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Introduction

The main result of this article is the description of components of Springer fibers

associated to closed K-orbits in flag varieties. We consider pairs (G,K) of complex

groups equal to

(Sp(2n), Sp(2p) × Sp(2q)) and (SO(2n), GL(n)). (1)

These pairs arise in the study of Harish-Chandra modules for the simple real Lie

groupsGR = Sp(p, q) and SO∗(2n); K is the complexification of a maximal compact

subgroup. The articles [1] and [2] contain analogous results for pairs arising from

the real groups SU(p, q), Sp(2n,R) and O(p, q). The main result expresses the

structure of the components in terms of iterated orbits of a sequence of reductive

subgroups and certain unipotent subgroups of K; in particular, the structure is more

complicated than the cases considered in [1] and [2], where the unipotent subgroups

do not occur.

The results of this paper have applications to the theory of Harish-Chandra mod-

ules. To describe this we introduce a small amount of notation. Let Q be a closed

K-orbit in the flag variety B of G. Let γQ : T ∗
Q
B → g be the restriction of the

moment map µ of T ∗B to the conormal bundle T ∗
Q
B of Q in B. The image of γQ is

the closure of a nilpotent K-orbit in g. Then γ−1
Q

(f) = µ−1(f)∩ T ∗
Q
B is a single ir-

reducible component of the Springer fiber µ−1(f), which we refer to as a component

associated to the K-orbit Q. By the Beilinson-Bernstein theory of Harish-Chandra

modules there is a discrete series representation Xπ of GR associated to the closed

K-orbit Q. It is a fact that the associated variety of Xπ is im(γQ) = K · f . Further-
more, the multiplicity of K · f in the associated cycle of Xπ is the dimension of a

space of sections over γ−1
Q

(f). See [4]. In this article we give (i) an algorithm to com-

pute the associated variety of any discrete series representation, i.e., an algorithm

to compute K · f (and a convenient f) from Q, and (ii) a description of γ−1
Q

(f). We

remark that [9] contains an algorithm to compute associated varieties which is quite

different from ours; the point of our algorithm is that it allows us to understand the

structure of γ−1
Q

(f). In the sequel to the present article ([3]), (i) and (ii) are used
1
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to give an algorithm that computes the multiplicities in the associated cycle of any

discrete series representation of GR = Sp(p, q) or SO∗(2n). The method in [3] is

different from that of [1] and [2]. Rather that directly computing the dimension of

the space of sections over γ−1
Q

(f) for each closed orbit Q, as is done for the classi-

cal groups SU(p, q), Sp(2n,R) and O(p, q) in [1] and [2], we compute the space of

sections for just one discrete series representation in each Harish-Chandra cell that

contains a discrete series representation, then we argue that the multiplicity in the

associated cycle of any representation such a Harish-Chandra can be calculated.

1. Preliminaries

This section gives some necessary information used throughout the remainder of

the article.

1.1. Springer fibers. The pairs (1) are symmetric pairs in the sense that K is the

fixed point group of an involution Θ. Letting θ be the differential of Θ, we write

the decomposition of g into ±1-eigenspaces as g = k + p. The nilpotent cone in g

is denoted by N and we write Nθ for N ∩ p. The cotangent bundle of B may be

identified with the homogeneous bundle G ×
B
n−, where b = h + n− is some fixed

base point (Borel subalgebra) in B and B = NG(b). Under this identification, and

the identification of g with g∗ via the Killing form, the moment map for the natural

action of G on T ∗B is

µ : G×
B
n− → N

µ(g,X) = g ·X (:= Ad(g)X).

Let Q ⊂ B be a closed K-orbit in B. Then the conormal bundle T ∗
Q
B of Q in B

may be identified with the homogeneous bundle

K ×
K∩B

(n− ∩ p).

We denote the restriction of µ to T ∗
Q
B by γQ; it is given by the formula

γQ(k,X) = k ·X.

The image of γQ is K · (n− ∩ p), which contains a unique dense K-orbit. We say

that f ∈ n− ∩ p is generic in n− ∩ p if the image of γQ is K · f . The fiber γ−1
Q

(f)

may be identified with a subvariety of BK (the flag variety of K) via the natural

map T ∗
Q
B → BK . Under this identification

γ−1
Q

(f) = NK(f, n− ∩ p)−1 · b (1.1)

where

NK(f, n− ∩ p) = {k ∈ K : k · f ∈ n− ∩ p}.

This setup is carefully explained in [1, §2].
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1.2. Realizations of the pairs. Each pair (G,K) we consider falls into one of the

following types:

(Sp(2n), Sp(2p) × Sp(2q)), n = p+ q, (C)

(SO(2n), GL(n)). (D)

We refer to the two cases as types C and D. For the realizations, we use the matrices

Jn =

(
0 In

−In 0

)
, Sn =

(
0 In
In 0

)
, and

Kp,q = diag(Ip,−Iq, Ip,−Iq), and In,n =

(
In 0
0 −In

)
,

where Il is the identity l × l matrix.

Type C. In this case G = {g ∈ GL(2n) : gJng
t = Jn} and Θ is conjugation by

Kp,q. It follows that θ = Ad(Kp,q) and k equals

{



z1 0 z3 0
0 z2 0 z4
z5 0 −zt1 0
0 z6 0 −zt2


 : z1 ∈ Mp(C), z2 ∈ Mq(C) and zti = zi, for i = 3, 4

}

and k ≃ sp(p)× sp(q). The set of diagonal matrices in k is a Cartan subalgebra of k

(and of g); we set

h = {diag(t1, . . . , tn,−t1, . . . ,−tn) : ti ∈ C}.

Define ǫi ∈ h∗ by

ǫi(diag(t1, . . . , tn,−t1, . . . ,−tn)) = ti, 1 ≤ i ≤ n.

Then the set of roots of h in g is

∆(h, g) = {±(ǫi ± ǫj) : 1 ≤ i < j ≤ n} ∪ {±2ǫi}.

We fix once and for all a positive system of roots in k by

∆+
c = {ǫi ± ǫj : 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n} ∪ {2ǫi}. (1.2)

Our construction in §2 uses a specific normalization of root vectors. We specify

this normalization using the standard basis {Ei,j} of M2n(C) by setting

Xi−j = Ei,j − En+j,n+i, for ǫi − ǫj,

Xi+j = Ei,n+j + Ej,n+i, for ǫi + ǫj, i 6= j,

X2·i = Ei,n+i, for 2ǫi,

X−(i+j) = En+i,j +En+j,i, for − (ǫi + ǫj), i 6= j,

X−2·i = En+i,i, for − 2ǫi.

(1.3)
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Each root vector determines a linear transformation of C2n. Taking {ej} to be the

standard basis of C2n these linear transformations are given by

Xi−jek = δk,jei − δk,n+ien+j,

Xi+jek = δk,n+jei + δk,n+iej , i 6= j,

X2·iek = δk,n+iei,

X−(i+j)ek = δk,jen+i + δk,ien+j , i 6= j,

X−2·iek = δk,ien+i.

(1.4)

Let ω be the symplectic form on C2n having matrix Jn with respect to the ordered

basis {e1, . . . , e2n}.

There is an involution of {1, 2, . . . , 2n} defined by

τ(i) =

{
i+ n, if 1 ≤ i ≤ n

i− n, if n+ 1 ≤ i ≤ 2n.
(1.5)

Note that ω(ei, eτ(i)) = ±1. We will use the following fact. If S1 is a τ -stable subset

of {1, 2, . . . , 2n}, then W1 := spanC{ei : i ∈ S1} is a subspace of C2n on which ω

is nondegenerate. Furthermore, the orthogonal complement (w.r.t. ω) of W1 is

V1 := spanC{ej : j /∈ S1} and C2n = W1 ⊕ V1.

