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Abstract. We show how to formulate the indefinite harmonic theory of Rawns-
ley, Schmid and Wolf in the setting of harmonic spinors. A theorem on the
existence of square integrable harmonic spinors on finite rank bundles over a
semisimple symmetric space is proved.

1. Introduction

An important problem in representation theory is to find explicit realizations

of irreducible unitary representations. In this article we discuss a method, known

as indefinite harmonic theory, introduced by Rawnsley, Schmid and Wolf in [16], to

associate irreducible unitary representations to elliptic coadjoint orbits of semisimple

Lie groups. The significance of the method is that it is natural and it makes sense for

an arbitrary elliptic orbit; however there are tremendous technical difficulties and it

has not been carried out in general. We will point out some of these difficulties and

some of the successes of the method. Then we will show how indefinite harmonic

theory can be extended to the the setting of harmonic spinors.

The method given in [16] may very roughly be described as follows. One first

observes that if G/L = G · λ is an elliptic coadjoint orbit, then G/L has a G-

invariant complex structure. Under an integrality condition, λ exponentiates to a

character of L and defines a holomorphic homogeneous line bundle Lλ → G/L.

Geometric quantization (i.e., the orbit method) would suggest that one look for

unitary representations in spaces of L2 holomorphic sections of Lλ. There are two

immediate problems. First, the space of holomorphic sections is often zero, however

irreducible representations often occur in higher degree Dolbeault cohomology. The

second problem is that there is no good (G-invariant) notion of a square integrable

differential form, since G/L typically carries an indefinite metric. An encouraging

fact is that under a negativity condition on λ, the Dolbeault cohomology space

vanishes except in one degree s, and Hs(G/L,Lλ) is an irreducible representation.

This negativity condition will hold for some choice of complex structure on G/L,
1
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which we now assume has been made. The quantization procedure of [16] is the

following.

(1) Consider the space of strongly harmonic forms of type (0, s):

H(0,s)(G/L,Lλ) = {ω : ∂ω = 0 and ∂
∗
ω = 0},

where ∂
∗
is the formal adjoint of ∂ with respect the invariant metric on G/L. One

needs to show that this harmonic space is nonzero.

(2) Define and auxiliary positive definite metric on G/L (which typically must

be noninvariant). This metric may be used to define a notion of a square integrable

differential form. It must be shown that the space H
(0,s)
2 (G/L,Lλ) of L2 (strongly)

harmonic forms is a nonzero G-invariant Hilbert space.

(3) The invariant hermitian form defined by integration of forms is well defined on

H
(0,s)
2 (G/L,Lλ) (at least for a reasonable choice of auxiliary metric). Now the goal is

to show that the image of H
(0,s)
2 (G/L,Lλ) in Dolbeault cohomology is infinitesimally

equivalent to Hs(G/L,Lλ), and the invariant form is well-defined on this image in

cohomology and is positive definite there.

In Section 2 we give some examples and discuss some of the what is known

about when the procedure can be carried out. In the remainder of the paper we

show how indefinite harmonic theory can be formulated for spinors on a reductive

homogeneous space G/H. Section 3 reviews a construction of a formula for harmonic

spinors ([12]). In Section 4 we show how to construct an auxiliary metric and we

prove the following theorem.

Theorem. If G/H is a semisimple symmetric space and E os a finite dimensional

H-representation (with highest weight ‘sufficiently regular’), then there is a nonzero

space of L2 harmonic spinors on the homogeneous vector bundle for E.

It follows that, if E carries an H-invariant hermitian form, then this L2- space of

harmonic spinors carries a G-invariant hermitian form.

2. Comments on Indefinite harmonic theory

The strategy for constructing irreducible unitary representations that was briefly

out lined in the introduction has had some success. We now discuss the construction

in more detail and indicate the extent to which it is now known to produce irreducible

unitary representations.
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To begin, we need to better understand which representations should be attached

to elliptic coadjoint orbits. Let G be a connected linear semisimple group and θ a

Cartan involution of G. We let K be the fixed point group of θ, a maximal compact

subgroup. Write the corresponding Cartan decomposition of the Lie algebra of G

as

g = k+ s.

Choose a Cartan subalgebra t of k and extend it to a Cartan subalgebra h = t+a of g

by choosing an appropriate a ⊂ s. Using the Killing form we consider t∗ ⊂ h∗ ⊂ g∗.

