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Abstract. This article studies components of Springer fibers for gl(n) that are as-
sociated to closed orbits of GL(p) × GL(q) on the flag variety of GL(n), n = p+ q.
These components occur in any Springer fiber. In contrast to the case of arbitrary
components, these components are smooth varieties. Using results of Barchini and
Zierau we show these components are iterated bundles and are stable under the ac-
tion of a maximal torus of GL(n). We prove that if L is a line bundle on the flag
variety associated to a dominant weight, then the higher cohomology groups of the
restriction of L to these components vanish. We derive some consequences of localiza-
tion theorems in equivariant cohomology and K-theory, applied to these components.
In the appendix we identify the tableaux corresponding to these components, under
the bijective correspondence between components of Springer fibers for GL(n) and
standard tableaux.

Introduction

Let G be a complex reductive algebraic group with flag variety B. The moment map

µ : T ∗B → g∗ is called the Springer resolution. If we identify g∗ with g by using a

nondegenerate G-invariant bilinear form, then the image of µ is the nilpotent cone in

g, and the Springer fibers are the inverse images of nilpotent elements of g. A Springer

fiber µ−1(X) can be identified with its image under the projection T ∗B → B. This

image is the set of Borel subalgebras of g that contain X, or equivalently, the set Bu

of points in B fixed by the unipotent element u = expX.

In the classic papers [27] and [28], Springer constructed a representation of the Weyl

groupW on the cohomology spaces of a Springer fiber. Subsequently, the Springer fibers

and these Springer representations have played an important role in several areas in

representation theory. Nevertheless, the geometry of the Springer fibers is still not well-

understood. The fixed point scheme Bs of a semisimple element s ∈ G is smooth ([20])

and stable under the action of a maximal torus of G. In contrast, the Springer fibers

Bu are almost always singular. Indeed, they must be singular because the different

irreducible components of Bu often intersect. The individual components of Bu can be

singular as well. Moreover, the components are not in general stable under the action

of a maximal torus of G. These facts all complicate the study of the Springer fibers.

The first author was partially supported by a grant from the N.S.A.

1



2 WILLIAM GRAHAM AND R. ZIERAU

In this paper, building on the work of Barchini and Zierau ([2]), we study certain

components of Springer fibers in case G = GL(n). As above, we view the Springer

fiber as a subscheme of the flag variety B. Our main result is that these components

are isomorphic to iterated fiber bundles constructed using subgroups of G. Thus, in

contrast to the general case, these components are smooth and stable under the action

of a maximal torusH of G. Using this description of the components, we calculate Betti

numbers, we obtain a character formula related to associated cycles of discrete series

representations, and we express the (equivariant) cohomology and K-theory classes

defined by the components in terms of Schubert bases.

We now describe our results in more detail. Let (G,K) denote the pair of groups

(G,K) = (GL(n), GL(p) × GL(q)), p + q = n. The group K acts with finitely many

orbits on B. Fix a closed K-orbit Q. Note that Q is isomorphic to the flag variety for K.

Let γQ denote the restriction of µ to the conormal bundle T ∗
QB. The image γQ(T

∗
QB)

is the closure of a single K-orbit K · f ; f is called generic. The inverse image γ−1
Q (f)

is a single component of the Springer fiber µ−1(f). We say that such a component is

associated to the closed K-orbit Q. We view the component γ−1
Q (f) as a subvariety of

B. In fact, because the projection of T ∗
QB to B is Q, we see that γ−1

Q (f) ⊂ Q ⊂ B.

In [2], the authors define a sequence of pairs (G0,K0) = (G,K) ⊃ (G1,K1) ⊃
· · · ⊃ (Gm,Km), where (Gi,Ki) is a pair of the same type as (G,K). They define

elements fi ∈ gi = Lie Gi so that f =
∑
fi is generic. They also define parabolic

subgroups Qi = LiUi ⊂ HKi, where H is the diagonal torus. The main results of [2]

(see Proposition 1.8 below) imply that

γ−1
Q (f) = Qm · · ·Q1Q0 · b = Lm · · ·L1L0 · b ⊂ G/B, (1)

where B is a Borel subgroup of G, chosen so that the orbit Q is K ·b. Let Ri = Qi∩Qi−1

and define

Xm = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2

Q1 ×
R1

Q0/R0;

Xm is a bundle over Qm/Rm with fibers isomorphic to Xm−1. Equation (1) implies

that the map F : Xm → γ−1
Q (f) defined by F ([qm, qm−1, . . . , q0]) = qm . . . q1q0 · b is

surjective. The main result of this paper (Theorem 2.10) is that F is an isomorphism

of algebraic varieties. This theorem implies that the component γ−1
Q (f) is a fiber bundle

over Qm/Rm, which is a generalized flag variety for a product of general linear groups,

with fiber isomorphic to a component of the same type for a smaller pair (G′,K ′)

(Corollary 2.22).

The description of γ−1
Q (f) as an iterated bundle has a number of applications. It

implies that γ−1
Q (f) is H-invariant, and makes it easy to calculate the Betti numbers of

γ−1
Q (f) (see Remark 2.26). Using our description of γ−1

Q (f) we determine the H-fixed

points (Proposition 4.1), and also the weights ofH acting on the tangent spaces at these

points (Corollary 4.4). This makes it possible to apply localization theorems in equivari-

ant K-theory and Borel-Moore homology. Using these theorems we obtain a formula
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for the character of H acting on
∑

i(−1)iH i(γ−1
Q (f),Oγ−1

Q
(f)(τ)), where Oγ−1

Q
(f)(τ) is

an invertible sheaf on γ−1
Q (f) corresponding to the weight τ of H (Theorem 4.6). This

formula is of interest because of a result of J.-T. Chang [5], which states that the di-

mension of H0(γ−1
Q (f),Oγ−1

Q
(f)(τ)) is the multiplicity of K · f in the associated cycle of

a discrete series representation of U(p, q). If τ is sufficiently dominant, the higher co-

homology groups vanish, so our formula gives the character of H0(γ−1
Q (f),Oγ−1

Q
(f)(τ)).

As another application of our results and localization theorems, we obtain formulas

expressing the classes defined by γ−1
Q (f) in equivariant cohomology and K-theory in

terms of Schubert bases (Theorems 4.8 and 4.9). These formulas imply correspond-

ing non-equivariant formulas, answering (for these components) a question raised by

T. A. Springer ([29]), and answered in some special cases by J. Güemes ([18]).

Typically one wants to understand the components in some Springer fiber µ−1(f).

In the approach taken here (and in [2]) the ‘f ’ is a moving target. However, it is readily

seen that often two closed orbits Q and Q′ give generic elements f and f ′ in the same

nilpotent G-orbit. When this occurs, by translating by some g ∈ G, the components

γ−1
Q (f) and γ−1

Q′ (f ′) may be identified with components in a single Springer fiber. The

purpose of the appendix is to label the components studied in this article in terms of

the usual parametrization of components. This will therefore identify the components

of any Springer fiber that are of the form γ−1
Q (f) (under the above identification) for

some closed Q and generic f . Recall that the nilpotent orbits in gl(n) are parametrized

by partitions of n. If f is in the orbit corresponding to the partition λ, the components

of the Springer fiber µ−1(f) are parametrized by the set of standard tableaux on the

shape of λ; see [26] and [30]. In the appendix, we describe the standard tableaux

corresponding to the components we consider in this paper. In fact, the Springer fiber

corresponding to any nilpotent orbit contains components of the type considered in

this article.

Results about the smoothness of components of Springer fibers appear in the litera-

ture. An example of a nonsmooth component of a Springer fiber in sl(6) is given in [32].

More recently L. Fresse ([10]) has determined exactly which components are smooth

for Springer fibers of nilpotents in gl(n) having tableau with exactly two columns.

Springer fibers of nilpotent elements in gl(n) have been studied by F. Fung ([12]) in

the case where the Young diagram of f is either of hook shape or has two rows. He

shows that the components are iterated bundles and he computes the Betti numbers of

components in these cases. Combinatorial formulas for Betti numbers of Springer fibers

are contained in the work of G. Lusztig (see for example [23]). A direct computation

for gl(n) is given in [9]. Note that our formulas are for Betti numbers of individual

components. Some of our applications of our main result use a description of H-fixed

points (Prop. 4.1); fixed points are determined in some special cases in [11]. The

components of Springer fibers associated to closed K-orbits in B have been studied

for other classical groups by Barchini and Zierau, and they have obtained descriptions
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that are similar to that in the case of (G,K) = (GL(n), GL(p)×GL(q)), p+q = n. We

believe that these descriptions imply that in the other classical cases these components

are again isomorphic to iterated bundles. This will be pursued elsewhere.

Notation. We work over the field of complex numbers. We fix once and for all the

pair of complex groups

(G,K) = (GL(n), GL(p) ×GL(q)), p+ q = n.

Then K is the fixed point group of the involution Θ given by conjugation by the matrix

Ip,q := diag(Ip,−Iq). The decomposition of g into ±1-eigenspaces is written as g = k⊕p.

The diagonal Cartan subgroup is denoted by H. As is customary we denote the Lie

algebras of G,K,H, etc. by g, k, h, etc. The root system ∆(h, g) is {ǫi − ǫj : i 6= j},

where ǫk ∈ h∗ is defined by ǫk(diag(z1, . . . , zn)) = zk. The system of roots of h in k is

∆c = {ǫi − ǫj : 1 ≤ i, j ≤ p or p + 1 ≤ i, j ≤ n (and i 6= j)}. We will consider many

positive systems for ∆(h, g). However, we fix once and for all the following positive

system in ∆c:

∆+
c = {ǫi − ǫj : 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n}.

For each root ǫi − ǫj, we let Xi,j be the root vector equal to the matrix with a one in

the (i, j) entry and zeros elsewhere. If L is a reductive subgroup of K containing the

Cartan subgroup H, then the Weyl group is denoted by W (L).

1. Preliminaries

A detailed description of the components of the Springer fibers associated to closed

K-orbits in B is given in [2]. Since this description plays a key role in the results of

this article, we begin by carefully describing certain statements in [2]. Then we will

give some consequences of these statements that will be needed later in the article.

1.1. Components associated to closed K-orbits. The closed K-orbits in B are

in one-to-one correspondence with positive systems ∆+ ⊂ ∆(h, g) that contain ∆+
c .

Such a one-to-one correspondence is given by associating to ∆+ the Borel subalgebra

b = h + n−, n− =
∑

α∈∆+ g(−α). Then Q = K · b is the corresponding closed K-orbit

in B.

Let us fix a positive system ∆+ containing ∆+
c , thus fixing a corresponding closed

K-orbit Q = K · b. As described in [2, Section 2], the restriction of the moment

map µ : T ∗B → g∗ to the conormal bundle T ∗
Q
B may be identified with a map γQ :

K ×
B∩K

(n− ∩ p) → Nθ, where Nθ is the variety of nilpotent elements of g contained in

p. The map γQ is given by the formula

γQ(k, Y ) = k · Y (:= Ad(k)(Y )).

It is a well-known fact that the image of γQ is the closure of a single K-orbit in Nθ.

An element f of n− ∩ p is said to be generic in n− ∩ p when γQ(T
∗
Q
B) = K · f .
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Our first goal is to describe a particular generic element f in n− ∩ p. Note that each

positive system ∆+ containing ∆+
c is defined by a ∆-regular, ∆+

c -dominant λ ∈ h∗ by

∆+ = {α : 〈α, λ〉 > 0}. The notation λ = (λ1, . . . , λn) is used for λ =
∑
λiǫi. Note

that λ is ∆+
c -dominant means that the first p coordinates are decreasing, as are the last

q coordinates. We build f from λ inductively; first f0 is specified (as a sum of certain

root vectors) and a subgroup G1 (a lower rank general linear group) of G is determined.

Then f1 is chosen in g1 and a subgroup G2 of G1 is given by the same procedure. One

continues, obtaining f0, f1, . . . , fm−1; then f = f0 + · · ·+ fm−1 is our generic element.