Type D. In this case G = {g ∈ GL(2n) : gSng
t = Sn}, Θ is conjugation by In,n

and θ = Ad(In,n). Therefore,

k =
{(

A 0
0 −At

)
: A ∈ gl(n)

}
≃ gl(n).

As for type C, we take h to be the Cartan subalgebra consisting of diagonal matrices

in g. Then, with ǫi as for type C, the set of roots of h in g is

∆(h, g) = {±(ǫi ± ǫj) : 1 ≤ i < j ≤ n}

and we fix a system of positive roots in k by setting

∆+
c = {ǫi − ǫj : 1 ≤ i < j ≤ n}. (1.6)

We specify normalized noncompact root vectors by taking

Xi+j = Ei,n+j − Ej,n+i, for ǫi + ǫj, i < j,

X−(i+j) = En+j,i − En+i,j, for − (ǫi + ǫj), i < j.
(1.7)

When viewed as linear transformations of C2n

Xi+jek = δk,n+jei − δk,n+iej,

X−(i+j)ek = δk,ien+j − δk,jen+i.
(1.8)

Let ( , ) be the nondegenerate symmetric form on C2n having matrix Sn with

respect to the standard basis. Then the involution τ defined above has properties

parallel to those stated for type C.
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1.3. Nilpotent orbits. We recall the parametrization of K-orbits in Nθ for the

pairs (1) under consideration. This parametrization is given in terms of signed

tableaux, and is well known; see for example [6, Ch. 9].

Consider f ∈ Nθ and form a standard triple {e, h, f} with e ∈ p and h ∈ h.

Denote by SL(2)f the corresponding complex subgroup of G. The standard repre-

sentation of G on C2n restricts to a representation of SL(2)f . This restriction may

be decomposed into a direct sum of irreducible subrepresentations. We choose these

irreducible constituents to be stable under Kp,q (resp., In,n) for type C (resp., type

D). Furthermore, each such constituent is isotropic with respect to the symplectic

form ω (resp., symmetric form ( , )). The constituents may be paired off as follows.

For each constituent V there is a constituent V ′, which is equivalent to V , so that

ω (resp., ( , )) is nondegenerate on V ⊕ V ′. If v1 is a highest weight vector for V

and v′1 a highest weight vector for V ′, then

vi := f i−1v1 and v′i := f i−1v′1, for i = 1, 2, . . . , d,

where d = dim(V ) = dim(V ′), form bases of V and V ′. Note that each vi and v′i
is an h-weight vector. Therefore, each vi and v′i is an eigenvector for Kp,q (resp.,

In,n) for type C (resp., type D). The vectors vi and v′i may be normalized so that

ω(vi, v
′
j) = (−1)i−1δi,d−j+1 (resp., (vi, v

′
j) = (−1)i−1δi,d−j+1). The eigenvalues of vi

alternate in the sense that the eigenvalue of vi+1 is the negative of the eigenvalue of

vi; the same holds for the v′i.

The signed tableau associated to an orbit K · f ⊂ Nθ has one row for each

irreducible constituent in the decomposition of C2n into SL(2)f -representations.

The number of boxes in each row is the dimension of the constituent. A plus or

minus sign is placed in each box so as to alternate along each row. The kth row begins

with the sign of the eigenvalue of the lowest weight vector of the kth constituent. Two

signed tableau are considered to be the same when they differ only by a permutation

of the rows. The following proposition gives the parametrization of K\Nθ.

Proposition 1.9. When (G,K) is of type C (resp., type D) the K-orbits on Nθ

are in one-to-one correspondence with signed tableau having 2n boxes that are filled

with ± signs that alternate along each row and

(a) the number of rows of a given even (resp., odd) length starting with a + sign

coincides with the number starting with a − sign, and

(b) the number of rows of a given odd (resp., even) length starting with a + sign

is even and the number starting with a − sign is also even.

The number of + signs is p (resp., n) and the number of − signs is q (resp., n).

In §4 we will use the following formulas for the dimensions of the centralizers of

nilpotent elements. These formulas may be found in [6].
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Suppose that the size of the ith column of the tableau of f is ci. Then

dim(ZG(f)) =
1

2

(∑
c2i ±#(odd rows)

)
, (1.10)

where ‘+’ occurs for type C and ‘−’ occurs for type D.

1.4. A comment on centralizers. For the special case of a nilpotent orbit K · f
having tableau consisting of just two rows, we will need to specify certain elements

of the centralizer explicitly.

In the case of two rows, the two rows are of the same length (by Prop 1.9). Let

v1, . . . , vn and v′1, . . . , v
′
n be bases of V and V ′ described in §1.3. Observe that if

Z ∈ zk(f), then Z is determined by Z(v1) and Z(v′1) (since Z(vl) = Z(f l−1v1) =

f l−1(Z(v1)), and similarly for Z(v′l)). The elements of the centralizer that we wish

to write down have a slightly different form in each of four cases (types C or D, and

n even or odd). In each case Z|V = 0 and Z(V ′) ⊂ V.

Type C, n even. For i = 1, 2, . . . , n2 , define Zi to be the element of zk(f) determined

by Zi(v1) = 0 and Zi(v
′
1) = v2i. Therefore,

Zi(vl) = 0 and

Zi(v
′
l) = f l−1v2i (= vl+2i−1 or 0),

for l = 1, . . . , n.

Type C, n odd. For i = 1, 2, . . . , n+1
2 , elements Zi ∈ zk(f) are determined by Zi(v1) =

0 and Zi(v
′
1) = v2i−1. Therefore,

Zi(vl) = 0 and

Zi(v
′
l) = f l−1v2i−1 (= vl+2i−2 or 0),

for l = 1, . . . , n.

Type D, n even. For i = 1, 2, . . . , n2 , define Zi to be the element of zk(f) determined

by Zi(v1) = 0 and Zi(v
′
1) = v2i−1. Therefore,

Zi(vl) = 0 and

Zi(v
′
l) = f l−1v2i−1 (= vl+2i−2 or 0),

for l = 1, . . . , n.

Type D, n odd. For i = 1, 2, . . . , n−1
2 , elements Zi ∈ zk(f) are determined by Zi(v1) =

0 and Zi(v
′
1) = v2i. Therefore,

Zi(vl) = 0 and

Zi(v
′
l) = f l−1v2i (= vl+2i−1 or 0),

for l = 1, . . . , n.

Lemma 1.11. In each case, the Zi are independent elements of zk(f).
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Proof. We check that Zi ∈ zk(f) in the first case; the proofs in the other cases are

essentially the same. Let ε = ±1 be the eigenvalue of the Kp,q-eigenvector v
′
1. First,

each Zi clearly commutes with f . To check that Z ∈ g we show that the bilinear

form ω is preserved.

ω(Zi(v
′
l), v

′
j) + ω(v′l, Zi(v

′
j))

= ω(vl+2i−1, v
′
j) + ω(v′l, vj+2i−1)

= (−1)l+2i−1δl+2i−1,n−j+1 − (−1)j+2i−1δl,n−(j+2i−1)+1

= 0,

To check that Zi ∈ k, we check that Zi preserves eigenspaces of Kp,q, so commutes

with Kp,q. Therefore Zi is fixed by θ, so is in k. First, the Kp,q-eigenvalues of vn and

v′1 are equal. (Since n is even, the eigenvalue of vn is ω(Kp,qvn, v
′
1) = ω(vn,Kp,qv

′
1) =

εω(vn, v
′
1) = ε.) It follows that vj has eigenvalue (−1)jε and v′l has eigenvalue

(−1)l−1ε. Now

Kp,q(zi(v
′
l)) = Kp,q(vl+2i−1) = (−1)l+2i−1εvl+2i−1.