Then an element λ ∈ t∗ is an elliptic element, and the orbit G · λ ⊂ g∗ is an elliptic

coadjoint orbit. We may identify this orbit with the homogeneous space G/L, where

L is the centralizer in G of λ. On the other hand, λ defines a θ-stable parabolic

subalgebra of gC as follows. Let ∆ = ∆(h, g) be the roots of h in g. Then the

parabolic subalgebra associated to λ is

q = lC + u−,

where lC is spanned by hC and all root spaces g
(α)
C

with 〈λ, α〉 = 0, and u− is spanned

by all root spaces g
(−α)
C

with 〈λ, α〉 > 0. Let Q be the normalizer of q in GC. One

sees that L = Q ∩ G, so G/L embeds into the (generalized) flag variety GC/Q

as an open subset. In particular, G/L has a G-invariant complex structure; the

holomorphic tangent space at the identity coset is naturally identified with g/q ≃ u

(where u is spanned by the the root spaces g
(α)
C

with 〈λ, α〉 > 0). Observe that each

parabolic subalgebra conjugate to q and containing lC gives a complex structure on

G/L; these are in fact all different. In the language of geometric quantization, these

parabolics are the invariant (complex) polarizations (at λ). Typically, in geometric

quantization, one chooses a particular polarization and this is what we will do here.

To attach a representation to G · λ, we assume that λ lifts to a character χλ of

L. There is then a holomorphic homogeneous line bundle associated to χλ. The

natural thing is to attach cohomology representations Hp(G/L,O(Lλ)) to the orbit

G · λ. This is, however, a long story as the cohomology spaces are difficult to study

directly. For example, it is not at all clear that they have a topology for which the

natural action (by left translation) is a continuous representation. In fact it was such

analytic difficulties that motivated Zuckerman ([25]) to define an algebraic analogue,

which is now known as cohomological induction ([10]). Wong ([24]), generalizing and

extending [18], confirmed that the cohomologically induced modules are in fact the

proper algebraic analogues of the cohomology representations. Viewing the sheaf

cohomology spaces as Dolbeault cohomology, he proved that (1) the Hp(G/L,Lλ)
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are continuous Fréchet representations (by showing that the image of ∂ is closed in

the C∞ topology on forms), (2) the Harish-Chandra module of Hp(G/L,Lλ) (i.e.,

the (g,K)-module of K-finite vectors) is a cohomologically induced module, and (3)

Hp(G/L,Lλ) is a maximal globalization of its Harish-Chandra module in the sense

of [17].

Using these fundamental facts of Wong about the cohomology representations,

along with results about the cohomologically induced representations, one may con-

clude that under the negativity condition 〈λ + ρ, β〉 < 0, for β a root in u (and ρ

equal to half the sum of the positive roots for a positive system containing the roots

∆(u) of u), Hp(G/L,Lλ) = {0}, p 6= s := dimC(K/K ∩L), and Hs(G/L,Lλ) is irre-

ducible ([22]) and unitarizable ([21]). It follows from Harish-Chandra ([7, Theorem

9]) that there is a unitary representation infinitesimally equivalent to Hs(G/L,Lλ).

As Hs(G/L,Lλ) is a maximal globalization, this unitary representation embeds into

Hs(G/L,Lλ) (as a proper subrepresentation, unlessG/L is compact). Thus, the goal

is to construct this unitary representation in a explicit way, perhaps as a subspace

of Hs(G/L,Lλ). Let us give a couple of examples indicating how this might go.

Suppose that G is compact. Then (under a negativity condition on λ) the Borel-

Weil Theorem tells us that Hs(G/L,Lλ) is an irreducible finite dimensional repre-

sentation. The homogeneous space G/L has a G-invariant positive definite metric.

This gives rise to an elliptic G-invariant Laplace-Beltrami operator � = ∂∂
∗
+ ∂

∗
∂.

The Hodge Theorem says that each cohomology class is represented by a unique har-

monic form. Letting A(0,s)(G/L,Lλ) be the space of smooth Lλ-valued differential

forms of type (0, s), we define

H(0,s)(G/L,Lλ) := {ω ∈ A(0,s)(G/L,Lλ) : �ω = 0},

the space of Harmonic forms. Since each each harmonic form is L2 (as G/L is

compact), we conclude that H(0,s)(G/L,Lλ), with the L2-inner product, is a unitary

representation equivalent to Hs(G/L,Lλ).