The inductive procedure is easily described by forming an ‘array’ from λ. This array

consists of two rows of numbered dots and is constructed as follows. If the greatest

coordinate of λ is among the first p coordinates then place the first dot in the upper

row, otherwise place it in the lower row. Working from left to right, place the next dot

in the upper row if the next greatest coordinate of λ is among the first p coordinates

and in the lower row otherwise. Continue in this manner. The jth dot (counting from

the left) is in the upper row exactly when the jth greatest coordinate of λ is among the

first p coordinates. Again working from left to right, number the dots in the upper row

with 1, 2, . . . , p and those in the lower row by p+ 1, p+ 2, . . . , p+ q = n. For example,

if (G,K) is the pair (GL(7), GL(4) ×GL(3)) and λ = (7, 6, 4, 3, 5, 2, 1), then the array

is

r

1
r

2

r

5

r

3
r

4

r

6
r

7 .

We define a block in the array to be a set of dots in the array that is maximal with

respect to the properties (i) all dots lie in the same row and (ii) the dots are consecutive.

In the example the blocks are {1, 2}, {5}, {3, 4} and {6, 7}.

Suppose that our array has N blocks. Define j1, . . . , jN ∈ {1, 2, . . . , n} so that ji is

the label of the dot farthest to the right in the ith block. Set

f0 =

N−1∑

i=1

Xji+1,ji ,

where Xji+1,ji is the root vector for ǫji+1−ǫji normalized as in the last paragraph of the

introduction. Note that f0 ∈ n−∩p. (Each Xji+1,ji is noncompact since blocks alternate

between lying in the upper and lower rows. Each root ǫji+1 −ǫji is negative since ji+1 is

to the right of ji, so λji+1 < λji .) We call j1, . . . , jN the first string through the array.

It is useful to express this by connecting the dots labelled by each pair ji, ji+1. In the

example the first string is 2, 5, 4, 7, which is depicted by
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r

1
r

2

@
@
@r

5
������

r

3
r

4
HHHHHHr

6
r

7
,

and

f0 = X7,4 +X4,5 +X5,2.

To complete the description of the generic element f in n−∩p we introduce a subgroup

G1 of G. Let {e1, e2, . . . , en} be the standard basis of Cn and set

V0 = spanC{eji : i = 1, . . . , N}

W0 = spanC{ej : j /∈ {j1, . . . , jN}}.

Define

G1 = {g ∈ G : g(W0) ⊂W0 and g(eji) = eji , i = 1, . . . , N}.

Here are a few properties of G1 that allow the inductive procedure to work; see [2].

(i) G1 is isomorphic to GL(n−N).

(ii) G1 is Θ-stable and, setting K1 = (G1)
Θ = K ∩ G1, the pair (G1,K1) is of the

same type as (G,K).

(iii) h1 := h ∩ g1 is a Cartan subalgebra of g1 (and of k1) and ∆+
1,c := {α|h1 : α ∈

∆+
c , g

(α) ⊂ g1, α|h1 6= 0} is a positive system of roots in k1.

(iv) b1 := b∩g1 is the Borel subalgebra of g1 defined by λ1 := λ|h1 , which is ∆(h1, g1)-

regular and ∆+
1,c-dominant. Q1 = K1 · b1 is a closed orbit in the flag variety for G1.

(v) G1 centralizes f0.

Working in G1 we choose f1 ∈ n1 ∩ p1 (= n ∩ g1 ∩ p) in the same way that f0 was

chosen in g. This amounts to omitting the dots of the first string through the array

to obtain a smaller array and forming a second string. This second string consists of

the labels of the dots farthest to the right in the blocks of the smaller array. In the

example the smaller array is

r

1
r

3

r

6

and f1 = X6,3. A crucial observation is that in passing to the smaller array it is possible

(and likely) that several blocks ‘collapse’ to one block. (In the example, 1 and 3 are in

different blocks of the array for g, but are in the same block of the array for g1.)

Continue by defining a subgroup G2 of G1 just as G1 was chosen in G. In this way

there is a sequence of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gm and a sequence fi ∈ n− ∩ p,
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i = 1, . . . ,m − 1. The procedure ends when fm = 0 (i.e., when there is at most one

block in the array for gm). It follows from [2, Thm. 3.2] that

f = f0 + · · ·+ fm−1 (1.1)

is generic in n− ∩ p.

Remark 1.2. The construction given here differs slightly from that of [2] in that the

strings in [2] pass through the dots farthest to the left in each block. One easily checks

that there is a k ∈ K so that our f and Gi are conjugate by k to the f and Gi of [2].

In fact, the element k may be chosen to represent an element of W (K).

To describe γ−1
Q (f) we need to define several subgroups of K and of Ki = K ∩ Gi,

i = 1, . . . ,m. Consider K first. Let Π be the set of simple roots in ∆+ and set

S = Π ∩∆+
c . Define 〈S〉 = spanC{S} ∩∆c and

qK = h+
∑

α∈〈S〉∪∆+
c

g(−α).

Then qK is a parabolic subalgebra of k. Let QK denote the corresponding parabolic

subgroup of K. Note that 〈S〉 consists of all roots ǫj − ǫk for which j, k are labels of

dots in the same block. Now define parabolic subgroups Qi,K, i = 1, . . . ,m of Ki in the

same manner. It follows from Theorem 4.1 and Equation (4.3) of [2] that

γ−1
Q (f) = Qm,K · · ·Q1,KQK · b ⊂ B. (1.3)

1.2. The action of the maximal torus H. It is not the case that a maximal torus

of K acts on each irreducible component of a Springer fiber. However, we will see that

the maximal torus H does in fact act on each component associated to a closed K-orbit

in B. In this subsection we establish this fact and give a variant of (1.3) for which the

action of H is more apparent.

Lemma 1.4. Let H be the diagonal Cartan subgroup. Then

Qm,K · · ·Q1,KQK = (HQm,K) · · · (HQ1,K)(HQK).

Proof. We show, by induction, that Qi,K · · ·Q1,KQK = (HQi,K) · · · (HQ1,K)(HQK)

for each i = 0, 1, . . . ,m. The i = 0 case is QK = HQK , which clearly holds since QK

is a parabolic subgroup of K. Assume that the i − 1 case holds. We may decompose

H into the product of subgroups H ′ and H ′′ as follows. The subgroup H ′ consists of

all h′ so that

h′(ej) =

{
ej , if j is in one of the first i strings

zjej , otherwise

and H ′′ consists of all h′′ so that

h′′(ej) =

{
zjej , if j is in one of the first i strings

ej , otherwise.
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(Here zj ∈ C.) Note that H ′ ⊂ Qi,K and H ′′ commutes with Ki (and so commutes

with Qi,K). Therefore

(HQi,K) · · · (HQ1,K)(HQK) = (H ′Qi,K)(H ′′HQi−1,K) · · · (HQ1,K)(HQK)

= Qi,K(HQi−1,K) · · · (HQ1,K)(HQK)

= Qi,K · · ·Q1,KQK , by the inductive hypothesis.

�

Corollary 1.5. The maximal torus H acts on γ−1
Q (f).

Definition 1.6. Let qi = h+ qi,K for i = 1, . . . ,m and q0 = qK .

It is easy to see that qi is a parabolic subalgebra of the reductive Lie algebra h+ ki.

Write qi = li + u−i and write the corresponding parabolic subgroup Qi as LiU
−
i .

Remark 1.7. Note that Li is slightly different than the group Li in [2] in that we are

including the full torus H in Li. Also, the group Qi appearing in [2] is some parabolic

subgroup of Gi. We have no need to consider such a group and use Qi to denote the

group HQi,K of [2].

The next proposition follows from Lemma 1.4, equation (1.3) and [2, Theorem 4.8].

Proposition 1.8. γ−1
Q (f) = Qm · · ·Q1Q0 · b = Lm · · ·L1L0 · b.

1.3. The parabolics Qi. There are two useful descriptions of the parabolic subgroups

Qi, one in terms of roots and the other in terms of flags.

Suppose that there are Ni blocks in the array for gi. List them (from left to right)

as Bi
1, . . . , B

i
Ni

(where the i = 0 case is the case of the original array in g).

Let Si be the set of simple roots in ∆(h, gi) ∩∆+ that are compact. Then 〈Si〉 :=
spanC{Si} ∩∆(h, ki) is the set of roots ǫj − ǫk so that j, k are both in a block Bi

l , for

some l. Then

qi = li + u−i with

li = h+
∑

α∈〈Si〉

g(α)

u−i =
∑

α∈∆+
i,c\〈Si〉

g(−α).

Alternatively, we may describe Qi as the stabilizer of a flag. Let (F i) be the flag

{0} ⊂ F i
Ni

⊂ F i
Ni−1 ⊂ · · · ⊂ F i

2 ⊂ F i
1, with

F i
k = spanC{ej : j ∈ Bi

k ∪ · · ·Bi
Ni
}, k = 1, 2, . . . , Ni.

Then Qi is the subgroup of HKi stabilizing the flag (F i).

Here are several immediate properties of Qi = LiU
−
i , i = 0, 1, . . . ,m.
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(1) Li is isomorphic to (Torus)×ΠlGL(n
i
l) where n

i
l is the cardinality of Bi

l .

(2) Qi stabilizes fk, for k < i.

(3) u−i ⊂ u−i−1, i = 1, 2, . . . ,m.

The next lemma will be used in a crucial way in Section 2.

Lemma 1.9. For i = 1, . . . ,m the following facts hold.

(i) Li ∩ Qi−1 is a parabolic subgroup of Li, and Qi ∩ Qi−1 is a parabolic subgroup

of Qi.

(ii) The nilradical of li ∩ qi−1 is li ∩ u−i−1, and a Levi factor of li ∩ qi−1 is li ∩ li−1.

(iii) The nilradical of qi ∩ qi−1 is u−i + (li ∩ u−i−1), and a Levi factor is li ∩ li−1.

(iv) Letting vi = u−i−1 ∩ li, vj ∩ vk = {0}, for j 6= k.

Proof. Since Li ∩ Qi−1 ⊃ Li ∩ (B ∩ Ki−1) = Li ∩ B, a Borel subgroup of Li, we see

that Li ∩Qi−1 is a parabolic subgroup of Li. As the nilradical U−
i of Qi is contained

in U−
i−1 by property (3) above, we see that Qi ∩Qi−1 contains a Borel subgroup of Qi,

so Qi ∩Qi−1 is a parabolic subgroup of Qi.

The nilradical of li ∩ qi−1 is spanned by g(−α) for α = ǫa − ǫb, a < b, with a and

b in the same block for gi, but in different blocks for gi−1. These are precisely the

roots in u−i−1 ∩ li. A Levi factor of li ∩ qi−1 is spanned by h along with the g(±α) for

α = ǫa−ǫb, a < b, with a and b in the same block for gi and for gi−1. This is li∩li−1. This

proves (ii); (iii) follows since qi∩qi−1 = (li∩qi−1)⊕u−i and li∩qi−1 = li∩ li−1+ li∩u−i−1.

To verify (iv) we may assume that j < k. Suppose that vj∩vk is nonzero; since vj∩vk
is h-stable it must contain some root space, say g(−(ǫa−ǫb)) ⊂ vj ∩ vk. Then a, b are in

the same block for gk, but in different blocks for gk−1. But since j ≤ k−1, a and b must

be in different blocks for both gj−1 and gj . But this contradicts g
(−(ǫa−ǫb)) ⊂ vj. �

2. The structure of γ−1
Q (f)

In this section we show that γ−1
Q (f) is isomorphic, as an algebraic variety, to an

iterated bundle. Note that we are giving γ−1
Q (f) the reduced scheme structure induced

by the closed embedding of γ−1
Q (f) in B.

Definition 2.1. Let Ri = Qi ∩Qi−1, for i = 1, 2, . . . ,m, and R0 = Q0 ∩B (= K ∩B).

For k = 0, . . . ,m, consider Qk × Qk−1 × · · · × Q0 with the mixing action of Rk ×

Rk−1 × · · · ×R0 given by

(qk, qk−1, . . . , q1, q0) · (rk, rk−1, . . . , r1, r0)

= (qkrk, r
−1
k qk−1rk−1, . . . , r

−1
2 q1r1, r

−1
1 q0r0).

We denote the quotient by

Xk = Qk ×
Rk

Qk−1 ×
Rk−1

· · · ×
R2

Q1 ×
R1

Q0/R0. (2.2)
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The equivalence class of (qk, . . . , q1, q0) ∈ Qk×· · ·×Q1×Q0 is denoted by [qk, . . . , q1, q0].