But (−1)l+2i−1ε = (−1)l−1ε is the eigenvalue of v′l, so Zi preserves eigenspaces.

Independence is easy to check. �

1.5. Closed K-orbits in B. Let h and ∆+
c be as in §1.2. Each regular λ defines a

positive system of roots ∆+ = {α : 〈λ, α〉 > 0} and a Borel subalgebra

b = h+ n−, n− =
∑

α∈∆+

g(−α).

Therefore, each such λ determines a K-orbit Q = K · b ⊂ B. Such K-orbits Q are

closed since Q ≃ K/K ∩ B and K ∩ B is a Borel subgroup of K, so Q ≃ BK . The

closed K-orbits in B are in one-to-one correspondence with the WK -orbits of Weyl

chambers for g. For the two types of pairs considered here, these are in one-to-one

correspondence with W -conjugates λ of (n, n − 1, . . . , 2, 1) that are ∆+
c -dominant.

Thus for

type C : λ = (a1, . . . , ap, b1, . . . , bq),

with a1 > · · · > ap > 0, b1 > · · · > bq > 0 and

type D : λ = (a1, . . . , ap, b1, . . . , bq),

with a1 > · · · > ap > 0 > b1 > · · · > bq, for some p, q.

(1.12)

In order to construct generic elements f ∈ n− ∩ p we associate to a λ (as above)

an array of numbered dots. This array consist of two horizontal rows of dots as

follows. Begin with the coordinate of λ having the greatest absolute value. Note

that in type C the absolute value plays no role and the greatest coordinate of λ is

either a1 or b1. In type D the coordinate of greatest absolute value is either a1 or

bq. Begin the array by placing a dot in the upper row if this coordinate is among
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the ai’s and in the lower row otherwise. Working from left to right, place the second

dot in the upper (resp., lower) row if the coordinate having greatest absolute value

is among the ai’s (resp., bi’s). Continue until n dots have been placed. Label each

dot with the index of the corresponding coordinate of λ and give this label the sign

of the corresponding coordinate. Note that in type C the dots are labeled 1, 2, . . . , p

along the upper row (left to right) and p + 1, p + 2, . . . , n along the lower row, and

in type D the upper row is labeled the same way and the lower row is labeled with

−n,−(n− 1), . . . ,−(p + 1).

Here are two examples. In type C take λ = (9, 8, 5, 2, 1 | 7, 6, 4, 3). Then p = 5

and q = 4 and the corresponding array is

r
1

r
2

r

6
r

7

r
3

r

8
r

9

r
4

r
5

.

Note that the simple roots are

ǫ1 − ǫ2, ǫ4 − ǫ5, ǫ6 − ǫ7, ǫ8 − ǫ9, 2ǫ5 (compact)

ǫ2 − ǫ6, ǫ7 − ǫ3, ǫ3 − ǫ8, ǫ9 − ǫ4 (noncompact).

The positive roots are ǫi − ǫj, with i the label of a dot to the left of the dot labeled

by j, and all ǫi + ǫj. The compact (resp, noncompact) roots have i, j in the same

(resp., different) rows.

For type D take λ = (10, 9, 8, 5, 2, 1 | − 3,−4,−6,−7). Then the array is

r
1

r
2

r
3

r

-10
r

-9

r
4

r

-8
r

-7

r
5

r
6

.

Note that the simple roots are

ǫ1 − ǫ2, ǫ2 − ǫ3, ǫ5 − ǫ6, ǫ9 − ǫ10, ǫ7 − ǫ8 (compact)

ǫ3 + ǫ10,−(ǫ9 + ǫ4), ǫ4 + ǫ8,−(ǫ7 + ǫ5), ǫ5 + ǫ6 (noncompact).

2. Generic elements

An algorithm is given to associate to each closed K-orbit in B a nilpotent element

f ∈ Nθ so that im(γQ) = K · f . Specifically, given λ as in (1.12) (and therefore a

Borel subalgebra b = h+ n−) we explicitly determine a generic element f in n− ∩ p.

The proof that the nilpotent element we construct is in fact generic is postponed
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until §4.4. We also associate to f some subgroups which play a crucial role in our

description of γ−1
Q

(f).

2.1. The algorithm. Let us assume that λ ∈ h∗ is regular and ∆+
c -dominant.

Form the array of numbered dots as in §1.5. In the array, call any maximal set

of consecutive dots in a row a block. We construct a string through the array as

follows. The first part of the string consists of the dots farthest to the right in each

block. Let a1, a2, . . . , aℓ+1 be the labels of these dots, listed from left to right. The

second part of the string is formed as follows. In type C choose the dot farthest to

the right that is in the row opposite to that of the dot labeled by aℓ+1 and is not

among the dots a1, a2, . . . , aℓ. In type D choose the dot farthest to the right that

is in the same row as the dot labeled by aℓ+1 and is not among the dots labeled

by a1, . . . , aℓ+1. For both types continue by choosing the dot farthest to the right

that is (i) left of the most recently chosen dot, (ii) is in the row opposite to that of

the most recently chosen dot, and (iii) is not among those already chosen. Continue

in this manner until no dot satisfies (i)-(iii). Let b1, b2, . . . , bN−ℓ−1 be the labels of

these dots, listed from left to right. The string is then the collection of the N dots

and may be pictured in the array.

This string determines a nilpotent element in n− ∩ p:

f0 =
( ℓ∑

i=1

Xai+1−ai

)
+X−aℓ+1−bN−ℓ−1

+
(N−ℓ−2∑

i=1

Xbi+1−bi

)
.

Now continue by deleting the dots in the first string, thus getting a smaller array,

and forming a string in this array as specified above. Then f1 is defined in the same

manner as f0 is defined. Repeat this procedure until no more strings can be formed

(that is, until all dots are in the same row or there are no dots left). Then set

f = f0 + f1 + · · · fm−1,

where m is the number of strings that can be formed.

For the earlier type C example we have

r
1

r
2
HHHHHHr

6
r

7
�
�
�
r
3
HHHHHHr

8
``````````````̀

r

9
������

r
4

r
5

��������� .

Then ℓ = 4, N = 7, and a1 = 2, a2 = 7, a3 = 3, a4 = 9, a5 = 5, b1 = 1 and b2 = 8.

The smaller array, with the second string drawn in, is
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r

6
������

r
4

.

Therefore,

f = f0 + f1 = (X7−2 +X3−7 +X9−3 +X5−9 +X−5−8 +X8−1) + (X4−6).

In the type D example of §1.5 we have

r
1

r
2
``````````````̀

r
3

r

-10

HHHHHHr

-9
�
�
�
r
4
HHHHHHr

-8
������

r

-7
������

r
5

r
6

.

Then ℓ = 4, N = 8, and a1 = 3, a2 = −9, a3 = 4, a4 = −7, a5 = 6, b1 = 2, b2 = −8

and b3 = 5.

Removing the string gives the following smaller array (with the second string

drawn in):

r
1
HHHHHHr

-10
.

Therefore, f = f0 + f1 is

(X−(3+9) +X9+4 +X−(4+7) +X7+6 +X−(6+5) +X5+8 +X−(8+2)) + (X−(1+10)).

Theorem 2.1. The nilpotent element f constructed by the algorithm above is generic

in n− ∩ p.

This statement will be proved in §4.4, where it will follow easily from (4.18).

2.2. Subgroups. A number of subgroups play an important role in our description

of γ−1
Q

(f). We now define a sequence of subgroups of G which will allow us to

formulate and prove our results inductively. Set

G0 = G,K0 = K and V0 = C2n.