IfG is a simple group so that G/K is of hermitian type, then G/K has an invariant

complex structure and is an elliptic orbit. In this case s = 0 and H0(G/K,Lλ) is the

maximal globalization of its Harish-Chandra module. In [8], Harish-Chandra proved

that (under a negativity condition on λ) the space of L2 sections is an irreducible

unitary representation infinitesimally equivalent to H0(G/K,Lλ). Note that G/K

has an invariant positive metric and for an L2 section η, �η = 0 if and only if

∂η = 0. Therefore, the space of L2 harmonic sections is the L2-harmonic space.



INDEFINITE HARMONIC THEORY 5

Another example is that of the regular elliptic orbits. Let us assume that G and

K have the same complex rank. Therefore, t is a Cartan subalgebra of g; we let T

be the corresponding cartan subgroup of G. Again, G/T has a G-invariant positive

metric and there is a G-invariant elliptic Laplace-Beltrami operator � = ∂∂
∗
+∂

∗
∂.

Schmid proved ([19], [20]) that the L2-harmonic space (under a negativity condition

on λ) is a unitary representation infinitesimally equivalent to Hs(G/T,Lλ). He

also proved that these unitary representations are in the discrete series of G, and

all discrete series representations occur this way. If L is compact then G/L has a

positive invariant metric, and the corresponding L2-harmonic spaces are realizations

of discrete series representations in much the same way as for G/T . We point out

that in this case the invariant metric is positive definite, and serves as the auxiliary

metric.

For regular semisimple orbits, Wolf has given geometric realizations of the corre-

sponding representations ([23]). This includes a class of groups with relative discrete

series.

We now return to an arbitrary elliptic orbit G/L. Assume that L is now non-

compact. Then G/L typically does not have a G-invariant metric. (For example,

if G is simple and L ( G then G/L has no invariant positive metric.) If we wish

to construct a unitary realization of Hs(G/L,Lλ) in analogy with the previous ex-

amples, the initial obstacle is that there is no natural G-invariant notion of an L2

form. However, G/L has a G-invariant indefinite hermitian form. For example, the

Killing form restricted to u+ u− is nondegenerate and L-invariant, so may be used

to define a G-invariant hermitian form 〈 , 〉 on G/L. This form may be used to

define ∂
∗
and a harmonic space

H(0,s)(G/L,Lλ) := {ω ∈ A(0,s)(G/L,Lλ) : ∂ω = 0 and ∂
∗
ω = 0}.

The differential forms in this space are referred to as strongly harmonic forms. The

invariant hermitian form may be used to define a G-invariant hermitian form

〈ω1, ω2〉inv :=

∫
G/L

〈ω1(g), ω2(g)〉 dg, (2.1)

provided the integral converges. The strategy of [16] is to define an auxiliary posi-

tive metric on G/L, which is necessarily noninvariant This metric should be L∩K-

invariant and should bound the invariant metric in an appropriate sense. A reason-

able choice is

〈X,Y 〉pos := −〈X, θ(Y )〉.
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This metric is used to define the notion of an L2-form as follows. Use the Mostow

decomposition ([13]):

G = K exp(l⊥ ∩ s) exp(l ∩ s),

g = k(g) exp(X(g)) exp(Y (g)).
(2.2)

Then 〈ω1(k(g) exp(X(g)), ω2(k(g) exp(X(g))〉pos is a well-defined function on G/L

and it makes sense to ask when

〈ω1, ω2〉pos =

∫
G/L

〈ω1(k(g) exp(X(g)), ω2(k(g) exp(X(g))〉pos dg

is finite. Define

H
(0,s)
2 (G/L,Lλ) := {ω ∈ H(0,s)(G/L,Lλ) : 〈ω, ω〉 < ∞}.

With a little more care one may consider L2 solutions to ∂ω = 0 and ∂
∗
ω = 0, and

see that H
(0,s)
2 (G/L,Lλ) is a Hilbert space. One may also see that H

(0,s)
2 (G/L,Lλ)

is invariant under left translation by G ([15]) and defines a continuous (but not

unitary) representation of G. In addition, the invariant hermitian form (2.1) is well-

defined on H
(0,s)
2 (G/L,Lλ). Formally, one has 〈ω, ∂η〉inv = 〈∂

∗
ω, η〉inv = 0, for ω

strongly harmonic, so one expects that the nullspace of 〈 , 〉inv contains the exact

forms. Therefore, if we write q : A(0,s)(G/L,Lλ) → Hs(G/L,Lλ) for the natural

quotient map, then one expects that 〈 , 〉inv is defined on H
s
2 := q(H

(0,s)
2 (G/L,Lλ)).