We will write X = Xm. The map

Qm × · · · ×Q1 ×Q0 → γ−1
Q (f) (2.3)

defined by (qm, . . . , q1, q0) 7→ qm . . . q1q0 ·b is a surjection from Qm×· · ·×Q1×Q0 onto

γ−1
Q (f) (by Prop. 1.8) and clearly descends to a surjection

F : X → γ−1
Q (f). (2.4)

We define Fk : Xk → γ−1
Q (f) by the analogous formula (so F = Fm).

Proposition 2.5. The space X = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2

Q1 ×
R1

Q0/R0 is a smooth

projective variety and F : X → γ−1
Q (f) is a morphism of varieties.

Proof. This type of argument is fairly standard, but we include it for completeness.

We show by induction on k that Xk is a smooth projective variety, that each Xk has

a natural Qk action induced by the action of left multiplication of Qk on Qk ×Xk−1,

and that Fk : Xk → γ−1
Q (f) is a morphism of varieties. If k = 0, then X0 = Q0/R0 is a

partial flag variety for Q0, since R0 contains a Borel subgroup of Q0. In particular, X0

is a smooth projective Q0-variety. Moreover, since the map Q0 → γ−1
Q (f) is constant

on R0-orbits, the universal mapping property of quotients ([3, II.6.3]) implies that the

induced map F0 : X0 → γ−1
Q (f) is a morphism of varieties.

Assume that our assertions have been proved for Xk−1. Let Rm act by the mixing

action on Qk × Xk−1. Now, Qk → Qk/Rk is a principal Rk-bundle, and Xk−1 is

projective. Moreover, some power of any line bundle on Xk−1 is Qk−1-equivariant, by

[24, Cor. 1.6], so Xk−1 has a Qk−1-equivariant ample line bundle. This line bundle

is Rk-equivariant, as Rk ⊂ Qk−1. By [24, Prop. 7.1], this implies the existence of a

principal bundle

Qk ×Xk−1 → Xk := Qk ×
Rk

Xk−1,

where Xk is quasi-projective. To see that Xk is projective, we need to show that Xk is

complete. As in the proof of [24, Prop. 7.1], we have a fiber square

Qk ×Xk−1 −−−−→ Qky
y

Xk −−−−→ Qk/Rk.

Since Xk−1 is projective, the top map is proper. The vertical maps are flat and sur-

jective (as they are principal bundle maps), hence faithfully flat. Therefore, since the

top map is proper, by descent ([17, Section 8.4-5]), so is the bottom map. As Qk/Rk is

a partial flag variety (since Rk contains a Borel subgroup of Qk), Qk/Rk is complete.

Therefore Xk is complete. Also, since Xk−1 is smooth, the top morphism is smooth;

so by descent, the bottom morphism is smooth. As Qk/Rk is smooth, we see that Xk

is smooth. Since Qk × Rk acts (algebraically) on Qk × Xk−1, by [3, II.6.10], Qk acts
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algebraically on Xk. Thus, Xk is a smooth projective variety with a Qk-action induced

from the left multiplication action of Qk on Qk ×Xk−1, as desired. �

Remark 2.6. In the preceding proof, we constructed Xk inductively as the quotient (in

the sense of algebraic geometry, as in [3, II.6]) of Qk ×Xk−1 by Rk. From this, one can

show inductively that Xk is the quotient (in the same sense) of Qk ×Qk−1 × · · · ×Q0

by Rk ×Rk−1 · · · ×R0. Indeed, we have a surjective map

Qk ×Qk−1 × · · · ×Q0 → Qk ×Xk−1 → Xk.

Since Qk × · · · × Q0 is irreducible, this implies that Xk is also. The second map is a

quotient by Rk; by induction, the first map is a quotient by Rk−1×· · ·×R0. Therefore,

the composition is a quotient by Rk × · · ·R0. (This follows, for example, because each

map is open, being a quotient morphism. Therefore the composition is open; by [3,

Lemma II.6.2], the composition is a quotient morphism. The composition is also an

orbit map (that is, constant on Rk × · · · × R0-orbits). So by definition, Xk is the

quotient of Qk ×Qk−1 × · · · ×Q0 by Rk ×Rk−1 · · · ×R0.)

Remark 2.7. Consider the map

Qm ×Qm−1 × · · · ×Q0 → K/Rm ×K/Rm−1 × · · · ×K/R0

defined by

(qm, qm−1, . . . , q0) 7→ (qmRm, qmqm−1Rm−1, . . . , qmqm−1 · · · q0R0).

This map is constant on Rm × · · · × R0-orbits, so by the universal mapping property,

it induces a map φ : Xm → K/Rm × K/Rm−1 × · · ·K/R0. If V is a representation

of Rm × · · · × R0, there is an induced vector bundle on
∏

iK/Ri. Pulling back by φ

yields a vector bundle on X whose sheaf of sections we denote by OX(V ). If V is a

1-dimensional representation corresponding to a character τ we will denote this sheaf

simply byOX(τ). We will mostly be interested in this when V is simply a representation

of R0 (that is, for i > 0, Ri acts trivially on V ).

Remark 2.8. The analogues of the preceding proposition and remarks hold for other

varieties constructed as quotients by mixing actions. We will use this below.

The following lemma is based on a suggestion of Peter Trapa. The lemma applies

when Q is a closed orbit, proving that the components γ−1
Q (f) under consideration are

smooth varieties.

Lemma 2.9. Let Q ⊂ B be a K-orbit whose closure Q ⊂ B is smooth. Let γ denote

the restriction of the moment map to the conormal bundle T ∗
Q
B of Q in B, and let

f ∈ Nθ be such that γ(T ∗
Q
B) = K · f . Then γ−1(f) is smooth.

Proof. Since T ∗
Q
B is nonsingular, by [19, III, Cor. 10.7], there is a nonempty open

subscheme V ⊂ K · f such that the restriction of γ to γ−1(V ) is smooth. For any
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k ∈ K, the restriction of γ to γ−1(kV ) is also smooth, so replacing V by ∪k∈KkV we

may assume that V is K-invariant. Therefore V ⊃ K · f . For any v ∈ V , γ−1(v) is

smooth ([19, III, Theorem 10.2]). As f ∈ V , γ−1(f) is smooth. �

Theorem 2.10. The map F : X → γ−1
Q (f) is an isomorphism of varieties.

Proof. By Zariski’s Main Theorem ([3, Section AG.18.2]), a bijective morphism onto a

smooth variety is an isomorphism, so the theorem will be proved once we see that F is

bijective.

We prove that F is bijective by proving a little more. Consider Xk as in (2.2)

and Fk : Xk → γ−1
Q (f) as above. We apply induction on k to prove that each Fk,

k = 0, 1, . . . ,m, is a bijection onto its image Qk · · ·Q1Q0 · b.

The k = 0 case is immediate since X0 = Q0/R0 and R0 = Q0 ∩ B. Suppose k ≥ 1

and

qk . . . q1q0 · b = q′k . . . q
′
1q

′
0 · b.

Then for some b ∈ B ∩K,

q−1
k q′k = qk−1 . . . q0bq

′−1
0 . . . q′ −1

k−1 . (2.11)

Claim : q−1
k q′k ∈ Rk.

Once the claim is proved, it will follow that qk−1 . . . q1q0 · b = rkq
′
k−1 . . . q

′
1q

′
0 · b, for

some rk ∈ Rk. The inductive hypothesis is that Fk−1 is a bijection, so

[qk−1, . . . , q0] = [rkq
′
k−1, . . . , q

′
0] ∈ Xk−1.

Therefore,

[qk, qk−1, . . . , q0] = [q′kr
−1
k , rkq

′
k−1, q

′
k−2, . . . q

′
0] = [q′k, q

′
k−1, . . . , q

′
0]

in Xk.

To prove the claim it is enough to show that q−1
k q′k ∈ Qk−1. For this we use the

following lemma.

Lemma 2.12. There is a sequence of parabolic subalgebras p(k), k = 0, 1, . . . ,m of k

so that

(i) q = p(0) ⊂ p(1) ⊂ · · · ⊂ p(m) = k, and

(ii) p(k) ∩ (h+ kk) = qk, k = 0, 1, . . . m.

Proof of lemma. For each k = 0, 1, . . . ,m − 1 consider sets C
(k)
l ⊂ {1, 2, . . . , n} with

the following properties.

(1) {1, 2, . . . , n} is the disjoint union of C
(k)
1 , . . . C

(k)
Jk

.

(2) Each C
(k)
l consists of consecutive integers and lies either in {1, . . . , p} or in

{p + 1, . . . , n}.

(3) Every gk-block has labels that are contained in exactly one C
(k)
l and each C

(k)
l

contains at most one gk-block.
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(4) Each C
(k)
l is the union of C

(k−1)
j for several j.

Set C
(m)
1 = {1, . . . , p} and C

(m)
2 = {p+ 1, . . . , n}.

It follows from (3) that J0 = N (the number of blocks in the original array) and

C
(0)
1 , . . . , C

(0)
N are the original blocks.

We need to establish the existence of a family C
(k)
l that satisfies (1)-(4). Intuitively,

each C
(k)
l is the union of all C

(k−1)
j meeting a common gk-block. This is not quite

the case because (2) must be satisfied. The sets C
(k)
l are not uniquely determined by

(1)-(4), but we give one choice below.

Let Nk be the number of gk-blocks. Let’s list these blocks as B
(k)
1 , . . . , B

(k)
Nk

by

first listing, from left to right, those blocks B
(k)
1 , . . . , B

(k)
pk occurring in the upper row.

Then continue with the blocks B
(k)
pk+1, . . . , B

(k)
Nk

in the lower row. Define an increasing

sequence of integers a0, a1, . . . , aNk+1 by

ai =





1, i = 0

the index of the leftmost dot in B
(k)
i , i = 1, . . . , pk

p+ 1, i = pk + 1

the index of the leftmost dot in B
(k)
i−1, i = pk + 2, . . . , Nk + 1

(2.13)

Using the notation [a, b) = {r ∈ Z : a ≤ r < b} we define

C
(k)
i = [ai, ai+1), for i = 0, 1, . . . , Nk and

C
(k)
Nk+1 = [aNk+1, n],

(2.14)

for k = 0, 1, . . . ,m − 1. Note that these sets are not necessarily nonempty, even for a

given value of k. For example, often the first dot in the first block is labelled by 1; in

this case a1 = 1, so C
(k)
0 = ∅.

Since {1, . . . , p} is the disjoint union of C
(k)
0 , . . . , C

(k)
pk and {p+1, . . . , n} is the disjoint

union of C
(k)
pk+1, . . . , C

(k)
Nk+1, properties (1) and (2) hold. Property (3) holds since each

aj is leftmost in a gk-block.

It remains to show that (4) holds. For this it suffices to show that each C
(k−1)
i is

contained in some C
(k)
j . Let a′0, a

′
1, . . . be the sequence of integers defined in (2.13),

but for gk−1-blocks. We need to check that for any i = 0, . . . , Nk−1,

[a′i, a
′
i+1) ⊂ [aj , aj+1), for some j and

[a′Nk−1+1, n] ⊂ [aNk+1, n].

For this it suffices to show that {aj} ⊂ {a′i}. Suppose aj is (leftmost) in a gk-block

B
(k)
j . Then aj lies in some gk−1-block B

(k−1)
i . Since several gk−1-blocks collapse to

one gk-block and the kth string does not pass through the leftmost dot in B
(k−1)
i , aj is
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leftmost in B
(k−1)
i , so equal to a′i. This proves the claim and completes the verification

of (4).

The existence of sets C
(k)
l satisfying the properties (1)-(4) is now established and we

are ready to finish the proof of the lemma.

Define S(k) = {ǫa+1 − ǫa : a, a + 1 ∈ C
(k)
l for some l}. By Property (2), 〈S(k)〉 :=

spanC{S
(k)} ∩∆ = {ǫa − ǫb : a, b ∈ C

(k)
l , for some l}.

Definition 2.15. p(k) = (h+
∑

α∈〈S(k)〉 g
(α)) +

∑
α∈∆+

c \〈S(k)〉 g
(−α).