Define G2j , j = 1, 2, . . . ,m, inductively as follows. Let S2j be the labels of the dots

in the jth string. Therefore, in the notation of the previous subsection, we have

S2 = {a1, . . . , aℓ+1, b1, . . . , bN−ℓ−1}.
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Then

W2j := spanC{ei : i ∈ S2j ∪ τ(S2j)} and

V2j := spanC{ei : i /∈ S2j ∪ τ(S2j)} ∩ V2(j−1)

are nondegenerate subspaces of V0 = C2n. Also, V2(j−1) = V2j⊕W2j . The subgroups

G2j are defined by

G2j := {g ∈ G2(j−1) : g(V2j) ⊂ V2j and g|W2j
= Id}.

Then we define K2j := K ∩G2j and h2j := h∩ g2j (a Cartan subalgebra of both k2j
and g2j). The following statements are easily verified.

(1) (G2j ,K2j) is a pair of the same type as (G,K).

(2) λ2j := λ|h2j determines the Borel subalgebra b2j := b ∩ g2j , which we write

as b2j = h2j + n−2j .

(3) For any j = 0, 1, . . . ,m− 1, fj + fj+1 + · · ·+ fm−1 is the generic element of

n−2j ∩ p constructed by the algorithm applied to the pair (G2j ,K2j) and λ2j.

(4) G2j centralizes f0 + · · ·+ fj−1; in particular G2m ⊂ ZG(f).

2.3. The doubled array. It is useful to consider a ‘doubled array’. Types C and

D will be described separately.

Type C. The doubled array is formed by reflecting the array about a vertical line just

to the right of the array. This array is numbered by keeping the numbering on the

left-hand side and labeling the top row, right of center, with n+p, n+p−1, . . . , n+1,

and the dots in the lower row, right of center, with 2n, 2n − 1, . . . , n + p + 1. Note

that if the label of a dot is k, then the label of its reflection is τ(k). Here is the

doubled array of the earlier example in type C.

r
1

r
2

r

6
r

7

r
3

r

8
r

9

r
4

r
5

r
14

r
13

r

18
r

17

r
12

r

16
r

15

r
11

r
10

The string through the array is represented by two sets of labels of dots in the

doubled array as follows. Recall that we have a1, . . . , aℓ+1 and b1, . . . , bN−ℓ−1, which

define f0. Extend to a1, . . . , aN and b1, . . . , bN by setting

ai = τ(bN−i+1), for i = ℓ+ 2, . . . , N

bi = τ(aN−i+1), for i = N − ℓ, . . . , N.

These two sets of dots are displayed on the doubled array by connecting the con-

secutive dots labeled by the ai and also connecting those labeled be the bi. In the

example this is
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r
1
aaaaaaaaa

r
2

@
@
@@r

6
r

7
�
�
��
r
3

@
@
@@r

8
�������

r

9
�
�
��
r
4

r
5
HHHHHHH

r
14

@
@
@@

r
13

r

18
�
�
��

r

17
!!!!!!!!!

r
12

A
A
AAr
16
�
�
��

r

15

r
11

r
10

Note that in this example the action of f0, up to a multiple of ±1, on the standard

basis vectors is by

e2 → e7 → e3 → e9 → e5 → e17 → e10 → 0

e1 → e8 → e14 → e18 → e12 → e16 → e11 → 0.

In general

f0(eai) =

{
±eai+1

, i = 1, 2, . . . , N − 1

0, i = N
(2.2)

and

f0(ebi) =

{
±ebi+1

, i = 1, 2, . . . , N − 1

0, i = N.
(2.3)

In our example, the smaller doubled array, with string drawn in, is

r

6
������

r
4

r

15
HHHHHH

r
13

.

The action of f1, up to a multiple of ±1, on the standard basis vectors is by

e6 → e4 → 0 and e13 → e15 → 0.

It follows immediately that the signed tableau may be read from the doubled

array. In the example, the signed tableau is

+ - + - + - +
+ - + - + - +
+ -
- +

.

Type D. The doubled array is formed by reflecting the array about a point just

to the right of the array. Then renumbering by labeling the dots along the first

row with 1, 2, . . . , 2p, from left to right. Label the dots along the bottom row with

2n, 2n− 1, . . . , 2p = 2, 2p + 1. In the example, we reflect about the ‘×’ to get



SPRINGER FIBERS 13

r
1

r
2

r
3

r

20
r

19

r
4

r

18
r

17

r
5

r
6

×

r

16
r

15

r
7

r
8

r

14

r
9

r
10

r

13
r

12
r

11

As in the type C case, the string is also reflected to get a pair of strings. This

is described slightly differently than in the type C case. Let a′1, . . . , a
′
ℓ+1 be the

new labels of the dots labelled by a1, . . . , aℓ+1 in the original array, and similarly

let b′1, . . . , b
′
N−ℓ−1 be the new labels of the dots originally labeled by b1, . . . , bN−ℓ−1.

Then extend to a′1, . . . , a
′
N and b′1, . . . , b

′
N by setting

a′i = τ(b′N−i+1), for i = ℓ+ 2, . . . , N

b′i = τ(a′N−i+1), for i = N − ℓ, . . . , N.

Then the string is represented by the sequences of dots labeled by the a′i and the b′i.

Then the formulas of (2.2) and (2.3) for f0 hold, with the ai (resp., bi) replaced by

the a′i (resp., b
′
i). The array with the string indicated is

r
1

r
2
aaaaaaaaa

r
3

@
@
@@r

20
r

19
�
�
��
r
4

@
@
@@r

18
�
�
��

r

17
�
�
��
r
5

r
6

@
@
@@

×

r

16
�
�
��

@
@

@@

r

15
�
�
��
r

7

@
@
@@

r
8
aaaaaaaaar

14
�
�
��
r

9

@
@
@@

r
10

r

13
r

12
r

11

The smaller doubled array is

r
1
HHHHHHr

20

×

r
11

HHHHHH

r

10
.

The tableau has two rows of length 8 and two of length 2; all begin with a ‘−’

sign.

2.4. Parabolic subgroups. A sequence of parabolic subgroups Q2j of K2j will

play an important role for us. These subgroups are analogous to the Qj used in [1]

to describe γ−1
Q

(f).

Let q ⊂ k be the parabolic subalgebra defined by the set of roots in ∆+
c that are

simple for ∆+ (the positive system defined by λ). Write R for the roots in the span
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of these simple roots, then

q = l+ u−,

l = h+
∑

α∈R

g(α)

u− =
∑

α∈∆+
c \R

g(−α).

Note that q contains the Borel subalgebra b ∩ k, so is a parabolic subalgebra of k.

Let Q = NK(q) and write Q = LU−.

Lemma 2.4. L normalizes n− ∩ p.

Proof. There is a parabolic subalgebra of g defined by the same set of simple roots

that define q. This parabolic subalgebra is l + (u− + n− ∩ p). Since L ⊂ K and

normalizes u− + n− ∩ p, L also normalizes n− ∩ p. �

Both B and Q may be described in terms of the doubled array. This is done by

specifying flags having stabilizers B and Q. We first consider B. The subspaces Ei

in C2n given by

Ei = spanC{ek : k is among the labels of the i dots farthest to the right},

for i = 1, 2, . . . , 2n, define a full flag

{0} ⊂ E1 ⊂ · · · ⊂ E2n−1 ⊂ E2n = C2n. (2.5)

The partial flag

{0} ⊂ E1 ⊂ · · · ⊂ En (2.6)

is an isotropic flag. Note that E⊥
i = E2n−i.

Lemma 2.7. The stabilizer of either the flag (2.5) or the flag (2.6) is B.