Then two things must be shown. First, it needs to be shown that H
s
2 is infinites-

imally equivalent to Hs(G/L,Lλ). It is not clear that either H(0,s)(G/L,Lλ) or

H
(0,s)
2 (G/L,Lλ) is nonzero. Then one must show that the invariant form is positive

definite on H
s
2.

The first success in this indefinite metric setting is that of Rawnsley, Schmid and

Wolf ([16]). They consider the following situation. Suppose G is simple and G/K is

a symmetric space of hermitian type and there are G-invariant complex structures

on G/L and G/K ∩ L so that the natural double fibration

G/K ∩ L

ւ ց

G/K G/L

is holomorphic. Writing the K-decomposition of s as s = s+ + s−, the existence of

such a holomorphic double fibration is equivalent to u ∩ s being contained in either

s+ or s−. Under this condition the Harish-Chandra module of Hs(G/L,Lλ) is a

(unitarizable) highest weight module. If, in addition, G/L is a semisimple symmetric

space, then a unitary representation is constructed by the procedure outlined in the
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preceding paragraph. In other words, H
s
2 (with the invariant hermitian form) is an

irreducible unitary representation infinitesimally equivalent to Hs(G/L,Lλ). The

condition that G/L is semisimple symmetric is relaxed somewhat.

For a general elliptic orbit, an approach to studying H
s
2 has been used with some

success in [4]. The tool is an intertwining operator

S : C∞(G/P,W) → A(0,s)(G/L,Lλ),

where C∞(G/P,W) is a principal series representation having a unique Langlands

quotient (infinitesimally equivalent to Hs(G/L,Lλ)). The image of S consists of

strongly harmonic forms and q(Im(S)) is nonzero ([3], [2], [5]). In fact, Im(S)

contains all K-finite vectors in Hs(G/L,Lλ); each K-finite cohomology class is rep-

resented by a strongly harmonic form. In [4] it is shown that if G/L is a semisimple

symmetric space, then for each K-finite ϕ ∈ C∞(G/P,W), Sϕ is square integrable.

We may conclude that H
s
2 is infinitesimally equivalent to Hs(G/L,Lλ) and carries

a G-invariant form 〈 , 〉inv. By [21, Thm. 1.3], this form must be positive defi-

nite or zero. A condition in [4] is given for the form to be nonzero. These results

extend the the scope of indefinite harmonic theory in the construction of unitary

representations.

3. Harmonic Spinors

Suppose G/H is a homogeneous space so that

(a) H is connected reductive subgroup of G,

(b) the restriction of the Killing form of g to h is nondegenerate, and

(c) rank(gC) = rank(hC).

(3.1)

Let q denote the orthogonal complement of h with respect to the Killing form.

Then the Killing form is nondegenerate on q and there is an orthogonal direct sum

decomposition

g = h⊕ q.

The Clifford algebra of q is denoted by Cℓ(q) and Sq denotes the corresponding spin

representation of H.

Kostant ([11]) has defined the cubic Dirac operator in this setting. It is an

element of {U(g)⊗Cℓ(q)}h. This determines geometric Dirac operators on sections

of homogeneous vector bundles on G/H. If E is a finite dimensional representation
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of H, then there is a homogeneous vector bundle Sq ⊗ E → G/H. The geometric

Dirac operator is a first order differential operator on sections:

DG/H,E : C∞(G/H,Sq ⊗ E) → C∞(G/H,Sq ⊗ E).

A formula may be found in [12, Section 2]. Note that G acts on the space of sections

by left translation. It is easily seen that DG/H,E is a G-equivariant operator. We

refer to the kernel of DG/H,E as the space of harmonic spinors.

An important example occurs for riemannian symmetric spaces. In this case

H = K, a maximal compact subgroup of G. Note that the Killing form is therefore

positive definite on q and E has a K-invariant positive definite hermitian form.

This gives a K-invariant inner product 〈 , 〉 on Sq⊗E. It follows that DG/K,E is an

elliptic operator. An L2-harmonic space H2(G/K,E) may be defined as the space

of harmonic spinors F so that

||F ||22 :=

∫
G/K

〈F (g), F (g)〉 dg < ∞ (3.2)

This defines a Hilbert space and the inner product is G-invariant; H2(G/K,E) is

a unitary representation. It is shown in [14] and [1] that (under some conditions

on E) this L2-harmonic space is an irreducible representation and is in the discrete

series of G, and every discrete series representation of G occurs this way.