The fact that p(k) is a parabolic subalgebra of k follows from Property (2). Part (i)

of the lemma follows from Property (4). The third property implies that for each l,

C
(k)
l ∩

(
{1, 2, · · · , n} \ {the first k strings}

)
is a gk-block (or is empty). Part (ii) of the

lemma follows from this. �

We are now in position to prove that q−1
k q′k ∈ Qk−1. Let P (k) = NK(p(k)), the

parabolic subgroup with Lie algebra p(k). Since Q0, . . . , Qk−1 ⊂ P (k−1), the right hand

side of (2.11) is in P (k−1). But the left hand side is in HKk ⊂ HKk−1. We conclude

that q−1
k q′k ∈ P (k−1) ∩HKk−1 = Qk−1. �

Remark 2.16. An alternate proof of Theorem 2.10 may be given as follows. The map

F is finite since it has finite fibers and X is complete. There is a natural injection

H0(γ−1
Q (f),Ln) → H0(X,F ∗Ln). If this injection is an isomorphism for some am-

ple line bundle L and all sufficiently large n, then F is an isomorphism. The injec-

tion is an isomorphism because the G-module structure of H0(X,F ∗Ln) can be com-

puted using the Borel-Weil Theorem, and it coincides with the G-module structure of

H0(γ−1
Q (f),Ln), which is computed in [2]. This alternative proof implies that γ−1

Q (f)

is smooth without using Lemma 2.9.

Remark 2.17. If Li ⊂ L0, for all i, then γ−1
Q (f) ∼= Q0/(Q0 ∩ B) ∼= L0/(L0 ∩ B), so

γ−1
Q (f) is a homogeneous variety. However, if the condition Li ⊂ L0 fails for some i

(for example, whenever there is a block in the array having fewer dots than its two

neighbors), then γ−1
Q (f) is not in any obvious way a homogeneous variety.

2.1. A vanishing theorem. The next result is a vanishing theorem for the higher

cohomology groups of invertible sheaves on γ−1
Q (f) associated to dominant weights.

Let τ ∈ h∗ correspond to a character χτ ofH; extend χτ to a character ofK∩B = R0.

The closed K-orbit Q may be identified with K/(K ∩B), so there is an invertible sheaf

OQ(τ) on Q (cf. Remark 2.7). As noted in the introduction, γ−1
Q (f) can be viewed as

a subvariety of Q; let Oγ−1
Q

(f)(τ) denote the pullback of the sheaf OQ(τ) to γ
−1
Q (f).

Theorem 2.18. If τ ∈ h∗ is ∆+
c -dominant and integral, then for all i > 0, we have

H i(γ−1
Q (f),Oγ−1

Q
(f)(τ)) = 0.
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Proof. The proof is by induction on the number of stringsm. Ifm = 0 then γ−1
Q (f) = Q

and the result holds by the Borel-Weil-Bott theorem. Suppose the result holds in case

there are m− 1 strings.

Define

X(1) = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2

Q1/R
′
1,

where R′
1 = Q1 ∩ B ⊂ R1 = Q1 ∩ Q0. Note that R′

1 = R1 ∩ B is a Borel subgroup of

R1. By Theorem 2.10, X(1) ≃ γ−1
Q1

(f ′), where f ′ = f − f0 and Q1 is a closed K1-orbit

in the flag variety for G1.

Suppose τ ∈ h∗ is ∆+
c -dominant and integral. We wish to show that H i(X,OX (τ))

vanishes when i > 0.

The map that forgets the last factor of X is a fibration

g : X →M = Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2

Q1/R1.

This is a fiber bundle associated to the R1-principal bundle

Qm ×
Rm

Qm−1 ×
Rm−1

· · · ×
R2

Q1 →M,

with fibers isomorphic to the R1-variety Q0/R0.

Let U−τ be the irreducible representation of L having lowest weight −τ . We claim

that

H i(X,OX (τ)) ∼= H i(M,OM (U∗
−τ )). (2.19)

The push-forward sheaf Rig∗OX(τ) is the sheaf of sections on M associated to the

R1-module H i(Q0/R0,OQ0/R0
(τ)). Since L0 is a Levi factor of Q0, and R0 = B ∩K

is a Borel subgroup of Q0, there is an isomorphism L0/(L0 ∩B) ∼= Q0/R0. Therefore,

H i(Q0/R0,OQ0/R0
(τ)) ∼= H i(L0/(L0 ∩ B),OL0/(L0∩B)(τ)). By the Borel-Weil-Bott

Theorem, this group is 0 for i > 0. For i = 0, the group is aQ0-module whose restriction

to L0 is isomorphic to U∗
−τ . We use the same notation U∗

−τ for the restriction of this

module to R1 ⊂ Q0. Thus, we have shown that

g∗OX(τ) = OM (U∗
−τ ),

and that for i > 0,

Rig∗OX(τ) = 0.

The Leray spectral sequence now implies that (2.19) holds for all i.

By Lemma 1.9, L1 ∩ L0 is a Levi factor of R1. Thus U∗
−τ has a filtration whose

associated graded module is a representation on which the unipotent radical of R1 acts

trivially and on which L1∩L0 acts as U
∗
−τ |L0∩L1 ≃ ⊕E∗

−τi . This induces a corresponding

filtration on the sheaf OM (U∗
−τ ). Induction and the long exact sequence in cohomology

imply that our desired vanishing will follow if we can show that

H i(M,OM (E∗
−τj )) = 0, for i > 0. (2.20)
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For this we consider the fibration h : X(1) →M , a fiber bundle with fibers isomorphic

to R1/R
′
1.

To show that (2.20) holds we prove

H i(X(1),OX(1)(τj)) ∼= H i(M,OM (E∗
−τj )). (2.21)

In the course of the proof of [2, Theorem 6.6], it is proved that each τj is dominant

with respect to the positive system ∆+
1,c. Therefore, assuming (2.21), the inductive

hypothesis implies that (2.20) holds.

We now prove that (2.21) holds. Each τi defines a character of R′
1, and the push-

forward sheaf Rih∗OX(1)(τi) is the sheaf of sections on M associated to the R1-module

H i(R1/R
′
1,OR1/R′

1
(τi)). Since L1∩L0 is a Levi factor of R1, and R

′
1 = R1∩B is a Borel

subgroup of R1, there is an isomorphism (L1 ∩L0)/(L1 ∩L0 ∩B) ∼= R1/R
′
1. Therefore,

H i(R1/R
′
1,OR1/R′

1
(τi)) ∼= H i((L1 ∩ L0)/(L1 ∩ L0 ∩B),O(L1∩L0)/((L1∩L0∩B)(τi)).

By the Borel-Weil-Bott Theorem, this group is 0 for i > 0. For i = 0, the group is

a R1-module whose restriction to L1 ∩ L0 is isomorphic to E∗
−τi . Moreover, we claim

that the unipotent radical of R1 acts trivially on the module H0(R1/R
′
1,OR1/R′

1
(τi)).

Indeed, if we denote this unipotent radical by N , then since N is unipotent and normal

in R1, the space of N -fixed vectors in this module is nonzero and R1-stable. Since the

R1-module H0(R1/R
′
1,OR1/R′

1
(τi)) is irreducible (as its restriction to L1 ∩ L0 is), the

space of N -fixed vectors must be the entire module, proving the claim. Thus, we have

shown that

h∗OX(1)(τi) = OM (E∗
−τi),

and that for i > 0,

Rih∗OX(1)(τi) = 0.

Again using the Leray spectral sequence we see that for all i and all τj,

H i(X(1),OX(1)(τj)) ∼= H i(M,OM (E∗
−τj )).

Therefore (2.21) holds and the proof of the theorem is complete.

�

2.2. Some topological consequences of Theorem 2.10. A consequence of the

theorem is that any component of a Springer fiber associated to a closed K-orbit is a

fiber bundle over a generalized flag variety for a (smaller) general linear group having

fiber that is a component of a Springer fiber associated to a closed orbit for a smaller

pair (G′,K ′). To make this precise, let S′ be the set of all labels of dots in the array

that are contained in one of the m strings. Set U = spanC{ei : i ∈ S′} and

G′ = {g ∈ G : g(U) ⊂ U and g(ej) = ej , when j /∈ S′}
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Let K ′ = K ∩G′, h′ = h ∩ g′ and λ′ = λ|h′ . If Q′ is the corresponding closed K ′-orbit

in the flag variety for G′, then Theorem 2.10 tells us that Xm−1 ≃ γ−1
Q′ (f). (Note that

the algorithm gives the same generic element f .) This proves the following corollary.

Corollary 2.22. In the setting of the Theorem, there is a fibration

X → Qm/Rm (2.23)

having fiber Xm−1. Here Xm−1 is a component of a Springer fiber for the smaller pair

(G′,K ′) associated to a closed K ′-orbit in B′, and Qm/Rm is a generalized flag variety

for Lm.

We remark that often Qm/Rm is just a point (so X = Xm−1). In this case one may

take S′ to be the labels of the dots in the first m− 1 strings. Then there is a fibration

X → Qm−1/Rm−1

and the fiber is Xm−2, which is again a component of a Springer fiber for the smaller

pair (G′,K ′) associated to a closed K ′-orbit in B′.

If Z is a topological space with finite-dimensional rational cohomology, we define the

Poincaré polynomial of Z to be

Pt(Z) =
∑

i

dimH i(Z,Q)ti.

As an application of Theorem 2.10, we obtain the Poincaré polynomial of γ−1
Q (f).

Corollary 2.24. The variety γ−1
Q (f) is simply connected, and the cohomology ring

H∗(γ−1
Q (f);Z) is torsion-free and vanishes in odd dimensions. The Poincaré polynomial

of γ−1
Q (f) is

Pt(γ
−1
Q (f)) =

m∏

i=0

Pt(Qi/Ri) =

m∏

i=0

Pt(Li/(Li ∩Ri)).

Proof. We use the notation of (2.2), so X = Xm. We prove by induction on k that the

cohomology H∗(Xk;Z) is torsion-free and vanishes in odd dimensions, and

Pt(Xk) =
k∏

i=0

Pt(Qi/Ri).

For k = 0 the result holds since X0 = Q0/R0 = L0/(L0 ∩ B) is a flag variety for the

reductive group L0. Suppose the proposition holds for Xk−1. As in Corollary 2.22,

there is a fiber bundle Xk → Qk/Rk with fiber Xk−1. Since Qk/Rk and Xk−1 are

simply connected, the long exact sequence for homotopy implies that Xk is simply

connected. Because H∗(Xk−1;Z) is free and Qk/Rk is simply connected, the Leray

spectral sequence for the cohomology of this fiber bundle has E2 term

E2 = H∗(Qk/Rk;Z)⊗H∗(Xk−1;Z).
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Since base and fiber have no odd-dimensional cohomology, the spectral sequence de-

generates at E2. This implies that as Z-modules, H∗(Xk;Z) and H∗(Qk/Rk;Z) ⊗

H∗(Xk−1;Z) are isomorphic, so

Pt(Xk) = Pt(Xk−1)Pt(Qk/Rk) =

k∏

i=0

Pt(Qi/Ri),

proving the first equality of the proposition. The second equality holds because Li is a

Levi factor of Qi. �

Remark 2.25. As pointed out by the referee, the cohomology of every smooth compo-

nent of a Springer fiber in type A is torsion-free and vanishes in odd dimensions. This is

because for any nilpotent f ∈ g, there is a regular rank 1 torus S ≃ C∗ ⊂ H such that

Ad(S)f = C∗f . This implies that the Springer fiber µ−1(f), and hence each irreducible

component of this fiber, is S-stable. Since S acts with isolated fixed points on B, it

acts with isolated fixed points on each component of µ−1(f). Hence, if the component

is smooth, the Bialynicki-Birula theorem gives a decomposition of the component into

cells of even real dimension, and the assertion follows (cf. [7, §1.10]).