Similarly, a flag of length 2ℓ+1 (resp., 2ℓ+2) in type C (resp., type D) is defined

by

Fi = spanC{ek : k is the label of a dot in one

of the i blocks farthest to the right},

for i = 1, 2, . . . , 2ℓ+1 (resp., 2ℓ+2). (Note that 2ℓ+1 (resp., 2ℓ+2) is the number

of blocks in the doubled array.) The corresponding isotropic flags are

{0} ⊂ F1 ⊂ · · · ⊂ Fℓ, for type C, and

{0} ⊂ F1 ⊂ · · · ⊂ Fℓ+1, for type D.
(2.8)

Lemma 2.9. The stabilizer of either the flag (Fi) of length 2ℓ + 1 (for type C) or

2ℓ+ 2 (for type D), or the corresponding isotropic flag, is Q.
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The Levi subgroup L of Q is isomorphic to

GL(n1)× · · ·GL(ns)× Sp(2ns+1), type C, and

GL(n1)× · · ·GL(ns)×GL(ns+1), type D,
(2.10)

where n1, . . . , ns+1 are the sizes of the blocks in the (original) array.

We set Q0 = Q. The parabolic subgroups Q2j of K2j , j = 1, . . . ,m, are defined

in the same manner, that is, by considering the array with the dots of the first j

strings omitted.

Remark 2.11. One easily verifies that

Q2m · · ·Q2Q0 · b ⊂ γ−1
Q

(f). (2.12)

This may be done by showing

Q0Q2 · · ·Q2m · f ⊂ n− ∩ p

as follows. By induction

Q2 · · ·Q2m · (f − f0) ⊂ n−2 ∩ p,

since f − f0 is the generic element for the pair (G2,K2). Now

Q0Q2 · · ·Q2m · f ⊂ Q0(f0 +Q2 · · ·Q2m · (f − f0))

⊂ Q0(f0 + n−2 ∩ p), by induction,

⊂ Q0 · (n
− ∩ p), since n−2 ∩ p ⊂ n− ∩ p,

⊂ n− ∩ p, by Lemma 2.4.

The results of [1] and [2] suggest that equality might hold in (2.12). However, this

is not the case. For instance, in the type C example considered earlier, if σ68 is the

reflection in the root ǫ6 − ǫ8, then σ68 ∈ NK(f, n− ∩ p), but σ68 · b is not in the left-

hand side of (2.12). The description of γ−1
Q

(f) is much more subtle and requires the

introduction of several more subgroups; this is contained in the following section.

3. The structure of the fiber

A description of γ−1
Q

(f) is given for any closed K-orbit Q in B and corresponding

generic element f . The statement is contained in Theorem 3.3. This description is

in terms of (i) several reductive subgroups of K that are naturally defined in terms

of the array and (ii) some special one-parameter subgroups of ZK(f).

3.1. Subgroups of K2j. Recall that subgroups

G = G0 ⊃ G2 ⊃ · · · ⊃ G2m

have already been defined, as have K2j = K ∩G2j . The pairs (G2j ,K2j) are of the

same type as (G,K). Reductive subgroups L1, L̂1 and
̂̂
L1 will be defined below.
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Applying the same definition to the pair (G2j ,K2j) results in reductive subgroups

L2j+1, L̂2j+1 and
̂̂
L2j+1 in K2j , for any j = 0, 1, . . . ,m.

Let S1 = {a1, . . . , aℓ}, the set of labels of the first ℓ dots in the first string, and

set

W1 = spanC{ek : k ∈ S1 ∪ τ(S1)} and

V1 = spanC{ek : k /∈ S1 ∪ τ(S1)}.

Then C2n = W1 ⊕ V1, a direct sum of orthogonal subspaces of C2n. Define, in

analogy with the definition of G2,

G1 = {g ∈ G : g(V1) ⊂ V1 and g|W1
= Id},

and set K1 = K ∩ G1. Then h1 := h ∩ g1 is a Cartan subalgebra of g1 and λ|h1
is regular. Therefore, λ|h1 defines a positive system of roots ∆+

1 in ∆(h1, g1) (by

〈λ|h1 , α〉 > 0). This gives a Borel subalgebra b1 = h1 + n−1 = h1 +
∑

α∈∆+

1

g(−α)

(= b ∩ g1). An array for ∆+
1 is obtained from the one for ∆+ by omitting the dots

labeled by a1, . . . , aℓ. We refer to the blocks in this array for ∆+
1 as 1-blocks.

Now we are in position to define L1. Let R1 be the roots in the span of the

compact roots that are simple for ∆+
1 . Let

q1 = l1 + u−1 =
(
h1 +

∑

α∈R1

gα
)
+

( ∑

α∈∆+
c \R1

g(−α)
)
.

The corresponding parabolic subgroup is Q1 = L1U
−
1 .

In the earlier type C example the array for ∆+
1 is

s

1

s

6

s

8

s

4
s

5

.

and L1 ≃ GL(1) ×GL(2)× Sp(4). In general,

L1 ≃ GL(m1)×GL(m2)× · · · ×GL(mr)× Sp(2mr+1), for type C, and

L1 ≃ GL(m1)×GL(m2)× · · · ×GL(mr)×GL(mr+1), for type D,

where mi is the size of the ith 1-block (counting from left to right in the array).

In type D the groups Q2j and Q2j+1 are the ‘correct’ groups for our purposes.

However, in type C the situation is more complicated; it turns out that Qm · · ·Q1Q0 ·
b is not contained in γ−1

Q
(f). To remedy this situation we need to consider two

subgroups L̂1 and
̂̂
L1 of L1, and also subgroups L̂2j+1 and

̂̂
L2j+1 of L2j+1.
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The following definitions apply only to the type C case.

(A) Definition of L̂1. Define

L̂1 = {k ∈ L1 : k(eaℓ+1
) = eaℓ+1

and k(eτ(aℓ+1)) = eτ(aℓ+1)}.

Then the roots in ∆(̂l1) are

ǫi − ǫj : i, j in the same 1-block, i, j 6= aℓ+1 and

± (ǫi + ǫj) : i, j in the last 1-block, i, j 6= aℓ+1.
(3.1)

With, m1, . . . ,mr+1 as above,

L̂1 ≃ GL(m1)×GL(m2)× · · · ×GL(mr)× Sp(2(mr+1 − 1)).

(B) Definition of
̂̂
L1. Let B1 be the set of labels of the dots in the last 1-block.

Then
̂̂
L1 is the Levi subgroup of the parabolic subgroup of

{k ∈ L1 : k(ei) = ei for all i /∈ B1 ∪ τ(B1)}

having roots

∆(
̂̂
l1) = {ǫi − ǫj : i, j ∈ B1 \ {aℓ+1}} ∪ {±(ǫi + ǫℓ+1) : i ∈ B1 \ {aℓ+1}}.

Therefore,
̂̂
L1 ≃ GL(mr+1) ⊂ Sp(2mr+1).

3.2. One-parameter subgroups of ZK(f). Consider the subgroups

G′
2 = {g ∈ G : g(W2) ⊂ W2 and g|V2

= Id}

K ′
2 = K ∩G′

2.

Then (G′
2,K

′
2) is a pair of the same type as (G,K). Note that G2 and G′

2 are

mutually commuting subgroups of G. Also, f0 ∈ g′2 ∩ p and the tableau of f0 ∈ g′2
has exactly two rows (both of length N).

Recall that in §1.4, for the 2-row case, we constructed independent elements Zi

of zk(f). Applying this construction to f0 ⊂ g′2 we get Zi ∈ zk′
2
(f0) ⊂ zk(f). These

Zi are described as follows.

Write v1 = ea1 and v′1 = eb1 , the highest weight vectors of the two sl(2)f0 con-

stituents of W2. Let vl = f l−1(v1), (= ±eal) and v′l = f l−1(v′1), (= ±ebl). Then, in

the four cases, Zi(vl) = 0, for all l, and

Zi(v
′
l) =

{
vl+2i−1, for type C, N even or type D, N odd,

vl+2i−2, for type C, N odd or type D, N even,

where we understand vk = 0 when k ≥ N + 1.