We now return to the general setting of (3.1). It is often the case that a finite

dimensional representation has an invariant hermitian form. We assume, for now,

that this is the case. Typically, this form will have indefinite signature, unless H is

compact. As Sq has an H-invariant hermitian form, it follows that Sq ⊗ E has an

H-invariant form. Denote this form by 〈 , 〉 and define

〈F1, F2〉inv :=

∫
G/H

〈F1(g), F2(g)〉 dg.

The goal of indefinite harmonic theory for spinors is to identify a space of harmonic

spinors on which 〈 , 〉inv is well-defined (i.e., the integral converges), then understand

the invariant form. For example, one might find a subspace on which the form is

positive definite, thus constructing a unitary representation.

Our main tool for understanding H2(G/H,E) is an analogue of the intertwining

map (3.3) constructed in [12]. This is an integral transform

P : C∞(G/P,W) → H(G/H,E), (3.3)
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whereG/P is a real flag manifold andW is the homogenous vector bundle associated

to an irreducible representation W of P . For our purposes here we do not need the

full details of the construction of P, but we will need several properties. We give a

quick outline of the construction and refer to [12, §3] for more detail. Given G/H

we may choose a Cartan involution θ of G that preserves H. As in §2, we write the

Cartan decomposition of g as

g = k⊕ s.

Let a be maximal abelian in h ∩ s. Let MA be the centralizer of a in G and choose

a Cartan subalgebra tM in mC. Then aC + tM is a Cartan subalgebra in both gC

and hC. Various systems of positive roots are chosen as in [12, §3]. We denote by

ρg half the sum of the positive a-roots in g, and similarly for ρh. The positive roots

of a in g determine a real parabolic subgroup P = MAN .

Lemma 3.4. ([12, Lemma 3.1]) The following hold.

(a) P ∩H is a minimal parabolic subgroup of H, in particular M ∩H is compact.

(b) M and M ∩K have the complex ranks, so M has a nonempty discrete series.

Let µ ∈ (aC + tM )∗ be the highest weight of E. Then the representation W of

P is as follows. The action of N is trivial and A acts by the character eν , with

ν = µ|a + ρh + ρg.

As an M -representation, W is a discrete series representation. The precise pa-

rameters are not needed here, however, it is important that W be realized as an

L2-space of harmonic spinors. That this may be done is essentially the example

given earlier in this section. (That construction in fact holds for the possibly dis-

connected reductive group M and the maximal compact subgroup M ∩K replaced

by the compact subgroup M ∩ H.) Therefore, we take W to be an L2-harmonic

space

W := H2(M/M ∩H,E) ⊂ C∞(M/M ∩H,Sq∩m ⊗ U). (3.5)

Here Sm∩q is the spin representation of M ∩ H for M/M ∩ H and U is a finite

dimensional representation of M ∩ H. The representation U is determined by a

highest weight and a character (due to the disconnectedness of M) as specified in

[12, §3].

One easily sees that the representation Eµ+ρ(q)−2ρ(m∩k∩q) of highest weight µ +

ρ(q)− 2ρ(m ∩ k ∩ q) occurs in Sq ⊗ E. The h ∩ n-invariants

V0 := (Eµ+ρ(q)−2ρ(m∩k∩q))
h∩n
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plays an important role. One can see that V0 ⊂ Sm∩q ⊗ U and we may define the

projection

π0 : Sm∩q ⊗ U → V0.

The intertwining map (3.3) has the formula

Pϕ(g) =

∫
H∩K

ℓ · πo(ϕ(gℓ)(e)) dℓ.

Note that ϕ(gℓ) ∈ W ⊂ C∞(M/M ∩H,Sq∩m∩U), so when evaluated at the identity,

gives an element of Sq∩m ∩ U . Under a condition that µ is sufficiently regular ([12,

Eqn. (4.3)]), the following holds ([12, Thm. 4.6]).

Theorem 3.6. P is a nonzero G-intertwining map into H(G/H,E).

4. The L2-theory

To set up indefinite harmonic theory for spinors, we need to define an L2-space

of harmonic spinors. We begin by considering hermitian forms on Sq ⊗ E. Here E

is the finite dimensional representation of H having highest weight µ.

Lemma 4.1. Any finite dimensional representation of H has a positive definite

hermitian form 〈 , 〉pos with the property that

〈h · v,w〉pos = 〈v, θ(h−1) · w〉pos,

for h ∈ H.

