊗ s± ⊗ 1)(ΩH)|
(C∞(G)⊗S±q ⊗Eµ)H

= (1⊗ 1⊗ τµ)(ΩH)|
(C∞(G)⊗S±q ⊗Eµ)H

.

�

5. Construction of the intertwining map.

We continue with an irreducible representation (τµ, Eµ) of H with highest weight µ satisfying (3.6) and

(3.10). The space of smooth sections C∞(G/H,S±q ⊗Eµ) is as in (4.1). Given a representation δ⊗ eν+ρg ⊗ 1

on W ⊗Cν+ρg of the parabolic subgroup P = MAN , the corresponding homogeneous bundle is denoted by

W ⊗Cν+ρg . The space C∞(G/P,W ⊗Cν+ρg) of smooth sections of this bundle is as in (2.3).

Our goal is to determine the ‘parameters’ δ and ν for which there is a nonzero G-intertwining map

(5.1) P : C∞(G/P,W ⊗Cν+ρg)→ C∞(G/H,S+
q ⊗ Eµ),

so that the image of P lies in the kernel of D+. We will also write the intertwining operator as an explicit

integral formula.

In the remainder of this section we will determine the parameters δ and ν, and write down a formula for

P. In Section 6 we will see that the image of P lies in the kernel of the Dirac operator.

We begin with a Proposition which gives a condition on the infinitesimal character. Let ρh be half

the sum of the positive (restricted) a-roots in h. We now specify a positive system of t-roots in m by

∆+(m, t) = {α : 〈µ , α〉 > 0}. We obtain the following conditions on the Langlands parameters of πδ,ν .

Proposition 5.2. Let (τµ, Eµ) be an irreducible highest weight representation of H with highest weight µ,

where µ satisfies the conditions (3.6) and (3.10). Assume there exists a nonzero intertwining operator P±

from the G-module C∞(G/P,W ⊗Cν+ρg) into the G-module C∞(G/H,S±q ⊗ Eµ) such that D± ◦ P± = 0,

then

||char(δ) + ν|| = ||µ+ ρh||,

where char(δ) is the infinitesimal character of the discrete series representation δ of M .

Proof. Since D± ◦ P± = 0, we have D∓ ◦D± ◦ P± = 0. Then, using Proposition 4.5, one obtains that

|| char(δ) + ν ||2 − || ρ(g) ||2 + || ρ(q) + ρ(h) ||2 − || ρ(h) ||2 − || µ+ ρ(h) ||2 + || ρ(h) ||2= 0.
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Observe that even though the representations S±q of h are not in general irreducible, the Casimir operator

of H acts on each irreducible component by the same scalar. This follows from Lemma 2.2 of [9] and the

‘Weyl unitary trick’. We therefore have

|| char(δ) + ν ||=|| µ+ ρ(h) || .

�

In order to specify the representation δ we need to carefully describe the discrete series representations of

M . As noted earlier M is a cuspidal parabolic subgroup, i.e., M and M ∩K have equal (complex) ranks, so

M has nonempty discrete series. The fact that M is generally neither semisimple nor connected complicates

the description. See [7], Ch. XII, Section 8, and [6], Section 27, for details.

First, the identity component M0 has compact center and there is a subgroup F ⊂ ZM (the center of M)

so that M# def.
= M0 · F has discrete series representations parameterized by the data

(a) λ ∈ t∗ with λ− ρ(m) analytically integral, and

(b) a character χ of F so that χ = eλ−ρ(m) on M0 ∩ F .

When λ is a dominant t-weight the corresponding discrete series representation, denoted by π(λ, χ;M#),

satisfies the following.

(i) π(λ, χ;M#) has infinitesimal character λ.

(ii) The minimal K ∩M#-type has highest weight λ+ ρ(m)− 2ρ(m ∩ k).

(iii) The action of F on π(λ, χ;M#) is by the character χ.

Finally, the representations

π(λ, χ;M) = IndMM#(π(λ, χ;M#)).

of M are irreducible and in the discrete series.

Remark 5.3. Set P# def.
= M#AN . For δ = π(λ, χ;M), IndGP (δ ⊗ ν) = IndGM#AN (π(λ, χ;M#)⊗ ν). We find

it slightly simpler to to find an intertwining map

P : C∞(G/P#,W ⊗Cν)→ C∞(G/H,S+
q ⊗ Eµ)

rather than as in (5.1). Thus our W will be one of the π(λ, χ;M#).