Let r = ℓ− [N2 ] in type C and r = ℓ− [N+1
2 ] + 1 in type D.
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Lemma 3.2. The following hold.

(1) Zk ∈ q if and only if k ≥ r + 1.

(2) Z1, . . . , Zr are independent modulo q.

Proof. The lemma will be proved for type C; the type D case is essentially the

same. We first show that if k = 1, 2, . . . , ℓ − [N2 ], then Zk /∈ q, that is, Zk does not

preserve the isotropic flag (Fi) of (2.8). Consider bN−ℓ+1. This is the label of the

dot immediately to the right of the central block of the doubled array. Therefore,

v′N−ℓ+1 = ±ebN−ℓ+1
∈ Fℓ. If k ≤ ℓ− [N2 ], then

N − ℓ+ 2k ≤ ℓ, if N is even,

N − ℓ+ 2k − 1 ≤ ℓ, if N is odd.

In particular aN−ℓ+2k and aN−ℓ+2k−1 label dots left of center. Now

Zk(v
′
N−ℓ+1) =

{
vN−ℓ+2k, N even,

vN−ℓ+2k−1, N odd,

so, Zk(v
′
N−ℓ+1) /∈ Fℓ. Therefore, Zk /∈ q.

For the converse, we assume k ≥ ℓ − [N2 ] + 1 and show that Zk preserves the

isotropic flag (Fi). Again we consider the label bN−ℓ+1. We use the following.

Claim: Suppose that X ∈ g′2 ≃ sp(N) vanishes on each vi and there is an s ∈ Z≥0

so that X(v′i) = vi+s, for each i. Then the following are equivalent

(A) X preserves the isotropic flag (Fi).

(B) bN−ℓ+1 labels a dot to the left of the dot labeled by aN−ℓ+s+1.

If (A) holds then X(v′N−ℓ+1) = vN−ℓ+s+1 ∈ Fℓ, so (B) follows. Conversely, suppose

that (B) holds. We need to check that bN−ℓ+j is left of aN−ℓ+s+j, for j = 1, 2, . . .

(since the vN−ℓ+j are precisely the vi’s in Fℓ). However, this is clear from (B) since

the string labeled by b1, . . . , bN passes through every block right of the central block.

The claim is now proved.

Now assume that N is even. It suffices to show that aN−ℓ+2k is right of bN−ℓ+1(by

taking s = 2k−1). But we are assuming that k ≥ ℓ−[N2 ]+1, that is, 2k ≥ 2ℓ−N+2.

Therefore, N − ℓ + 2k ≥ ℓ + 2, so aN−ℓ+2k is to the right of aℓ+2, which is in the

same block as bN−ℓ+1.

When N is odd we need to show that aN−ℓ+2k−1 is to the right of bN−ℓ+1. We

are assuming that 2k ≥ 2ℓ− (N − 1) + 2, therefore N − ℓ+ 2k − 1 ≥ ℓ+ 2. Again

aN−ℓ+2k−1 is right of the central block, so is right of bN−ℓ+1. �

For each k = 1, . . . , r, let Uk be the one-parameter subgroup for Zk. Note that

each Zk is nilpotent and the Zk’s mutually commute (in fact, ZkZk′ = 0, for all

k, k′). Let

Z(0) = U1U2 · · ·Ur.
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The same construction applied to f ′ = f −
∑j−1

i=0 fi in G2j gives a subgroup Z(j) of

ZK(f). In particular, fj ∈ g′2j+2 is a two-row nilpotent, which gives elements of the

centralizer Zj
1 , Z

j
2 , Z

j
3 , . . . as described in §1.4. Then Z(j) =

∏
i U

j
i , where U j

i is the

one-parameter subgroup for Zj
i . Since each G′

2j commutes with all G2k, k ≥ j, the

subgroups Z(j) mutually commute.

3.3. The main theorem. Let Q be a closed K-orbit in B and let f be the generic

element constructed by the algorithm of §2.1. Set

Mj =

{
L̂2j+1

̂̂
L2j+1L2j , in type C

L2j+1L2j, in type D.

Then our first main theorem is the following description of γ−1
Q

(f).

Theorem 3.3. The closure of

( m∏

j=0

Z(j)
)
MmMm−1 · · ·M1M0 · b (3.4)

is γ−1
Q

(f).

The proof is given in the next section.

4. Proof of Theorem 3.3

The proof of Theorem 3.3 is given in three steps. We first prove the inclusion

( m∏

j=0

Z(j)
)
Mm · · ·M1M0 · b ⊂ γ−1

Q
(f). (4.1)

Then it is shown that both sides of (4.1) have the same dimension. In §4.4 the fact

that γ−1
Q

(f) is irreducible is established.

Particular parabolic subgroups of L̂1 and
̂̂
L1 will play a role. Let R̂1 = L̂1 ∩Q.

Then R̂1 is a parabolic subgroup of L̂1 having Levi factor L̂1 ∩L. We write N̂−
1 for

the nilradical of R̂1. Therefore a Levi decomposition of R̂1 is (L̂1∩L)N̂−
1 . Similarly,

̂̂
R 1 =

̂̂
L1 ∩ Q is a parabolic subgroup of

̂̂
L1 and

̂̂
R 1 = (

̂̂
L1 ∩ L)

̂̂
N−

1 . The roots in

∆(ˆ̂n1) are

ǫi − ǫj : i < j in the last 1-block but in different blocks, i, j 6= aℓ+1,

ǫi + ǫaℓ+1
: i in the last 1-block but not in the last block.

(4.2)
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4.1. A lemma.

Lemma 4.3. Q2L̂1
̂̂
L1 ⊂ L2L̂1

̂̂
L1Q in type C and Q2L1 ⊂ L2L1Q in type D.

Proof. First consider type C. Since Q2 = L2U
−
2 , the statement follows once we show

that U−
2 L̂1

̂̂
L1 ⊂ L̂1

̂̂
L1U

−
0 . We have

U−
2 ⊂ U−

1 ⊂ U−
0 and L̂1,

̂̂
L1 ⊂ L1.

Since L1 normalizes U−
1 , for any ℓ̂1 ∈ L̂1 and

ˆ̂
ℓ1 ∈

̂̂
L1

ℓ̂−1
1 U−

2 ℓ̂1 ⊂ U−
1 and

ˆ̂
ℓ−1
1 U−

1
ˆ̂
ℓ1 ⊂ U−

1 . (4.4)

We conclude that

U−
2 ℓ̂1

ˆ̂
ℓ1 ⊂ ℓ̂1

ˆ̂
ℓ U−

0 .

Now consider type D. It suffices to show that U−
2 L1 ⊂ L1Q. But L1 normalizes

U−
1 , which contains U−

2 , therefore, for ℓ1 ∈ L1

U−
2 ℓ1 ⊂ ℓ1U

−
1 ⊂ ℓ1Q.

�

Corollary 4.5. For any j = 0, 1, . . . ,m,

Q2j+2L̂2j+1
̂̂
L2j+1 ⊂ L2j+2L̂2j+1

̂̂
L2j+1Q2j , for type C,

Q2j+2L2j+1 ⊂ L2j+2L2j+1Q2j, for type D.

Proof. This is exactly the lemma applied to G2j . �

Corollary 4.6. If

M ′
j =

{
L̂2j+1

̂̂
L2j+1Q2j , for type C

L2j+1Q2j , for type D,

then

Mj · · ·M1M0 · b = M ′
j · · ·M

′
1M

′
0 · b,

for any j = 0, 1, . . . ,m.