Proof. There is a positive definite form invariant under the compact real form hu =

h ∩ k+ i(h ∩ s). Write Z = X + Y ∈ h ∩ k+ h ∩ s. Then

〈Zv,w〉pos = 〈(X − i(iY ))v,w〉pos

= 〈Xv,w〉pos − i〈iY v,w〉pos

= −〈v,Xw〉pos − i(−i〈v, iY w〉pos)

= −〈v,Xw〉pos + 〈v,−i(iY )w〉pos

= −〈v, (X − Y )w〉pos

= −〈v, θ(Z)w〉pos. �

We now assume that E has a nondegenerate H-invariant hermitian form. A

necessary and sufficient condition for the existence of such a form is contained in [6,

Prop. 2.3]. We note that one situation where such a form exists is when rank(H) =
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rank(H ∩ K). It follows that Sq ⊗ E has a nondegenerate H-invariant hermitian

form, which we denote by 〈 , 〉. Now fix a positive definite form on Sq ⊗ E as in

Lemma 4.1 and let || · ||pos denote the corresponding norm.

Lemma 4.2. If E has an H-invariant hermitian form, then there is a constant C

so that

|〈v,w〉| ≤ C||v||pos||w||pos,

for all v ∈ Sq ⊗ E.

Proof. Sq⊗E may be decomposed as V+⊕V−, an orthogonal (with respect to 〈 , 〉)

direct sum with 〈 , 〉 positive definite on V+ and negative definite on V−. Writing

v = v+ + v− and w = w+ + w−,

〈v,w〉′pos = 〈v+, w+〉 − 〈v−, w−〉

is a positive definite hermitian form on Sq⊗E. Since all norms on a finite dimensional

vector space are equivalent, there is a constant C so that

|〈v,w〉| ≤ |〈v+, w+〉|+ |〈v−, w−〉|

= |〈v+, w+〉
′

pos|+ |〈v−, w−〉
′

pos|

≤ ||v+||
′

pos||w+||
′

pos + ||v−||
′

pos||w−||
′

pos

≤ 2||v||′pos||w||
′

pos

≤ C||v||pos||w||pos.

�

To define a Hilbert space of harmonic spinors we need to integrate over G/H.

However ||F (g)||pos is not a function on G/H. We use the Mostow decomposition

(2.2). It is easy to check that

||F (k(g) exp(X(g))||2pos

is a function on G/H. (Note that || · ||pos is K ∩H-invariant by Lemma 4.1.)

Definition 4.3. Let H2(G/H,E) be the space of harmonic spinors F so that

||F ||2pos :=

∫
G/H

||F (k(g) exp(X(g))||2pos dg

is finite.
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It follows from Lemma 4.2 that

〈F1, F2〉inv :=

∫
G/H

〈F1(g), F2(g)〉 dg

is finite for all F1, F2 ∈ H2(G/H,E), so defines a G-invariant hermitian form on

H2(G/H,E).

Our goal is to show that H2(G/H,E) is nonzero when G/H is a semisimple

symmetric space. This will be accomplished by using the formula of (3.3). Therefore

we will not only show that H2(G/H,E) 6= {0}, but we will have an integral formula

for L2 harmonic spinors.

We begin by deriving an estimate for ||Pϕ(g)||pos in general then we prove con-

vergence when G/H is semisimple symmetric.

Some standard decompositions and integration formulas will be used. In partic-

ular we consider the Iwasawa decompositions with respect to P = MAN and the

opposite parabolic P = MAN . We write

g = κ(g)m(g)n(g)eH(g) ∈ K exp(m ∩ s)NA

g = κ(g)m(g)n(g)eH(g) ∈ K exp(m ∩ s)NA.

A formula relating these two decompositions is

H(g) = H(g) +H(m(g)n(g)). (4.4)

For h ∈ H,m(h) = e, as P ∩H is a minimal parabolic subgroup of H. Therefore,

we have

h = κ(h)n(h)eH(h).

We will use the following integration formulas:∫
K∩H

F (k) dk =

∫
N∩H

F (κ(nH))e−2ρh(H(nH )) dnH (4.5)

and, for right A-invariant functions F ,∫
H/A

F (h) dh =

∫
K∩H

∫
N∩H

F (knH) dnHdk and (4.6)

∫
G/A

F (g) dg =

∫
K

∫
M

∫
N
F (kmn) dndmdk.