Remark 2.26. The polynomials Pt(Li/(Li∩Ri)) can be easily computed from the array

by the following procedure. If M is a reductive group, write pM for the Poincaré

polynomial of the flag variety for M . Since all odd-dimensional cohomology vanishes,

it is convenient to write u = t2. If n ≥ 2, then

pGL(n) =
(1− u2)(1 − u3) · · · (1− un)

(1− u)n−1
;

pGL(1) = 1. If P is a parabolic subgroup of M , with Levi factor M ′, then Pt(M/P ) =
pM
pM′

, as follows by considering the fibration M/BM → M/P with fibers P/BM (here

BM ⊂ P is a Borel subgroup ofM). By Lemma 1.9, Li∩Li−1 is a Levi factor of Li∩Ri,

so if i > 0,

Pt(Li/(Li ∩Ri)) =
pLi

pLi∩Li−1

,

and Pt(L0/(L0 ∩ R0) = pL0 . Recall that we denoted the blocks in the array for gi as

Bi
1, . . . , B

i
Ni
, and let nil equal the cardinality of Bi

l . By the discussion before Lemma

1.9,

pLi
=

∏

l

pGL(ni
l
).

We define subblocks of the blocks for gi (in case i > 0) as follows. Let a and b be in

the same block for gi. If they are also in the same block for gi−1, we say they are in

the same subblock. List the lengths of the subblocks as mi
1,m

i
2, . . .. By the proof of

Lemma 1.9, the roots of li ∩ li−1 are ǫa − ǫb, a < b, with a and b in the same subblock.

Hence

pLi∩Li−1 =
∏

l

pGL(mi
l
).
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From these facts one can readily calculate Pt(γ
−1
Q (f)). For example, in the case of the

array considered in Section 1.1, we find that Pt(γ
−1
Q (f)) = (1 + u)4 = (1 + t2)4.

Example 2.27. We illustrate these ideas with the following example. Consider the pair

(GL(14), GL(9) ×GL(4)) and

λ = (13, 10, 9, 8, 7, 4, 3, 2, 1 | 12, 11, 6, 5).

The array with first string is

r

1
Q
Q
Q

QQr

10
r

11
���������r

2
r

3
r

4
r

5
Q
Q
Q
QQr

12
r

13
���������r

6
r

7
r

8
r

9

.

The arrays for (G1,K1) and (G2,K2) are

r

10
�
�
�
��

r

2
r

3
r

4

A
A
Ar
12
�
�
�
��

r

6
r

7
r

8

and

r

2

�
�
�
��

r

3
r

6
r

7

.

Then (except for a few factors of the torus, which play no role)

L = GL(1) ×GL(4)×GL(4) ×GL(2) ×GL(2)

L1 = GL(3)×GL(3) ×GL(1), L1 ∩ L = L1

L2 = GL(4), L2 ∩ L1 = GL(2) ×GL(2).

From this it is easy to see that the Poincaré polynomial is

(1 + u)3(1 + u+ u2)3(1 + u+ u2 + u3)3, u = t2.

The generalized flag variety Qm/Rm (m = 2) is the Grassmannian G2(C
4). There-

fore, the fibration (2.23) is

X1 → G2(C
4),

and X1 is the component of a Springer fiber for (GL(9), GL(5) ×GL(4)) with

λ′ = (13, ∗, ∗, 8, 7, ∗, ∗, 2, 1 | 12, 11, 6, 5).

Here the coordinates in the 2, 3, 6 and 7 places are omitted in passing to G′.

3. Representations on tangent spaces to iterated bundles at fixed

points

The maximal torus H acts on γ−1
Q (f) with finitely many fixed points, which we

describe explicitly in the next section. If x ∈ γ−1
Q (f) is an H-fixed point, then the

tangent space Txγ
−1
Q (f) is a representation of H. Using the structure of γ−1

Q (f) as an
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iterated bundle, we can describe the weights of this representation. Then we can apply

localization theorems in equivariant cohomology and K-theory to the study of γ−1
Q (f).

In this section we will describe the representations on tangent spaces to fixed points

in case H is any algebraic group acting on any variety X constructed as an iterated

bundle. Related calculations have been done, for example, in the case of Bott-Samelson-

Demazure varieties (see e.g. [4]). However, for lack of a reference, we have decided to

give the result for a general iterated bundle. In the next section, we will apply these

results to the case where H is a maximal torus acting on X = γ−1
Q (f).

3.1. Generalities. We begin with some notation. Given a left action of an algebraic

group Q on a space X and an element q ∈ Q, let L(q) : X → X denote the map induced

by the left action of q and let C(q) denote the map Q→ Q given by conjugation by q.

If H is a subgroup of Q and x ∈ X is H-fixed, then the map H → GL(TxX) given by

h 7→ L(h)∗ = dL(h) defines a representation of H. Finally, if ξ ∈ q and X is smooth,

let ξ# denote the induced vector field on X, whose value ξ#x at x ∈ X is determined

by the rule that if φ is a function on X, then

ξ#x φ =
d

dt
(φ(exp(tξ)x)|t=0.

Lemma 3.1. Let x ∈ X be fixed by q ∈ Q and let ξ ∈ q. Then

L(q)∗(ξ
#
x ) = (Ad(q)ξ)#x . (3.2)

Proof. If we apply the left side of (3.2) to a function φ on X, we obtain

d

dt
(φ(q exp(tξ)x)|t=0.

If we apply the right hand side of (3.2) to φ, we obtain

d

dt
(φ(exp(tAd(q)ξ)x)|t=0 =

d

dt
(φ(q exp(tξ)q−1x)|t=0.

Since x is fixed by q−1, the two calculations agree. �

3.2. The case of a mixed space. Throughout this subsection, Q will denote an

algebraic group, and H and R will denote subgroups of Q. Suppose that M is a

smooth algebraic variety with an R-action. We write X̃ = Q×M and we let X denote

the “mixed space” X = Q×
R
M . Under mild hypotheses (cf. Remark 2.8) X is a smooth

algebraic variety, and we assume this is the case. Let π : X̃ → X denote the quotient

morphism. We write [q,m] for π(q,m) (for q ∈ Q, m ∈ M). The group Q× R acts on

X̃, so for (q, r) ∈ Q×R we have maps L(q, r) := L(q)×L(r) and C(q)×L(r) from X̃

to X̃ . Also, Q acts on X, and we have π ◦ L(q, 1) = L(q) ◦ π. Note also that if ξ ∈ r

then there is an induced vector field ξ# on M .
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Observe that L(q, 1)∗ maps V = q × TmM isomorphically onto T(q,m)X̃ . We define

ρ : V → T[q,m]X as the composition

ρ = π∗ ◦ L(q, 1)∗. (3.3)

Lemma 3.4. The point [q,m] ∈ X is H-fixed ⇔ q−1Hq ⊂ R, and m is q−1Hq-fixed.

Proof. This is a straightforward computation. �

Suppose now that [q,m] is H-fixed. Let V = q ⊕ TmM , and define an H-module

structure on V by the formula

h · (ξ, v) = (Ad(q−1hq)ξ, L(q−1hq)∗v),

for ξ ∈ q, v ∈ TmM . We define an H-module structure on r by the formula

h · ξ = Ad(q−1hq)ξ.

Lemma 3.5. The embedding ψ : r → V defined by ψ(ξ) = (ξ,−ξ#m) is H-equivariant.

Proof. Write s = q−1hq. Using the preceding two lemmas, we have

ψ(h · ξ) = (Ad(s)ξ,−(Ad(s)ξ)#m) = (Ad(s)ξ,−L(s)∗(ξ
#
m)) = h · ψ(ξ),

as desired. �

Let V1 denote the H-submodule ψ(r) of V .

The main purpose of this subsection is to prove the following proposition.

Proposition 3.6. With notation as above, assume that [q,m] is an H-fixed point of

X. The map ρ : V → T[q,m]X is H-equivariant with kernel V1, and hence induces an

H-module isomorphism V/V1 → T[q,m]X.

Proof. To show that ρ is H-equivariant we must show that

L(h)∗ρ(ξ, v) = ρ(Ad(s)ξ, L(s)∗v), (3.7)

where s = q−1hq. Now,

L(h)∗ ◦ ρ = L(h)∗ ◦ π∗ ◦ L(q, 1)∗ = (π ◦ L(hq, 1))∗.

Direct computation shows that

π ◦ L(hq, 1) = π ◦ L(q, 1) ◦ (C(s)× L(s)).

Therefore,

L(h)∗ ◦ ρ = π∗ ◦ L(q, 1)∗ ◦ (C(s)∗ × L(s)∗) = ρ ◦ (Ad(s)× L(s)∗),

which implies that ρ is H-equivariant.
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Since V1 and kerρ have the same dimension, to show that they are equal it suffices

to show that V1 ⊂ kerρ. Observe that for all r ∈ R, the point (qr, r−1m) lies in the

fiber π−1([q,m]). This implies that the vector v ∈ T(q,m)X̃ defined by

v · φ =
d

dt
(φ(q exp(tξ), exp(−tξ)m)|t=0

satisfies π∗(v) = 0. But

v = L(q, 1)∗(ξ,−ξ
#
m),

so we see that ρ((ξ,−ξ#m)) = 0. Hence V1 ⊂ kerρ, as desired. �

Let H act on q by the rule

h · ξ = Ad(q−1hq)ξ.

If [q,m] is H-fixed, then q−1Hq ⊂ R. Thus, r is an H-submodule of q, and hence

q/r is an H-module. Moreover, m is q−1Hq-fixed, so the map H → GL(TmM) given

by h 7→ L(q−1hq)∗ defines an H-module structure on TmM . By combining these H-

module structures, we obtain an H-module structure on q/r ⊕ TmM . On the other

hand, since [q,m] is H-fixed, there is an H-module structure on T[q,m]X.

Corollary 3.8. Assume that the hypotheses of the preceding proposition hold, and

assume in addition that H is reductive. Then T[q,m]X and q/r⊕ TmM are isomorphic

H-modules.

Proof. Let W be an irreducible H-module. If U is any H-module let multW (U) denote

the multiplicity of W in U . By the preceding proposition, we have

multW (T[q,m]X) = multW (V )−multW (V1).

Since V = q⊕ TmM , and since by definition, V1 ∼= r as H-modules, we have

multW (T[q,m]X) = multW (q) + multW (TmM)−multW (r)

= multW (q/r) + multW (TmM).

Since any irreducible H-module occurs with the same multiplicity in T[q,m]X and in

q/r⊕ TmM , we conclude that these H-modules are isomorphic. �

3.3. Iterated bundles. We now apply the results of the preceding subsection to iter-

ated bundles. Let Q0, . . . , Qn be subgroups of an algebraic group G and suppose that

H ⊂ Qn. Suppose that R0, . . . , Rn are subgroups ofG withRi ⊂ Qi−1∩Qi for i > 0, and

R0 ⊂ Q0. Let X̃ = Qn×Qn−1×· · ·×Q0, and let X = Qn ×
Rn

Qn−1 ×
Rn−1

· · ·×
R2

Q1×
R1

Q0/R0.

Let π : X̃ → X denote the quotient morphism. If x̃ = (qn, . . . , q0) ∈ X̃, write

[qn, . . . , q0] for π(x̃). The following lemma is a straightforward computation.

Lemma 3.9. The point [qn, . . . , q0] ∈ X is H-fixed ⇔ for i = 0, · · · , n, we have

C(q−1
i q−1

i+1 · · · q
−1
n )(H) ⊂ Ri.



SPRINGER FIBERS 23

Assume that [qn, . . . , q0] is H-fixed. Let V = qn ⊕ · · · ⊕ q0. Define an H-module

structure on V by making h ∈ H act on the qi summand by Ad(C(q−1
i q−1

i+1 · · · q
−1
n )(h)).

Then rn ⊕ · · · ⊕ r0 is an H-submodule of V . This gives an H-module structure on

V/(rn ⊕ · · · ⊕ r0) ∼= qn/rn ⊕ · · · q0/r0.

As an immediate consequence of the definitions of the H-module structures, we have

the following lemma.

Lemma 3.10. Assume that [qn, . . . , q0] ∈ X is H-fixed. The embedding ψ : rn ⊕ · · · ⊕
r0 → V which takes (ξn, . . . , ξ0) to

(ξn,−Ad(q
−1
n−1)ξn + ξn−1,−Ad(q

−1
n−2)ξn−1 + ξn−2, . . . ,−Ad(q

−1
0 )ξ1 + ξ0)

is H-equivariant.