4.2. The inclusion. By (1.1), in order to prove

( m∏

j=0

Z(j)
)
Mm+1Mm · · ·M1M0 · b ⊂ γ−1

Q
(f) (4.7)

it suffices to prove that

L0
̂̂
L1L̂1L2 · · ·

̂̂
L2m−1L̂2m−1L2m · f ⊂ n− ∩ p, in type C, and

L0L1L2 · · ·L2m · f ⊂ n− ∩ p, for type D.
(4.8)
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The proof is by induction on the rank of the group G. In the case when the rank is

one, f = 0 and the statement clearly holds.

Considering first the type C case, assume that the statement holds for all pairs

(Sp(2n′), Sp(2p′) × Sp(2q′)) with n′ < n. Since (G2,K2) is such a lower rank pair

(or m = 1 and we are done), we have

L2
̂̂
L3L̂3L4 · · · L̂2m−1L2m · f ′ ⊂ n−2 ∩ p,

where f ′ = f − f0. Therefore, the left-hand side of (4.8) is contained in

L0
̂̂
L1L̂1(f0 + n−2 ∩ p),

since G2 centralizes f0.

Since n−2 ⊂ n−1 ⊂ n−, L̂1,
̂̂
L1 ⊂ L1, and L1 normalizes n−1 ∩ p, we have

̂̂
L1L̂1(n

−
2 ∩ p) ⊂ n−1 ∩ p ⊂ n− ∩ p.

Since L0 normalizes n− ∩ p we conclude that

L0
̂̂
L1L̂1 · (n

−
2 ∩ p) ⊂ n− ∩ p.

It follows that we only need to verify that

̂̂
L1L̂1 · f0 ⊂ n− ∩ p. (4.9)

Consider the labels a1, . . . , al, al+1, bN−l−1, . . . , b1 of the first string through the

array, as in §2.1. Then

f0 =
( l∑

i=1

Xai+1−ai

)
+X−(al+1+bN−l−1) +

(N−l−1∑

j=1

Xbj+1−bj

)
.

The first term is centralized by L1, so is centralized by
̂̂
L1L̂1. The last term lies in

n−1 ∩p, which is normalized by L1, so also by
̂̂
L1L̂1. We therefore need to check that

̂̂
L1L̂1 ·X−(al+1+bN−l−1) ⊂ n− ∩ p. (4.10)

We first show that

L̂1X−(aℓ+1+bN−ℓ−1) ⊂ w,

where

w := spanC{X−(aℓ+1+k) ∈ p : k is in a 1-block}.

This is done by showing that w is l̂1-stable. We check that brackets by root vectors

in l̂1 (see (3.1)) with those in w are in w:

[Xk−i,X−(aℓ+1+k)] = X−(aℓ+1+i) ∈ w,

[X±(i+j),X−(aℓ+1+k)] = 0.
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Now we show that
̂̂
L1w ⊂ n− ∩ p. Since Q normalizes n− ∩ p (and

̂̂
R 1 ⊂ Q) it

suffices to check that
̂̂
N1w ⊂ n− ∩ p. Of the root vectors in ˆ̂n1, only Xi+aℓ+1

fails to

commute with w. But

[Xi+aℓ+1
,X−(aℓ+1+k)] = Xi−k,

which is in n− ∩ p, since i is in the last 1-block and k is in an earlier 1-block.

This completes the proof of (4.7) for type C.

Now suppose (G,K) is of type D. The inductive hypothesis says that

L2L3 · · ·L2m · f ′ ⊂ n−2 ∩ p,

for f ′ = f − f0. Since n−2 ⊂ n−1 , and n−1 is normalized by L1, we have

L1L2 · · ·Lm · f ′ ⊂ n−1 ∩ p ⊂ n− ∩ p.

Therefore, (4.8) will be proved once we show

L1 · f0 ⊂ n− ∩ p, (4.11)

since L0 normalizes n− ∩ p.

Write

f0 =
( l∑

i=1

Xai+1−ai

)
+X−(al+1+bN−l−1) +

(N−l−1∑

j=1

Xbj+1−bj

)
.

Note that L1 centralizes the first term and the last two terms are in n−1 ∩ p, which

is normalized by L1. Therefore, (4.11) holds and the proof of the inclusion (4.7) is

complete.

4.3. Calculation of the dimension. We now prove

dim
(
(

m∏

j=0

Z(j))Mm · · ·M1M0 · b
)
= dim(γ−1

Q
(f)). (4.12)

Let us recall a few facts about the Z(j) from §3.2. The Lie algebra of Z(j) is spanned

by some Zj
1 , Z

j
2 , . . . , each a sum of root vectors of the form X±(i±k) with i, k in the

string in the array for G2j . Therefore, since each Z(j) commutes with G2j+2, it

follows that

(
m∏

j=0

Z(j))Mm · · ·M1M0 · b = (Z(m)Mm) · · · (Z(1)M1)(Z
(0)M0) · b. (4.13)

Each Zj
i may be decomposed under the direct sum uj⊕qj . Write this decomposition

as Zj
i = Xj

i +Xj
i

′
. Then Xj

i is a sum of root vectors in uj ⊂ n. We observe that if

each Z(j) in either (4.12) or (4.13) is replaced by the product of the one parameter

subgroups for the Xj
i , then the space is unchanged. This follows from Lemma 4.3.
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A standard result about reductive algebraic groups states that if α1, . . . , αd is an

ordering of the positive roots, then

ϕ : n → N · b

ϕ(
∑

tiXαi
) = exp(t1Xα1

) · · · exp(tdXαd
) · b

is an algebraic isomorphism. See for example [8, 8.2.1]. We apply this fact by finding

a subspace of n of dimension at least dim(γ−1
Q

(f)) that maps (via ϕ) into (4.13).

Having done this we will be able to conclude that

dim
(
(

m∏

j=0

Z(j))Mm · · ·M1M0 · b
)
≥ dim(γ−1

Q
(f)).

Then, by the inclusion (4.7), the dimension formula (4.12) will be proved.

Again we handle the two types of pairs (G,K) separately, the type D case being

somewhat easier than the type C case. Assume first that (G,K) is of type C. We

begin by specifying an ordering of roots. For each j = 0, 1, . . . ,m consider root

vectors occurring in

(1) the expressions for all Xj
1 ,X

j
2 , . . . ,

(2) n̂2j+1 \ g2j+2,

(3) ˆ̂n2j+1 \ g2j+2,

(4) l2j ∩ n \ n̂2j+1 ∩ ˆ̂n2j+1 ∩ g2j+2.

Write the corresponding roots as αj
1, α

j
2, . . . with those in (1) first, then those in (2),

etc.

Lemma 4.14. The roots αj
i , j = 0, 1, . . . ,m and all i, are distinct.

Proof. Since each αj
i ∈ ∆(g2j) \∆(g2j+2) it is clear that no αj

i = αj′

i , unless j = j′.

Consider j = 0. We write down the form of roots of each of the types (1)-(4).

Let S be the set of labels of dots in the first string in the array.

(1) ǫa ± ǫb, a ≤ b, a, b ∈ S, and a, b in different blocks. Note that if a, b were in

the same block, then the root vector would be in l, so would not appear in

the expression for X0
i .

(2) ǫi − ǫj, i < j, with i, j in the same 1-block and j ∈ {b1, . . . , bN−ℓ−1}. Note

that neither i nor j can be among a1, . . . , aℓ+1 (or the root vector would not

be in l̂1), and both cannot be in {1, . . . , n} \ S (or the root vector would be

in g2).

(3) ǫi + ǫaℓ+1
, i in the last 1-block, i 6= aℓ+1. Note that all ǫi − ǫj occurring in

ˆ̂n1 are in g2.

(4) ǫi − ǫj, i < j, with i, j in the same block and j ∈ {a1, . . . , aℓ+1} and 2ǫaℓ+1
.