Lemma 4.7. For ϕ ∈ C∞(G/P,W) and g ∈ G,

||Pϕ(g)||2
pos

=

∫
K∩H

∫
N∩H

〈π0(ϕ(gℓ)(e)), π0(ϕ(gℓnH)(e))〉pos dnHdℓ. (4.8)
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Proof. Since ϕ ∈ C∞(G/P,W),

π0(ϕ(gℓnH)(e)) = π0(exp(−H(nH)) · ϕ(gℓκ(nH))(e))

= e−2ρh(H(nH )) exp(−H(nH)) · π0(ϕ(gℓκ(nH))(e))),

by [12, Lem. 4.4]. Therefore, since the image of π0 consists of N ∩H-invariants,

nH · π0(ϕ(gℓnH)(e)) = e−2ρh(H(nH ))κ(nH) · π0(ϕ(gℓκ(nH))(e)). (4.9)

Now

||Pϕ(g)||2pos

=

∫
K∩H

∫
K∩H

〈ℓ · π0(ϕ(gℓ)(e)), ℓ
′ · π0(ϕ(gℓ

′)(e))〉pos dℓ
′dℓ

(by the definition of P)

=

∫
K∩H

∫
K∩H

〈π0(ϕ(gℓ)(e)), ℓ
−1ℓ′ · π0(ϕ(gℓ

′)(e))〉pos dℓ
′dℓ

(by the K ∩H-invariance of 〈 , 〉pos)

=

∫
K∩H

∫
K∩H

〈π0(ϕ(gℓ)(e)), ℓ
′ · π0(ϕ(gℓℓ

′)(e))〉pos dℓ
′dℓ

=

∫
K∩H

∫
N∩H

〈π0(ϕ(gℓ)(e)), κ(nH) · π0(ϕ(gℓκ(nH))(e))〉pose
−2ρh(H(nH )) dnHdℓ

(by formula (4.5))

=

∫
K∩H

∫
N∩H

〈π0(ϕ(gℓ)(e)), nH · π0(ϕ(gℓnH))(e))〉pos dnHdℓ

(by formula (4.9))

=

∫
K∩H

∫
N∩H

〈θ(n−1
H ) · π0(ϕ(gℓ)(e)), π0(ϕ(gℓnH))(e))〉pos dnHdℓ

(by Lemma 4.1)

=

∫
K∩H

∫
N∩H

〈π0(ϕ(gℓ)(e)), π0(ϕ(gℓnH))(e))〉pos dnHdℓ

(since V0 is fixed by N ∩H and θ(nH) ∈ N ∩H). �

We now assume that ϕ is K-finite. Therefore, there are a finite number of ϕi ∈

C∞(G/P,W) so that spanC{ϕ1, . . . , ϕq} is K-stable and contains ϕ. It follows that
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for each k ∈ K,

k−1 · ϕ =

q∑
i=1

Ci(k)ϕi,

where each Ci is a continuous function on K. It follows that

ϕ(k) =

q∑
i=1

Ci(k)ϕi(e).

We may also choose an orthonormal basis {vl} of V0 (with respect to 〈 , 〉pos) so

that for any u ∈ Sm∩q ⊗ U

π0(u) =
∑
l

〈u, vl〉vl.

It follows that

〈π0(ϕ(gℓ)(e)), π0(ϕ(gℓnH)(e))〉pos

=
∑
l

〈ϕ(gℓ)(e), vl〉pos〈ϕ(gℓnH)(e), vl〉pos

=
∑
l

e−ν(H(gℓ)+H(gℓnH)〈ϕ(κ(gℓ))(m(gℓ)), vl〉pos〈ϕ(κ(gℓnH))(m(gℓnH)), vl〉pos

=
∑
i,j,l

e−ν(H(gℓ)+H(gℓnH))Ci(κ(gℓ))Cj(κ(gℓnH))

〈ϕi(e)(m(gℓ)), vl〉pos〈ϕi(e)(m(gℓnH)), vl〉pos.

Lemma 4.10. When ϕ is K-finite, the integrand in (4.8) is bounded by a constant

multiple of
∑
i,j,l

e−ν(H(gℓ)+H(gℓnH ))||ϕi(e)(m(gℓ))||pos ||ϕi(e)(m(gℓnH))||pos.

Proof. This is a consequence of the preceding equalities, the fact that the Ci are

continuous (hence bounded) and

|〈ϕ(e)(m), vl〉pos| ≤ ||ϕ(e)(m)||pos ||vl||pos = ||ϕi(e)(m)||pos.

�

At this point we assume that G/H is a semisimple symmetric space. Suppose σ

is the involution having H as the fixed point group. This assumption gives us some

additional identities involving the Iwasawa decompositions.