We will denote the restrictions of (a ⊕ t)C-weights to t and a by applying subscripts, therefore µt (resp.

µa) is the restriction of µ to t (resp. a).

Theorem 5.4. Assume that the weight µ satisfies conditions (3.6) and (3.10). Consider the discrete series

representation (δ,W ) of M# with δ = π(µt +ρ(m∩h), χ;M#) (χ will be determined below). Let ν = µa +ρh.

Then we have

HomG(C∞(G/P#,W ⊗Cν+ρg), C∞(G/H,S+
q ⊗ Eµ)) 6= {0}.

Proof. First, one has the standard isomorphisms

HomG(C∞(G/P#,W ⊗Cν+ρg), C∞(G/H,S±q ⊗ Eµ))

' HomH(C∞(G/P#,W ⊗Cν+ρg), S±q ⊗ Eµ)

' HomH((S±q ⊗ Eµ)∗, C∞(G/P#,W ⊗Cν+ρg)′)

(5.5)

where C∞(G/P#,W ⊗Cν+ρg)′ is the continuous dual of C∞(G/P#,W ⊗Cν+ρg). Therefore, our problem

is to find certain H-finite vectors in C∞(G/P#,W ⊗Cν+ρg)
′
. This is hard in general. However, as in [12],
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we shall restrict our attention to H-finite vectors in C∞(G/P#,W⊗Cν+ρg)
′

which are supported on closed

H-orbits in G/P#. Observe that by Lemma 2.2, our choice of P = MAN guarantees that P ∩H is a minimal

parabolic subgroup of H and H · eP ∼= H/H ∩ P is a closed H-orbit in G/P . Also H/P# ∩H is a closed

H-orbit in G/P#. The space of distributions in C∞(G/P#,W⊗Cν+ρg)
′

which restrict to smooth functions

on H · eP# ' H/P# ∩H can be identified with the space C∞(H/P# ∩H,W∗⊗C−ν−ρg+2ρh
), as in Lemma

2.3 of [12]

C∞(H/H ∩ P#,W∗ ⊗C−ν−ρg+2ρh
) ⊂ C∞(G/P#,W ⊗Cν+ρg)

′
.

Moreover, we have the obvious isomorphisms

HomH((S±q ⊗ Eµ)∗, C∞(H/H ∩ P#,W∗ ⊗C−ν−ρg+2ρh
))

' HomP#∩H((S±q ⊗ Eµ)∗,W ∗ ⊗C−ν−ρg+2ρh
)

' HomP#∩H(W ⊗Cν+ρg−2ρh
, (S±q ⊗ Eµ))

' HomM∩H·A(W ⊗Cν+ρg−2ρh
, (S±q ⊗ Eµ)n∩h).

(5.6)

Observe that by formula (3.7), and the fact that ∆+(m ∩ k ∩ q) has even cardinality, S+
q ⊗ Eµ contains the

irreducible constituent

Eµ+ρ(q)−<∆+(m∩k∩q)>

of highest weight µ + ρ(q) − 2ρ(m ∩ k ∩ q). The highest a-weight is µa + ρq, where ρq is ρ(q)a. This forces

our choice for ν.

We now consider

(5.7) V
def.
= (Eµ+ρ(q)−2ρ(m∩k∩q))n∩h

as an m ∩ h-representation.

Claim: (µ+ ρ(q)− 2ρ(m ∩ k ∩ q))|t = µt + ρ(m) + ρ(m ∩ h)− 2ρ(m ∩ k).

To see this note that by the choice of ∆+(gC, (a⊕ t)C) following Lemma 2.2, ρ(q)|t = ρ(m ∩ q). Therefore

(µ+ρ(q)− 2ρ(m ∩ k ∩ q))|t

= (µ+ ρ(m ∩ q)− 2ρ(m ∩ k ∩ q))|t

= µt + ρ(m ∩ q) + 2ρ(m ∩ h)− 2ρ(m ∩ h)− 2ρ(m ∩ k ∩ q)

= µt + ρ(m) + ρ(m ∩ h)− 2ρ(m ∩ k).

The last equality follows from m ∩ h = m ∩ h ∩ k, by Lemma 2.2, (a). We conclude that V is the irreducible

representation of M ∩H with highest weight µt + ρ(m) + ρ(m ∩ h)− 2ρ(m ∩ k).

We choose the character χ of F to be the action of F on V .