Note that at least one of i, j must be in S (or the root vector would be in g2)
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and if j is among b1, . . . , bN−ℓ−1 then the root vector is in n̂1. Also, ǫi+ǫaℓ+1

occurs in ˆ̂n1, for i 6= aℓ+1.

A similar description applies for arbitrary j.

It is now clear that no two of αj
1, α

j
2, . . . are equal. �

It follows that we may order the roots appearing in (1)-(4), as j ranges over

0, 1, . . . ,m, by

αm
1 , αm

2 , . . . , αm−1
1 , αm−1

2 , . . . , α0
1, α

0
2 . . . .

Writing vj for the span of the root vectors appearing in (1)-(4) for a given j, we have

that ϕ restricted to v1⊕· · ·⊕vm is an isomorphism onto its image. Letting v′j be the

span of the Xj
1 ,X

j
2 , . . . and the root vectors appearing in (2)-(4), the restriction of

ϕ to v′0 ⊕ · · · ⊕ v′m is still an isomorphism (onto its image), because the root vectors

in the expression for Xj
1 ,X

j
2 , . . . mutually commute. But

ϕ(v′0 ⊕ · · · ⊕ v′m) ⊂ (Z(m)Mm) · · · (Z(1)M1)(Z
(0)M0) · b.

Since γ−1
Q

(f) ⊂ µ−1(f), to complete the proof of (4.12) it now suffices to prove

the following.

Claim:
∑m

j=0 dim(v′j) = dim(µ−1(f)).

This is accomplished by applying induction on the rank of G. By the inductive

hypothesis we have
m∑

j=1

dim(v′j) = dim(µ−1
2 (f ′)),

where f = f0 + f ′ and µ2 is the moment map of the cotangent bundle of the flag

variety for G2. We therefore need to prove that

dim(v′0) = dim(µ−1(f))− dim(µ−1
2 (f ′)). (4.15)

The left-hand side is computed first. By Lemma 3.2(2) the dimension of Z(0) (i.e,

the number of X0
i ’s) is ℓ−

[
N
2

]
. Now we must count the roots appearing in (2)-(4) of

the proof of Lemma 4.14. In (2) there are n−N − (s1 − 1) possibilities for i, where

s1 is the number of dots in the last 1-block. In (3) there are s1 − 1 possibilities for

i. In (4) the number of possibilities is (n− (ℓ+ 1)) + 1 = n− ℓ.

Adding these we get dim(v′0) = 2n−
[
3N
2

]
.

Now compute the right hand side of (4.15) using the dimension formula

dim(µ−1(f)) = dim(B) −
1

2
(dim(G · f))

=
1

2

(
dim(ZG(f))− rank(G)

) (4.16)

for a Springer fiber; see for example [7, §6.7]. Recall that the rank of G2 is n −N .

Also, the tableaux of f ′ is obtained from that of f by deleting the first two rows.
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Let

δ =

{
1, if N is odd

0, if N is even.

Applying the formula of (1.10) we get

dim(ZG(f))− dim(ZG2
(f ′))

=
1

2

( N∑

i=1

(c2i − (ci − 2)2)
)
+ δ,

=
N∑

i=1

(2ci − 2) + δ

= 2(2n −N) + δ.

Therefore,

dim(µ−1(f))− dim(µ−1
2 (f ′))

= 2n−N +
δ

2
−

N

2

= 2n−
[3N
2

]
.

This proves (4.15), and therefore (4.12) in type C.

Now consider pairs of type D. Again we specify an ordering of roots. For each

j = 0, 1, . . . ,m consider root vectors occurring in

(1) the expressions for all Xj
1 ,X

j
2 , . . . ,

(2) n2j+1 \ g2j+2,

(3) l2j ∩ n \ n2j+1 ∩ g2j+2.

Write the corresponding roots as αj
1, α

j
2, . . . with those in (1) first, then those in (2),

etc.

For j = 0 we explicitly write the roots occurring in (1)-(3). Let S be the set of

labels in the first string through the array and s1 the number of dots in the last

1-block.

(1) ǫa ± ǫb, a ≤ b, a, b ∈ S, and a, b in different blocks.

(2) ǫi−ǫj, i < j, with i, j in the same 1-block and j ∈ {b1, . . . , bN−ℓ−1}∪{aℓ+1}.

(3) ǫi − ǫj, i < j, with i, j in the same block and j ∈ {a1, . . . , aℓ+1}

A similar description applies for arbitrary j. It is clear that the αj
i are distinct, and

we may order these roots as we did for type C.

Reasoning as before, it suffices to prove that

dim(v′0) = dim(µ−1(f))− dim(µ−1
2 (f ′)). (4.17)
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We first determine dim(v′0). By Lemma 3.2, dim(Z(0)) = r = ℓ − [N+1
2 ] + 1. The

number of root vectors appearing in (2) is n −N + (s1 − 1). The number in (3) is

n− ℓ− s1. This gives dim(v′0) = 2n− [3N+1
2 ].

The righthand side is computed as in the type C case. Let ǫ = 0 if N is even and

ǫ = 1 if N is odd.

dim(µ−1(f))− dim(µ−1
2 (f ′))

=
1

2

(
dim(ZG(f))− dim(ZG2

(f ′))
)
−

1

2

(
rank(G)− rank(G2)

)

=
1

2

(
2(2n −N)− ǫ−N)

)
, by (1.10),

= 2n−
3N + ǫ

2

= 2n− [
3N + 1

2
].

Now (4.12) is proved.

Note that we have shown

dim(γ−1
Q

(f)) = dim(µ−1(f)) (4.18)

for types C and D.

4.4. Proof that f is generic. Formula (4.12) is now used to prove that the element

f constructed by the algorithm is in fact generic. For this we use a general geometric

lemma. Suppose that Q is any K-orbit in the flag variety B and γQ : T ∗
Q
B → Nθ is

the restriction of the moment map µ of T ∗B.

Lemma 4.19. Suppose γQ(T
∗
Q
B) = K · x. If y ∈ K · x \ K · x, then dim(γ−1

Q
(y))

< dim(µ−1(y)).

Proof. Since T ∗
Q
B is irreducible, dim(T ∗

Q
B \ γ−1

Q
(K · x)) < dim(T ∗

Q
B). Consider

B := K · x \K · y and

A := T ∗
Q
B \ γ−1

Q
(B).

The restriction of γ to A is a surjection A → K · y and γ−1
Q

(y) ⊂ A. Now

dim(γ−1
Q

(y)) = dim(A)− dim(K · y)

< dim(T ∗
Q
B)− dim(K · y)

= dim(µ−1(y)), by (4.16).

�

Proposition 4.20. For any closed K-orbit Q in B, the element f constructed by

the algorithm is generic in n− ∩ p.
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Proof. If not, then by taking y = f in the lemma, dim(γ−1
Q

(f)) < dim(µ−1(f)).

This would contradict (4.18). �

Corollary 4.21. γ−1
Q

(f) is irreducible.

Proof. In general, if µ(T ∗
Q
B) = K · f , then µ−1(f)∩T ∗

Q
B contains several irreducible

components of µ−1(f). It is a fact (see [5, Prop. 2.10]) that the component group

AK(f) = ZK(f)/ZK(f)e acts transitively on this set of components. However, for

the pairs considered here, it is known that the component group is trivial. Now [2,

Prop. 2.1], for example, tells us that γ−1
Q

(f) is precisely one irreducible component.

�

The proof of Theorem 3.3 is now complete.
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[6] D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand
Reinhold Co., New York, 1993.

[7] J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys
and Monographs, vol. 43, AMS, Providence, RI, 1995.

[8] T. A Springer, Linear algebraic groups, 2nd ed., Birkhäuser, Boston, 1998.
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