Lemma 4.11. If σθ(g) = g, then H(g) = −H(g) and m(g) = m(g).
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Proof. Recall that a ⊂ h ∩ s, so σθ acts by −1 on a. Therefore, σθ(N) = N and σθ

preservers M . In fact, since m ∩ s = m ∩ q ∩ s (by Lemma 3.4(a)), σθ acts by the

identity on m ∩ s. Therefore,

g = σθ(g) = σθ(κ(g))σθ(m(g))σθ(n(g))eσθ(H(g))

= σ(κ(g))m(g)σθ(n(g))e−H(g)

∈ KMNA.

The statement of the lemma now follows. �

Several useful identities follow from the lemma. Suppose ℓ ∈ K ∩ H. Since

X(g) ∈ q ∩ s, σθ(exp(X(g))ℓ) = exp(X(g))ℓ. Therefore,

H(exp(X(g))ℓ) = −H(exp(X(g))ℓ)

m(exp(X(g))ℓ) = m(exp(X(g))ℓ) = m(exp(X(g)ℓnH),

for nH ∈ N ∩H. Therefore, we have

H(exp(X(g))ℓ) +H(exp(X(g))ℓnH)

= H exp(X(g))ℓ) +H(exp(X(g))ℓnH) +H(m(exp(X(g))ℓnH)n(exp(X(g))ℓnH))

= H exp(X(g))ℓ) +H(exp(X(g))ℓ) +H(m(exp(X(g))ℓnH)n(exp(X(g))ℓnH))

= H(m(exp(X(g))ℓnH)n(exp(X(g))ℓnH)).

To prove that ||Pϕ(g)||pos is finite, it suffices (by Lemma 4.10), to show that
∫
G/H

∫
K∩H

∫
N∩H

e−ν(H(m(exp(X(g))ℓnH)n(exp(X(g))ℓnH )))

||ϕi(e)(m(exp(X(g))ℓnH))||pos||ϕj(e)(m(exp(X(g))ℓnH))||posdnHdℓdg

(4.12)

is finite. This expression equals
∫
G/H

∫
H/A

e−ν(H(m(exp(X(g))h)n(exp(X(g))h)))

||ϕi(e)(m(exp(X(g))h))||pos ||ϕj(e)(m(exp(X(g))h))||pos dhdg

=

∫
G/A

e−ν(H(m(g)n(g)))||ϕi(e)(m(g))||pos||ϕj(e)(m(g))||posdg

(by the change of variables h → exp(Y (g))h)

=

∫
K

∫
M

∫
N
e−ν(H(m0n))||ϕi(e)(m0)||pos||ϕj(e)(m(m0n))||posdndm0dk.
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One easily checks that for m0 ∈ M

m(m0n) = m(m0nm
−1
0 )m0 and

H(m0n) = H(m0nm
−1
0 ).

Applying the change of variables n → m−1
0 nm0 we see that Equation (4.12) equals

∫
M

∫
N
e−ν(H(n))||ϕi(e)(m0)||pos||ϕj(e)(m(n)m0)||pos dndm0. (4.13)

Since W = H2(M/M ∩H,U) has inner product given by integrating over M/M ∩H

(or M),we have
∫
M
||ϕi(e)(m0)||pos||ϕj(e)(m(n)m0)||posdm0

≤ ||ϕi(e)||2||m(n)−1 · ϕj(e)||2,

= ||ϕi(e)||2||ϕj(e)||2

by the unitarity of theM -representationW . We now conclude that (4.13) is bounded

by

||ϕi(e)||2||ϕj(e)||2

∫
N
e−ν(H(n))dn,

which is finite when ν− ρg is regular dominant for the a-roots in n (by, for example,

[9, Ch. VII.7]). However this is the case since ν = µ|a + ρh + ρg, with µ|a + ρh

dominant regular.

The following theorem is now proved (under the condition that µ is sufficiently

regular ([12, Eqn. (4.3)])).

Theorem 4.14. If G/H is a semisimple symmetric space, then H2(G/H,E) 6= {0}.

If, in addition, E has an invariant hermitian form, then H2(G/H,E) carries a G-

invariant hermitian form.

The intertwining map P gives an explicit integral formula for L2 harmonic spinors;

P may be considered an analogue of the Poisson transform.

Remark 4.15. The proof of square integrability given above uses some estimates in

common with the proof of square integrability for (0, s)-forms given in [4]. However,

the argument here is more direct. In [4] certain matrix coefficients are bounded by

Harish-Chandra’s spherical functions. Here, we do not need such bounds.
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