Let V1 denote ψ(rn ⊕ · · · ⊕ r0); if [qn, . . . q0] is H-fixed, then V1 is an H-submodule

of V . Denote by L(qn, . . . , q0) the map of X̃ to itself which sends (an, . . . , a0) to

(qnan, . . . , q0a0). Let

ρ = π∗ ◦ L(qn, . . . , q0)∗ : V → T[qn,...q0]X. (3.11)

Lemma 3.12. Let x = [qn, . . . , q0] ∈ X. Let ξ ∈ q, and let ξ# denote the induced

vector field on X. Then ξ#x = ρ(Ad(q−1
n )ξ, 0, . . . , 0).

Proof. Let φ be a function on X. Then

ξ#x φ =
d

dt
φ([exp(tξ)qn, . . . , q0])|t=0

=
d

dt
φ([qn exp(tAd(q

−1
n )ξ), . . . , q0])|t=0.

Tracing through the definitions shows that this equals

ρ(Ad(q−1
n )ξ, 0, . . . , 0)φ.

�

The main purpose of this subsection is to prove the following proposition.

Proposition 3.13. With notation as above, assume that x = [qn, . . . , q0] is an H-fixed

point of X. The map ρ : V → T[qn,...,q0]X is H-equivariant with kernel V1, and hence

induces an H-module isomorphism V/V1 → T[qn,...,q0]X.

Proof. The proof is by induction on n. The case n = 0 is handled by Proposition

3.6, taking M to be a point. Suppose that the proposition is true for n − 1. Let

M = Qn−1 ×
Rn−1

· · · ×
R2

Q1 ×
R1

Q0/R0. and let m = [qn−1, . . . , q0] ∈ M . Then we can

identify X with Qn ×
Rn

M and the point x with [qn,m]. Let

ρn : qn ⊕ TmM → TxX
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be the map defined in (3.3) (with Qn in place of Q, and Rn in place of R), and let

ρn−1 : qn−1 ⊕ · · · q0 → TmM

be the analog of the map ρ (with M in place of X and m in place of x). We have

qn ⊕ qn−1 ⊕ · · · q0
1×ρn−1
−→ qn ⊕ TmM

ρn
−→ TxX,

and

ρ = ρn ◦ (1× ρn−1).

By hypothesis, x = [qn,m] is H-fixed. By Lemma 3.4, this implies that m is H ′ =

C(q−1
n )(H)-fixed. By Proposition 3.6, the map ρn is H-equivariant, and our inductive

hypothesis implies that ρn−1 is H
′-equivariant. Combining these, we can show that ρ is

H-equivariant as follows. To simplify the notation, write ri = C(q−1
i q−1

i+1 · · · q
−1
n )(h) ∈

Ri. Then

L(h)∗ρ(ξn, . . . , ξ0) = L(h)∗ρn(ξn, ρn−1(ξn−1, . . . , ξ0))

= ρn(Ad(rn)ξn, L(rn)∗ρn−1(ξn−1, . . . , ξ0))

by H-equivariance of ρn. Using H
′-equivariance of ρn−1, this equals

ρn(Ad(rn)ξn, ρn−1(Ad(rn−1)ξn−1, . . . ,Ad(r0)ξ0))

which (as ρ = ρn ◦ (1× ρn−1)) is

ρ(Ad(rn)ξn,Ad(rn−1)ξn−1, . . . ,Ad(r0)ξ0) = ρ(h · (ξn, . . . , ξ0)).

Hence ρ is H-equivariant, as desired.

It remains to check that kerρ = V1. We will make use of the following observation:

if f : V → W is a linear map of vector spaces, and if A ⊂ V , B ⊂ W are subspaces

such that f(A) = B, then f−1(B) = A+ kerf . As ρ = ρn ◦ (1× ρn−1), we see that

kerρ = (1× ρn−1)
−1(kerρn).

By Proposition 3.6,

kerρn = {(ξ,−ξ#m) | ξ ∈ rn}.

By Lemma 3.12,

ρn−1(Ad(q
−1
n−1)ξ, 0, . . . , 0) = ξ#m.

Therefore, if we let

A = {(ξ,−Ad(q−1
n−1)ξ, 0, . . . , 0) | ξ ∈ rn} ⊂ qn ⊕ · · · ⊕ q0,

we see that (1× ρn−1)(A) = kerρn. Therefore, by the observation above,

(1× ρn−1)
−1(kerρn) = A+ ker(1× ρn−1) = A+ (0⊕ kerρn−1).

By our inductive hypothesis,

kerρn−1 = {(ξn−1,−Ad(q
−1
n−2)ξn−1 + ξn−2, . . . ,−Ad(q

−1
0 )ξ1 + ξ0) | ξi ∈ ri}.
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Hence, from the definition of V1, we see that

A+ (0⊕ kerρn−1) = V1,

so kerρ = V1, as desired. �

Recall that qn/rn ⊕ · · · q0/r0 has an H-module structure defined after Lemma 3.9.

Corollary 3.14. Assume that the hypotheses of the preceding proposition hold, and

in addition assume that H is reductive. Then T[qn,··· ,q0]X and qn/rn ⊕ · · · q0/r0 are

isomorphic H-modules.

Proof. This is proved by an argument similar to the proof of Corollary 3.8. �

It is convenient to give an alternative formulation of the corollary in case H is a

torus and each q−1
i . . . q−1

n is in the normalizer NG(H) of H. If V is a representation of

the torus H, let Φ(V ) denote the multiset of weights of H acting on V (this is the set

of weights, where each weight is counted with multiplicity). We adopt the convention

that if s occurs a times in the multiset A, and b times in the multiset B, then s occurs

a+ b times in the multiset A ∪B.

The group NG(H) acts on weights by the rule that if λ is a weight of H (so eλ :

H → C∗ is a homomorphism), and w ∈ NG(H), then wλ is the weight satisfying

ewλ(h) = eλ(w−1hw).

With these definitions, we can reformulate the preceding corollary as follows.

Corollary 3.15. Assume the hypotheses of Proposition 3.13 hold. Assume in addition

that H is a torus and that each q−1
i . . . q−1

n is in the normalizer of H. Then

Φ(T[qn,··· ,q0]X) = qn · Φ(qn/rn) ∪ qnqn−1 · Φ(qn−1/rn−1) ∪ · · · ∪ qnqn−1 · · · q0 · Φ(q0/r0).

Proof. This follows from Corollary 3.14 and the definition of the H-action on qn/rn ⊕
· · · ⊕ q0/r0 given after Lemma 3.9. �

Remark 3.16. The results of this section can be generalized to remove the assumption

that the Qi are subgroups of a group G. Instead of Ri ⊂ Qi−1 ∩Qi, what we need are

inclusions Ri ⊂ Qi and homomorphisms Ri → Qi−1.

3.4. Induced vector bundles. Keep the notation of the previous subsection. If V is

a representation of R0, then

V = Qn ×
Rn

Qn−1 ×
Rn−1

· · · ×
R1

Q0 ×
R0

V → X

is a Qn-equivariant vector bundle. If x = [qn, . . . , q0] is fixed by H, then the fiber Vx

is a representation of H, which is described as follows.
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Proposition 3.17. With notation as above, if x = [qn, . . . , q0] is fixed by H, then as

an H-module, Vx is isomorphic to V , with H-action given by

h · v = C(q−1
0 · · · q−1

n )(h)v,

for h ∈ H, v ∈ V . (Note that the right side of this equation makes sense, since

C(q−1
0 · · · q−1

n )(h) ∈ R0 and V is a representation of R0.)

Proof. We have an isomorphism f : V → Vx given by v 7→ [qn, . . . , q0, v]. An element

h ∈ H acts on Vx by

h · f(v) = [hqn, qn−1, . . . , q0, v]

= [qnC(q−1
n )(h), qn−1, . . . , q0, v]

= [qn, C(q−1
n )(h)qn−1, . . . , q0, v]

...

= [qn, . . . , q0, C(q−1
0 · · · q−1

n )(h)v]

= f(C(q−1
0 · · · q−1

n )(h)v).

The proposition follows. �

Corollary 3.18. Keep the assumptions of the previous proposition. Assume in addition

that H is a torus and that each q−1
i . . . q−1

n is in the normalizer of H, so in particular

H ⊂ R0. Suppose that V is a 1-dimensional representation of R0 and that the weight

of H on V (induced by the inclusion H ⊂ R0) is λ. Then the weight of H acting on

Vx is qn · · · q0 · λ.

Proof. This follows immediately from the proposition and the definition of the action

of the normalizer of H on weights of H given in the preceding subsection. �

4. Localization and γ−1
Q (f)

We return to the situation of Section 2. Using the computations of Section 3, we

apply localization theorems in equivariant cohomology and K-theory to γ−1
Q (f). The

first application gives a character formula for cohomology of Oγ−1
Q

(f)(τ). This is related

to associated cycles of discrete series representations. The second application is to

express the homology and K-theory classes determined by γ−1
Q (f) ⊂ B in terms of

Schubert bases. This answers (for the components γ−1
Q (f)) a question of Springer.

The first step is to determine the fixed points of the action of H. Recall that the

fixed point set of H on B is W · b, where W is the Weyl group of G. Since γ−1
Q (f)

is a subset of B, the fixed points on γ−1
Q (f) are a subset of W · b. In fact, γ−1

Q (f) is

contained in the flag variety for K, so the fixed points are a subset of W (K) · b.
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Proposition 4.1. The fixed point set of the action of H on γ−1
Q (f) is

{wm . . . w1w0 · b : wi ∈W (Li)}. (4.2)

Proof. We prove the following statement by induction on k: the fixed point set of H

on Qk · · ·Q1Q0 · b is

{wk . . . w1w0 · b : wi ∈W (Li)}, (4.3)

for k = 0, 1, . . . ,m. For k = 0 this is clear since Q0 · b = L0 · b is the flag variety for

L0. Assume that (4.3) holds for k − 1, and let w · b = qk · · · q1q0 · b be a fixed point in

Qk · · ·Q1Q0 · b. Using the fact (proved in Section 2) that Fk : Xk → Qk · · ·Q1Q0 · b is

an H-equivariant bijection, we have

h[qk, . . . , q1, q0] = [qk, . . . , q1, q0] ∈ Xk, for all h ∈ H.

Therefore, hqk ≡ qk modulo Rk, for all h ∈ H. In other words, qk · rk is a fixed point of

the action of H on the (generalized) flag variety Qk/Rk = Lk/Rk ∩ Lk. We conclude

that qk = wkrk, for some representative wk of W (Lk) and rk ∈ Rk. Therefore,

w−1
k w · b = rkqk−1 . . . q1q0 · b

is H-fixed. By the inductive hypothesis the righthand side is wk−1 . . . w1w0 · b, wi ∈
W (Li). The proposition now follows. �

Recall that if V is an H-module then Φ(V ) denotes the set of weights of V , counted

with multiplicity.

Corollary 4.4. The weights of H on the tangent space to the H-fixed point wm . . . w1w0·

b of γ−1
Q (f) (where wi ∈W (Li)) are

wn · Φ(qn/rn) ∪wnwn−1 · Φ(qn−1/rn−1) ∪ · · · ∪wnwn−1 · · ·w0 · Φ(q0/r0).

All the weights have multiplicity 1.

Proof. The description of the weights is an immediate consequence of Corollary 3.15.

Each weight has multiplicity 1 because if w ∈W , then Twbγ
−1
Q (f) ⊂ TwbB, and H acts

with multiplicity 1 on TwbB. �

Recall that the representation ring R(H) is the free abelian group spanned by eµ,

as µ runs over all weights of H. The multiplication in R(H) is defined by the rule

eλeµ = eλ+µ. Let µ1, . . . , µn be weights of H. Let Cµi
denote the 1-dimensional

representation of H corresponding to µi, and let V = ⊕iCµi
. Corresponding to V

there is the element
∑

i e
µi of R(H); by abuse of notation we will also write V for

this element. Define λ−1(V ) =
∏

i(1− eµi) ∈ R(H). We will make use of the following

general fact, which is a consequence of the localization theorem in equivariant K-theory

(see [6, Remark 5.11.8]).
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Proposition 4.5. Let H be a torus acting on a smooth complete algebraic variety

M , and assume that the set MH of H-fixed points on M is finite. Let L be an H-

equivariant line bundle on M , and let L denote the corresponding invertible sheaf on

M . For m ∈MH , let µ(m) denote the weight of H on Lm. Then in R(H), we have

∑

i

(−1)iH i(M,L) =
∑

m∈MH

eµ(m)

λ−1(T ∗
mM)

.