Therefore V is a constituent of δ|M#∩H . This proves that

HomM#∩H·A(W ⊗Cν+ρg−2ρh
, (S+

q ⊗ Eµ)n∩h) 6= {0},

and the theorem follows from the isomorphisms in (5.5) and (5.6) above. �

One can get an explicit formula for the intertwining operator given in the proposition above. Indeed,

let t be a nonzero element of HomM#∩H·A(W ⊗Cν+ρg−2ρh
, (S+

q ⊗Eµ)n∩h) contained in HomM#∩H·A(W ⊗
Cν+ρg−2ρh

, (Eµ+ρ(q)−2ρ(m∩k∩q))n∩h). Tracing through the isomorphisms of (5.5) and (5.6), one obtains a

nonzero intertwining operator Pt from the G-module C∞(G/P#,W ⊗ Cν+ρg) into the G-module

C∞(G/H,S+
q ⊗ Eµ) defined as follows
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(5.8) (Ptφ)(g) =
∫
H∩K

[s+(l)⊗ τµ(l)](t(φ(gl)))dl, ∀φ ∈ C∞(G/P#,W ⊗Cν+ρg) and ∀g ∈ G.

To obtain a more explicit formula for Pt we consider an explicit geometric realization of the discrete series

representations δ of M#. By Proposition A.3, W occurs as the kernel of the Dirac operator

D+
M#/M#∩H : C∞(M#/M# ∩H,S+

m∩q ⊗ Uµt)→ C∞(M#/M# ∩H,S−m∩q ⊗ Uµt).

Now, evaluation at e gives a nonzero M# ∩H-homomorphism

C∞(M#/M# ∩H,S+
m∩q ⊗ Uµt)→ S+

m∩q ⊗ Uµt .

There is also a nonzero projection

π : S+
m∩q ⊗ Uµt → V ⊂ (S+

q ⊗ Eµ)n∩h

(with V as in equation (5.7)). Now take t to be t(f)
def.
= π(f(e)), which is nonzero by Prop. A.2. With this

choice of t we have a nonzero intertwining operator

(5.9) (Pφ)(g) =
∫
H∩K

[s+(`)⊗ τµ(`)](π(φ(g`))(e))d`.

6. Solutions of the Dirac equations.

In this section we show that the image of P lies in the kernel of the Dirac operator. For this we need a

simple lemma.

Lemma 6.1. Consider (m ∩ q)⊥ = (n ∩ q) ⊕ (n ∩ q). The subspaces n ∩ q and n ∩ q of q are isotropic for

〈 , 〉q and there is a basis {Ek} of n ∩ q and a basis {Ek} of n ∩ q so that

〈Ek , El〉q = δkl.

In particular,

〈Ek ± Ek , El ± El〉q = ±2δkl

and

〈Ek ± Ek , El ∓ El〉q = 0.

Proof. This is clear since the killing form is nondegenerate on (n + n) ∩ q and zero on each of n ∩ q and

n ∩ q. �

Theorem 6.2. For each φ ∈ C∞(G/P#,W ⊗Cν+ρ(g)), D+(P(φ)) = 0.

Proof. Recalling the definition (4.4) of D±, we have, for all φ in C∞(G/P ;W ⊗Cν+ρg) and for all g in G,

(D+(Pφ))(g) =
∫
H∩K

dim(q)∑
j=1

〈Xj , Xj〉q((R(Xj)⊗ γ(Xj)⊗ 1)` · π(φ(· `)))(e)|g d`

=
∫
H∩K

` ·
dim(q)∑
j=1

〈Xj , Xj〉q((R(Xj)⊗ γ(Xj)⊗ 1)π(φ( · )))(e)|g` d`
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by the H-invariance of
∑dim(q)
j=1 〈Xj , Xj〉qR(Xj)⊗ γ(Xj)⊗ 1. Now note that φ(gm)(e) = (m−1 · φ(g))(e) =

φ(g)(m). In particular, for X ∈ m, ((R(X)φ)(gl))(e) = ((R(X)φ(g`))(e). We may rewrite the above in two

terms as ∫
H∩K

∑
Xj∈(m∩q)⊥

〈Xj , Xj〉q ` · γ(Xj)π
(
((R(Xj)φ)(g`))(e)

)
d`

+
∫
H∩K

` · π
( ∑
Xj∈m∩q

〈Xj , Xj〉q γ(Xj)(R(Xj)φ(g`))(e)
)
d`

(6.3)

The second term is
∫
H∩K ` · π

(
(D+

M#/M#∩Hφ(g`))(e)
)
d`.