In this proposition, the individual terms in the sum on the right hand side are in

the quotient field of R(H); they need not be in R(H), but their sum is. Combining

this proposition with our description of the weights of H on tangent spaces (Corollary

4.4), and Corollary 3.18, we obtain the following character formula (with notation as

in Section 2).

Theorem 4.6. Let τ ∈ h∗ be an integral weight. Let Ai denote the set of weights of H

on qi/ri. In R(H), we have

∑

i

(−1)iH i(γ−1
Q (f),Oγ−1

Q
(f)(τ)) =

∑ ewmwm−1···w0τ

∏
i

∏
µ∈Ai

(1− e−wmwm−1···wiµ)
.

Here the sum is taken over all products wmwm−1 · · ·w0, where wi ∈W (Li).

Note that in this theorem the sum is not over m+1-tuples (wm, · · · , w0) where wi ∈
W (Li), but rather over the distinct products wmwm−1 · · ·w0. Also, if τ is dominant

with respect to the positive system ∆+
c , then by the cohomology vanishing theorem

(Theorem 2.18), Theorem 4.6 gives a formula for the character of the H-representation

on H0(γ−1
Q (f),Oγ−1

Q
(f)(τ)).

Now we turn to the question of expressing homology classes of γ−1
Q (f) in terms of

Schubert bases. Because γ−1
Q (f) is an H-invariant subvariety of B, it defines classes in

the homology (or cohomology) and K-theory (ordinary or H-equivariant) of B. The

homology and K-theory of B have Schubert bases, that is, bases defined in terms

of Schubert varieties. Using localization theorems in equivariant cohomology and K-

theory, known results about Schubert classes, and Corollary 4.4, we can express the

equivariant classes determined by γ−1
Q (f) in terms of the Schubert bases. The expres-

sions in ordinary homology or K-theory are obtained by specializing the corresponding

H-equivariant expressions.

We begin by recalling some known facts about equivariant (co)homology and Schu-

bert classes. The facts we need can be found in [15] or [22]. Given any space Z with

H-action, one can define the equivariant cohomology groupsH i
H(Z) and the equivariant

Borel-Moore homology groups HH
i (Z). Then HH

∗ (Z) = ⊕iH
H
i (Z) is a module for the

ring H∗
H(Z) = ⊕iH

i
H(Z). We have H∗

H(point) = S(Ĥ), the symmetric algebra on the

group of characters of H. Note that S(Ĥ) is the polynomial ring Z[λ1, . . . , λn], where

λ1, . . . , λn is a basis for the free abelian group Ĥ. By pulling back from the map from
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Z to a point, there is a map S(Ĥ) → H∗
H(Z), and thus HH

∗ (Z) is an S(Ĥ)-module. If

Z is a complete variety, there is a pairing

( , ) : H∗
H(Z)⊗S(Ĥ) H

H
∗ (Z) → S(Ĥ).

Now consider Z = B. By definition, the Schubert class Xw is the closure of B · wb in

B. Each Xw defines a class [Xw]H in the equivariant Borel-Moore homology HH
ℓ(w)(B).

The space HH
∗ (B) is a free S(Ĥ)-module with basis given by [Xw]H . Moreover, there

is a basis {xw} of H∗
H(B) with the property that

(xu, [Xv ]H) = δu,v,

for all u, v ∈W .

Given a class η ∈ H∗
H(B), and u ∈ W , write η(u) for the pullback of η to the

equivariant cohomology group H∗
H(ub). Because ub is a point, this group is identified

with S(Ĥ). The statement of Theorem 4.8 will involve the polynomials xw(u). These

polynomials are known. Indeed, [22, Lemma 11.1.9] contains an explicit formula for

elements R(w, u) ∈ S(Ĥ). In Sections 11.1-11.3 of that book, especially Prop. 11.3.10,

the connection of these elements with equivariant cohomology is explained; the result,

in our notation, is that,

xw(u) = (−1)ℓ(w)R(w, u)

(the sign (−1)ℓ(w) is necessary because we have taken the roots in b to be negative, the

opposite of Kumar’s convention).

Because γ−1
Q (f) is H-invariant, it defines a class [γ−1

Q (f)]H ∈ HH
2d(B), where d is the

complex dimension of γ−1
Q (f). Thus, we can write

[γ−1
Q (f)]H =

∑

w

Aw[Xw]H .

Observe that each Aw is a polynomial in λ1, . . . , λn. Let aw be obtained from Aw

by setting all the λi equal to 0. Then in the ordinary homology H∗(X) we have the

equation

[γ−1
Q (f)] =

∑

w

aw[Xw];

Springer’s original question was essentially to calculate the coefficients aw. The Aw can

be calculated by pairing with the dual basis:

Aw = (xw, [γ
−1
Q (f)]H).

See [15] or [22] for proofs and references for the preceding facts.

If H acts on a smooth variety M and u is an H-fixed point, let Pu(M) ∈ S(Ĥ)

denote the product of the weights (with multiplicity) of H on TuM . (As in Corollary

4.4, if M is an H-invariant subvariety of B, then all weights of TuM must occur with

multiplicity 1.) The following proposition gives a formula for the pairing.
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Proposition 4.7. Let M be a smooth closed H-invariant subvariety of B, and let

η ∈ H∗
H(B). Then

(η, [M ]H ) =
∑

u∈W

η(u)

Pu(M)
,

where we have written Pu(M) for Pub(M). (The individual terms of the sum on the

right hand side are in the quotient field Q(Ĥ) of S(Ĥ), but the sum is in S(Ĥ)).

Proof. This is an immediate consequence of the “integration formula” of [8, Cor. 1]

(the formula given there is an algebraic version of [1, Equation (3.8)]). In that paper,

the calculation is done in equivariant Chow groups, but the same formula holds in

equivariant Borel-Moore homology (in fact, for B the two theories coincide because B

is paved by affines). �

As an immediate consequence, we obtain the following theorem.

Theorem 4.8. The class [γ−1
Q (f)]H in HH

∗ (B) is given by
∑

w Aw[Xw]H , where

Aw =
∑

u

xw(u)

Pu(γ
−1
Q (f))

.

Here the sum is over all u ∈ W which can be written as u = wmwm−1 · · ·w0, where

wi ∈ W (Li). Also, if Ai denotes the set of weights of H on qi/ri, then fixing an

expression of u as a product wmwm−1 · · ·w0, we have

Pu(γ
−1
Q (f)) =

∏

i

∏

µ∈Ai

wmwm−1 · · ·wiµ.

We can perform the analogous calculations in equivariant K-theory using almost

identical arguments. We begin by recalling some facts about the equivariant K-theory

of the flag variety; see [16] for more details and references. If Z is a scheme with an H-

action, KH(Z) denotes the Grothendieck group of H-equivariant coherent sheaves on

Z. This is a module for the representation ring R(H), which we recall is the free abelian

group spanned by eµ, for µ ∈ Ĥ. If Z is smooth, then every equivariant coherent sheaf

on Z admits a finite equivariant resolution by locally free sheaves, so KH(Z) can be

identified with the Grothendieck group of H-equivariant vector bundles on Z. In this

case, KH(Z) has a ring structure induced from the tensor product of vector bundles.

If Z is complete, there is a pairing

( , ) : KH(Z)⊗R(H) KH(Z) → R(Z)

defined by

(v1, v2) =
∑

i

(−1)iH i(Z, v1 · v2).

The group KH(B) is a free R(H)-module with basis {[OXw ]}w∈W , that is, a basis

given by the classes of structure sheaves of Schubert varieties. Just as in cohomology,
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there is a dual basis {ξw}w∈W , characterized by the property that

(ξu, [OXw ]) = δu,w.

Write ξu(w) for the pullback of ξu to the equivariant K-theory group KH(wb) ∼= R(H).

Observe that the ξu(w) are known; [14] and [33] give explicit formulas for these classes

(Willems uses a slightly different basis, but see [16] for a description of the relations

between various bases).

If wb is an H-fixed point of γ−1
Q (f), we can write w = wmwm−1 · · ·w0, where wi ∈

W (Li). Define

Qw(γ
−1
Q (f)) = λ−1(T

∗
wbγ

−1
Q (f)) =

∏

i

∏

µ∈Ai

(1− e−wmwm−1···wiµ),

where Ai is as in Theorem 4.8.

The expansion of the class [Oγ−1
Q

(f)] in terms of the classes [OXw ] is given by the

following theorem.

Theorem 4.9. The class [Oγ−1
Q

(f)] in KH(B) is given by
∑

w Bw[OXw ], where

Bw =
∑

u

ξw(u)

Qu(γ
−1
Q (f))

.

The sum is over all u ∈ W that can be written as u = wmwm−1 · · ·w0, where wi ∈
W (Li). The corresponding expansion in the ordinary K-theory K(B) is given by setting

all the eλ in each Bu equal to 1.

Proof. The proof of this theorem is almost the same as the proof of Theorem 4.8, with

K-theory in place of cohomology. We omit the details. �

Remark 4.10. There is a similar expansion for [Oγ−1
Q

(f)] in terms of ξw, obtained by

replacing ξw(u) by [OXw ](u) in the above formula. An explicit expression for the

elements [OXw ](u) is given in [14] (see [21] for another proof).

Appendix A.

The standard tableaux for components associated to closed orbits

A parametrization of the components of a Springer fiber for GL(n) is given in [30].

This is done in a natural way by associating to each component of µ−1(f) a standard

tableau. Since this parametrization has become somewhat standard, in this appendix

we identify the standard tableaux of the components studied in this article (and in

[2]). Using this identification we determine which of the components we consider are

Richardson (see Remark A.6).

We mention that the results of this appendix may be found in the literature by

piecing together a number of results about irreducible Harish-Chandra modules and

their annihilators. For SU(p, q) the set of irreducible Harish Chandra-modules of a
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given regular integral infinitesimal character is in one-to-one correspondence with K-

orbits in B. On the other hand the primitive ideals in the enveloping algebra are

parametrized in terms of standard tableau. In [13] an algorithm is given to associate

to the K-orbit Q corresponding to a Harish-Chandra module X the standard tableau

corresponding to Ann(X). The algorithm in fact also constructs a signed tableau

having the same shape as the standard tableau. As shown in [31], the signed tableau is

the associated variety of X and the standard tableau is the component of the Springer

fiber of a generic element for T ∗
QB. Therefore, the statements of this appendix follow

from [13] and [31]. We include the appendix as an alternative that is elementary and

purely in terms of the geometric description of γ−1
Q (f).

We begin by recalling the parametrization in [30]. Suppose that f is any nilpotent

element of g = gl(n). The Young diagram associated to f consists of rows of boxes;

the lengths of these rows are the sizes of the Jordan blocks of f (which are equal to the

lengths of the strings, in the language of Section 1). By a standard tableau we mean

a numbering of a Young diagram (having n boxes) by the numbers in {1, 2, . . . , n}
in such a way that the numbers increase from left to right along any row and down

any column. The irreducible components of µ−1(f) are parametrized by the standard

tableaux having the same shape as the Young diagram of f . We will need to describe

this parametrization carefully.

Suppose b ∈ µ−1(f) (i.e., b is a Borel subalgebra containing f). Let (Ei) be the

flag {0} ⊂ E1 ⊂ · · · ⊂ En = Cn that corresponds to b (that is, b is the stabilizer of

(Ei)). Then we may associate to (b, f) a standard tableau ST (b, f) as follows. The

tableau of f |Ei
is obtained from the tableau of f |Ei−1 by attaching a new box onto the

end of a row of the tableau of f |Ei−1 , or perhaps by starting a new row with one box,

and putting the number i in the new box. The standard tableau of f |Ei
is obtained

from that of f |Ei−1 by inserting the number i in the new block. The starting point for

this procedure is a single block containing the number 1, corresponding to f |E1 . The

statement of [30] is that for each standard tableau ST having the same shape as the

Young diagram of f there exists a unique irreducible component C of µ−1(f) so that for

b in a dense open subset of C, ST (b, f) = ST . This gives a one-to-one correspondence

between irreducible components and standard tableaux.

An example is to take f as in the example of Section 1. Let b be as in that example.

Then b is the stabilizer of the flag (Ei) with Ei the span of the standard basis vectors

ej with j among the labels of the i dots farthest to the right in the array. Then the

associated standard tableau is

1 3 5 6
2 4
7
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For the generic elements f considered in this paper, there is a simple algorithm for

computing ST (b, f) in terms of the array. The algorithm is as follows. Relabel the

dots in the array with 1, 2, . . . , n in decreasing order from left to right. Each row in the

tableau of f corresponds to a string or a dot not passed through by a string. Now fill

in the boxes of each row with the new labels of the dots in the corresponding string.

The rows with one box get the new labels of the dots in the array that do not lie in a

string (in increasing order).

In the previous example, with all strings sketched in, we get

r

7
r

6

@
@
@r

5
������

r

4
r

3
HHHHHHr

2
r

1

HHHHHH .

One now easily reads off the standard tableau obtained earlier.

The next proposition implies that in the preceding example, the component γ−1
Q (f)

corresponds to the standard tableau given above. To prove this one would need to find

an open dense set of Borel subalgebras b′ in γ−1
Q (f) for which ST (b′, f) is this same

standard tableau. This is how the proof of the proposition proceeds.

Proposition A.1. Given a closed K-orbit B with base point b as in Section 1.1, let

f ∈ n− ∩ p be the generic element constructed in Section 1. Then the standard tableau

associated to γ−1
Q (f) is ST (b, f).

To prove the proposition it suffices to prove Proposition A.5 below. We begin with

two lemmas.

Lemma A.2. Suppose b, b′ ∈ µ−1(f) and b and b′ correspond to flags (Ei) and (E′
i).

Then ST (b, f) = ST (b′, f) if and only if dim(ker(fk|Ei
)) = dim(ker(fk|E′

i
)) for each

i = 1, 2, . . . , n and each k ∈ Z>0.

Proof. It follows from the above discussion that ST (b, f) is determined by the Jordan

forms of f |Ei
, i = 1, 2, . . . , n. Therefore it is determined by dim(ker(fk|Ei

)) for each

i = 1, 2, . . . , n and each k ∈ Z>0. �

Define Wi = spanC{ej : j is a label of a dot in the ith string}, for i = 1, . . . ,m. List

the standard basis vectors not in any Wi as ej1 , . . . , ejr−m
(some r) with j1 ≥ j2 ≥ · · · .

Now set Wm+i = Ceji . It follows that C
n =W1 ⊕ · · · ⊕Wr and each Wi is f -stable.

Consider a closed K-orbit Q = K · b and the generic f in n− ∩ p as in Section 1.1.

Let v−1 , . . . , v
−
m be the nilradicals of the parabolic subalgebras li∩qi−1 of li, as discussed

in Lemma 1.9. Let v−0 = l0 ∩ n−. Let v0, v1, . . . , vm be the nilradicals of the opposite

parabolic subalgebras. Then V := exp(vm) · · · exp(v1) exp(v0) · b is dense and open in

γ−1
Q (f).
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Lemma A.3. Suppose Xl ∈ vl and j is arbitrary. Then exp(Xl)ej = ej+y, where y is

a linear combination of standard basis vectors ea with a < j and a in the same gl-block

as j.

Proof. Consider Xl ∈ vl. Then Xl is a linear combination of root vectors for ǫa − ǫb
with a, b in the same gl-block and a < b. Then Xl(ej) is 0 if j is not in a gl-block and

is a linear combination of ea with a in the same gl-block as j and a < j. The lemma

follows. �

Lemma A.4. For any v ∈ exp(vm) · · · exp(v1) exp(v0), ker(f
k) = ker(fk ◦ v).

Proof. Since v is invertible, ker(fk) and ker(fk ◦ v) have the same dimension. So it is

enough to show that ker(fk) ⊂ ker(fk ◦ v). The following observation will be used. If

a, b are in the same gl-block (for some l) and a < b, then fk(eb) = 0 implies fk(ea) = 0.

To see this it suffices to assume that l = 0. Then a lies in a later string than the string

of b (since strings pass through the rightmost dot in a block). The statement follows

from the construction of f .

Combining this observation with the preceding lemma, along with the fact that the

kernel of fk is spanned by standard basis vectors, we see that for all l,

exp(Xl)ker(f
k) ⊂ ker(fk).

Induction easily gives

exp(Xl) · · · exp(X0)ker(f
k) ⊂ ker(fk), all l.

In particular,

v(ker(fk)) ⊂ ker(fk).

The inclusion follows. �

Proposition A.5. The standard tableaux ST (b′, f) coincide for all Borel subalgebras

b′ in the dense open set V.

Proof. Let b′ = v · b ∈ V. Then the flag defining b′ is (E′
i) = (v(Ei)). We have

ker(fk|E′
i
) = v(ker((fk ◦ v)|Ei

)) = v(ker(fk|Ei
)),

where the second equality is by the preceding lemma. Since v is invertible, we see that

dim(ker(fk|Ei
)) = dim(ker(fk|E′

i
)). Now ST (b′, f) = ST (b, f) follows from Lemma

A.2. �

Remark A.6. By Prop A.1 the standard tableau of any γ−1
Q (f) is easily found. As

observed in Remark 2.17, when Li ⊂ L, for all i = 1, 2, . . . ,m, γ−1
Q (f) is homogeneous

for L (and for Q). In this case, it is in fact homogeneous for a parabolic of G as well. A

component of a Springer fiber is called Richardson if it is homogeneous for a parabolic

subgroup of G. A general criterion for a component C of a Springer fiber for GL(n)

to be Richardson is given in [25] in terms of the standard tableau of C. This criterion,
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along with Prop. A.1, allows us to say exactly which of the components associated

to closed orbits Q are Richardson. It is not difficult to show that the following are

equivalent.

(1) γ−1
Q (f) is Richardson.

(2) The sizes of the blocks in the array (after reordering if necessary) give the

partition dual to the partition of f .

(3) No ‘collapse’ of blocks occurs in the construction of f .

(4) Li ⊂ L, for all i = 1, 1, . . . ,m.

(5) γ−1
Q (f) = L · b (= Q · b).

It follows that many components of the form γ−1
Q (f) are not Richardson. The simplest

such example is for (GL(5), GL(4) ×GL(1)) and λ = (5, 4, 2, 1 | 3).

As briefly discussed in the introduction, given a Young diagram T there is a closed

K-orbit Q in B and a generic f having Young diagram T. In fact there may be

several such Q and f (with perhaps different K, i.e., different p, q). Let OT be the

nilpotent orbit corresponding to T. Fix a closed K-orbit Q with corresponding generic

f , and a closed K ′-orbit Q′ with corresponding generic f ′. Suppose that f and f ′ are

both contained in OT. Then there exists g ∈ G so that f = g · f ′. It follows that

the Springer fiber µ−1(f) is the g-translate of µ−1(f ′). Therefore the components of

µ−1(f) are the g-translates of the components of µ−1(f ′). As the parametrization is

given in terms of the linear algebra, it is clear that the standard tableau of a component

is the same as that of its g-translate. We may conclude that γ−1
Q (f) and γ−1

Q′ (f ′) may

be viewed as components in a single Springer fiber, and the standard tableaux tell us

which components.

The following example illustrates the above discussion. We see how a number of

components of a single Springer fiber are of the form γ−1
Q (f), and therefore have the

structure described in this article.

Consider the Young diagram

T = .

Let OT be the corresponding nilpotent orbit in g. We write down all γ−1
Q (f) that occur

as components in a Springer fiber for an element of OT. There are several pairs (G,K)

to consider.

When (p, q) = (1, 7) or (7, 1), any array has just one dot in one of the two rows.

Therefore no string has length 4, and a generic f cannot lie in OT. A similar argument

shows the same holds when (p, q) = (2, 6) or (6, 2).
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Now consider (p, q) = (3, 5). There are four closed orbits Q with generic elements

f ∈ OT. We list below these orbits Q (by giving the corresponding λ ∈ h∗), the

standard tableau for γ−1
Q (f), and the signed tableau corresponding to K · f . (The

orbits of K on Nθ are parametrized by signed tableaux. See [2] for a discussion of these

signed tableaux, and how the tableau corresponding to a generic f is obtained from

the array.)

λ = (8, 4, 3|7, 6, 5, 2, 1)
1 3 5 8
2 4 6
7

- + - +
- + -
-

λ = (8, 5, 4|7, 6, 3, 2, 1)
1 4 6 8
2 5 7
3

- + - +
- + -
-

λ = (5, 4, 1|8, 7, 6, 3, 2)
1 2 4 6
3 5 7
8

+ - + -
- + -
-

λ = (6, 5, 1|8, 7, 4, 3, 2)
1 2 5 7
3 6 8
4

+ - + -
- + -
-

Now consider (p, q) = (4, 4); there are again four cases.

λ = (8, 5, 4, 3|7, 6, 2, 1)
1 3 6 8
2 4 7
5

- + - +
- + -
+

λ = (8, 7, 3, 2|6, 5, 4, 1)
1 2 4 7
3 5 8
6

- + - +
+ - +
-

λ = (7, 6, 2, 1|8, 5, 4, 3)
1 3 6 8
2 4 7
5

+ - + -
+ - +
-

λ = (6, 5, 4, 1|8, 7, 3, 2)
1 2 4 7
3 5 8
6

+ - + -
- + -
+

(Note that the last two come from the first two by interchanging the rows of the array.)

For (p, q) = (5, 3) there are four cases, each obtained from the (3, 5) case by inter-

changing the rows of the array. We get the following.
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λ = (7, 6, 5, 2, 1|8, 4, 3)
1 3 5 8
2 4 6
7

+ - + -
+ - +
+

λ = (7, 6, 3, 2, 1|8, 5, 4)
1 4 6 8
2 5 7
3

+ - + -
+ - +
+

λ = (8, 7, 6, 3, 2|5, 4, 1)
1 2 4 6
3 5 7
8

- + - +
+ - +
+

λ = (8, 7, 4, 3, 2|6, 5, 1)
1 2 5 7
3 6 8
4

- + - +
+ - +
+

In summary, there are 12 closed orbits Q with generic element in OT. The 12 orbits

pair off (under the symmetry of interchanging the rows of the arrays) into pairs giving

the same components, so there are six components of the type γ−1
Q (f). A further

observation is that for (p, q) = (3, 5) (or (5, 3)), of the four orbits Q, two orbits K · f ⊂
Nθ occur and all four components are different. This is not the case for (p, q) = (4, 4).

In the example above, where the Springer fiber corresponds to the Jordan form

(4, 3, 1), all the components of the form γ−1
Q (f) turn out to be homogeneous (in fact,

Richardson), but for other Jordan forms, this need not be the case (cf. Remark A.6).

However, the situation described in the example, where a number of components of a

single Springer fiber are of the form γ−1
Q (f), occurs for Springer fibers corresponding to

other Jordan forms, as follows. Let us fix G = GL(n) and consider all pairs (G,Kp,q)

with Kp,q = GL(p) × GL(q), p + q = n. Fix a Young diagram T and corresponding

nilpotent orbit OT in g. The key observation is the following.

Lemma A.7. Suppose Q = Kp,q ·b is a closed Kp,q-orbit and Q′ = Kp′,q′ ·b
′ is a closed

Kp′,q′-orbit, and f and f ′ are the corresponding generic elements. Then ST (b, f) =

ST (b′, f ′) if and only if either Q = Q′, or (p, q) = (q′, p′) and the array for Q is

obtained from the array for Q′ by switching the two rows.

Proof. This is clear from our description of ST (b, f), since there are two ways to re-

construct an array from a standard tableau (one with the last dot in the upper row

and one with it in the lower row). �

The lemma implies the following proposition.

Proposition A.8. Let (G,K) be one of our pairs (GL(n), GL(p) ×GL(q)). For each

Young diagram T, the components of the Springer fiber for OT of the form γ−1
Q (f),
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with Q a closed K-orbit and f generic, are distinct when p 6= q. When p = q there are

an even number of such components, and each occurs for exactly two Q.
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[17] A. Grothendieck, Séminaire de géométrie algébrique. Revêtements étales et groupe fondemental,

Lecture Notes in Math., vol. 224, Springer-Verlag, Heidelberg, 1971.
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