Now recall that the Dirac operator is independent of the basis (subject to (4.2)), so we may choose the

Xj ’s in (m ∩ q)⊥ to be the vectors 1√
2
(Ek ± Ek), for k = 1, 2, . . . , 1

2 dim(m ∩ q). Recall that n ∩ q ⊂ V and

n ∩ q ⊂ V ∗ in the notation of Section 3. Note that

R(Ej + Ēj)⊗ γ(Ej + Ēj)−R(Ej − Ēj)⊗ γ(Ej − Ēj)

= 2R(Ej)⊗ ε(Ēj) + 2R(Ēj)⊗ ı(Ej).

Therefore, the terms in (6.3) corresponding to Xj ∈ (m ∩ q)⊥ contain expressions of the form

ε(Ēj)π
(
((R(Ej)φ)(g`))(e)

)
and ı(Ej)π

(
((R(Ēj)φ)(g`))(e)

)
.

The first is zero since φ is right N -invariant by (2.3). The second vanishes since the image of π is contained

in S±m∩q ⊗ Uµt by Lemma 3.8 and the fact that (m ∩ q) ⊥ (n ∩ q).

We conclude that

D+(Pφ)(g) =
∫
H∩K

` · π
(
(D+

M#/M#∩Hφ(g`))(e)
)
d`.

The theorem follows.

�

Appendix A

In Section 5 we use the realization of the discrete series representations of M# as solutions of twisted

Dirac operators on M#/M# ∩H. This appendix justifies the use of this realization. We observe that M#

decomposes into a compact and a noncompact factor. As M# ∩ H is compact, σ restricts to a Cartan

involution on the noncompact factor. In particular, M#/M# ∩ H is (locally) a product of riemannian

symmetric spaces of compact and noncompact type. We treat the two cases separately.

Therefore, we consider a riemannian symmetric space G/K. Note that this is the situation of Section 2

when σ = θ. The twisted Dirac operators are defined as in formula (4.4). Suppose that λ is dominant for

∆+(g, t). (Note that a = 0 when σ = θ.)

Case 1. Suppose that G is compact. Then by [10], the irreducible (finite dimensional) representation of G

with infinitesimal character λ occurs as the kernel of the twisted Dirac operator

D+ : L2(G/K,S+
s ⊗ Eλ−ρ(k))→ L2(G/K,S−s ⊗ Eλ−ρ(k)).

Case 2. Suppose that G is noncompact. Then, by [9] and [1], the discrete series representation of G with

infinitesimal character λ and minimal K-type λ + ρ(g) − 2ρ(k) occurs as the kernel of the twisted Dirac

operator

D+ : L2(G/K,S+
s ⊗ Eλ−ρ(k))→ L2(G/K,S−s ⊗ Eλ−ρ(k)).
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Remark A.1. Here D+ is an elliptic operator, so the L2-solution spaces to D+ = 0 consist of smooth

functions.

In each of the two cases above evaluation at e gives a well-defined nonzero K-homomorphism

Evale : Ker(D+)→ S+
s ⊗ Eλ−ρ(k).

Consider this evaluation followed by the projection π : S+
s ⊗ Eλ−ρ(k) → Eλ+ρ(g)−2ρ(k). Then we have the

following.

Proposition A.2.

π ◦ Evale 6= 0, on KerD+.

Proof. In the noncompact case this follows from the discussion in Section 5 of [1], in particular the paragraph

preceding (5.11) and the fact that the K-type Eλ+ρ(g)−2ρ(k) occurs in the discrete series with multiplicity

one. In the compact case this follows from the proof of Theorem 4 in [8]. �

Let δ be the discrete series representation of M0 with the infinitesimal character µt +ρ(m∩h) and minimal

M0 ∩K-type µt + ρ(m∩ h) + ρ(m)− 2ρ(m∩ k). We may conclude from the two cases above that δ occurs in

the kernel of

D+ : L2(M0/M0 ∩H,S+
m∩q ⊗ Uµ)→ L2(M0/M0 ∩H,S−m∩q ⊗ Uµ).

To pass to M# note that M#/M# ∩H ∼= M0/M0 ∩H.

Denote by D+
M#/M#∩H the Dirac operator for M#/M# ∩H.

Proposition A.3. The discrete series representation π(µt + ρ(m∩ h), χ;M#) may be realized as the kernel

of

D+
M#/M#∩H : L2(M#/M# ∩H,S+

m∩q ⊗ Uµt)→ L2(M#/M# ∩H,S−m∩q ⊗ Uµt).
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