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Abstract. The Springer fiber associated to closed K-orbits in generalized
flag varieties is determined for the real reductive group GL(N,R). Additional

examples for other groups are given. It is shown how to use this information
to compute associated cycles of representations attached to these orbits.

Introduction

An important invariant of a Harish-Chandra module is its associated cycle.
There are no known methods for computing associated cycles in any generality.
For example, associated cycles are not known for all discrete series representations.
The purpose of this article is to compute associated cycles for cohomologically
parabolically induced representations of GL(N,R) and to illustrate how similar
methods are used to compute the associated cycles of discrete series representations
for several other classical groups. The answer is quite simple for GL(N,R), but
is somewhat complicated for other groups. The method is to compute certain
components of Springer fibers in an explicit enough form that a theorem of J.-T.
Chang can be applied. Therefore, our results are about the geometry of Springer
fibers. Our study of the Springer fibers is elementary in nature.

Suppose GR is a linear real reductive group and G is its complexification. We
consider the pair (G,K) where K is the fixed point group of the complexification
of a Cartan involution of GR. Write g = k + p for the (complexified) Cartan
decomposition of the Lie algebra of G. The associated cycle of a Harish-Chandra
module is a formal non-negative integer combination of the closures of K-orbits in
Nθ ≡ N ∩ p, N being the nilpotent cone in g. See [14, Page 322] for a definition
of the associated cycle. Now suppose that F is a generalized flag variety for G and
q = l + u− ∈ F. The cotangent bundle of F may be realized as the homogeneous
bundle T ∗F = G ×

Q
u−. The moment map for the natural action of G on T ∗F is

µ(g, ξ) = Ad(g)ξ. Assume that q is θ-stable, so Q = K · q is a closed orbit in F.
The conormal bundle to Q in F may be written as a homogeneous bundle for K,
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T ∗QF = K ×
Q∩K

(u− ∩ p). We set

γ
Q

= µ|T∗QF.

The image of γ
Q

lies in Nθ and is, in fact, the closure of a single K-orbit. If
f ∈ u− ∩ p we say that f is generic in u− ∩ p when image(γQ)= K · f . For such
an f we will refer to γ−1

Q
(f) as the Springer fiber for Q. It is a union of irreducible

components of the Springer fiber µ−1(f) ⊂ T ∗F.

A theorem of J.-T. Chang states that for an irreducible representation attached
to a closed orbit Q in F the associated cycle is m ·(K · f) where f is generic in u−∩p
and m is the dimension of a space of sections of a sheaf on γ−1

Q
(f). Our approach

is to take a closed orbit Q = K · q and construct a generic element f in u− ∩ p.
We do this in a way that allows us to describe the fiber γ−1

Q
(f). This description

is explicit enough to compute the space of sections, thus computing the associated
cycle.

For GR = GL(N,R) we carry out this construction for the closed orbits Q =
K · q, for each θ-stable parabolic subalgebra. This is done inductively. We first
construct f0, then reduce to a lower rank general linear group. In the smaller
group we construct f1, then again reduce to a smaller group. This is continued to
give f = f0 + f1 + f1 + · · · fm−1. We then show that all generic elements in u− ∩ p
are of the form q · f, q ∈ Q. This will imply that γ−1

Q
(f) = {q}. An important

point is that the method is very elementary and may be adapted to other classical
groups where the fiber γ−1

Q
(f) is considerably more complicated. This is the case

for GR = U(p, q), Sp(2n,R) and O(p, q). For these groups we focus on the full flag
variety B and a closed orbit K · b, b = h + n−. For GR = U(p, q) we recall the
results of [1], where a generic f is constructed and the fiber is explicitly described.
We show why the structure of γ−1

Q
(f) is more complicated that in the case of

GR = GL(N,R). Then using embeddings of Sp(2n,R) and O(p, q) into U(p, q),
we illustrate, in several non-trivial examples, how the method applies to compute
γ−1

Q
(f) in these cases. In the final section we show how to compute the associated

cycles using our descriptions of γ−1
Q

(f) along with Chang’s theorem.

For classical groups computation of the image of γQ appears in the literature. A
combinatorial algorithm for finding the K-orbit K ·f of a generic element f is given
in [11] and [12]. The image of γQ is described in terms of matrices in [16]. The
significance of our procedure for finding a generic f is that it allows us to describe
the fiber γ−1

Q
(f). Associated cycles are computed in [2] and [4] for holomorphic

discrete series representations and for discrete series representations of groups of
real rank one; the computation in these cases uses Chang’s theorem along with
a good description of γ−1

Q
(f). From a very different point of view the equivalent

problem of computing character polynomials was carried out in [7] for holomorphic
discrete series of SU(p, q). In [17] the related notion of isotropy representation
is studied for discrete series representations. Associates cycles for unitary highest
weight modules have been computed in [9] using the theta correspondence.

We thank Peter Trapa for many helpful conversations. The first author is
grateful for the opportunity to participate in the Sixth Workshop on Lie Theory
and Geometry, which was held in part to honor the 60th birthday of her thesis
advisor Roberto Miatello.
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1. Generic elements and the Springer fiber for GL(N,R)

In this section we shall prove two theorems. The first, Theorem 1.11, gives a
description of the generic elements in each theta-stable parabolic subalgebra. The
second theorem, Theorem 1.15, gives the structure of the Springer fiber for Q.

Let G be GL(N,C) and let g = gl(N,C) be its Lie algebra. As described in the
introduction, we are concerned with the pair (G,K) with K the fixed points of the
complexification of a Cartan involution. Thus, K is the orthogonal group defined
by some nondegenerate symmetric bilinear form. We shall choose the symmetric
form ( , ) having matrix

(1.1) S :=


1

1
·

1
1


with respect to the standard basis {ej}. The involution θ : g→ g defined by θ(X) =
−Ad(S)(Xt) is the differential of Θ : G→ G given by Θ(g) = (Ad(S)(gt))−1. The
fixed point group of Θ is the complex orthogonal group

K ≡ O(N,C) = {g ∈ G : gtSg = S}.

Thus g = k ⊕ p is the decomposition of g into ±1 eigenspaces of θ. Note that p is
the the vector space of N ×N complex matrices that are symmetric with respect
to the anti-diagonal.

In the first three subsections we gather some well-known facts and set some
notation.

1.1. Nilpotent orbits. The adjoint action of G = GL(N,C) on the nilpotent
cone

N ≡ {Y ∈ g : Y N = 0}

has a finite number of orbits. The Jordan form gives a one-to-one correspondence
between these orbits and tableau1 of size N . For Y ∈ g the number of rows in the
corresponding tableau is the number of Jordan blocks in the Jordan normal form of
Y ; the number of boxes in each row is the size of the corresponding Jordan block.

It is useful to state this slightly differently. By the Jacobson-Morozov Theorem,
given Y ∈ N there exist H,X ∈ g so that

(1.2) [X,Y ] = H, [H,X] = 2X and [H,Y ] = −2Y.

Therefore, spanC{X,H, Y } is a subalgebra of g isomorphic to sl(2,C); we denote
this subalgebra by sl(2)Y . Then CN is a representation of sl(2)Y and has a de-
composition CN = ⊕Vi into irreducible subrepresentations. Then (after ordering
the constituents so that dim(Vi) ≥ dim(Vi+1)) the tableau associated to G · Y has
dim(Vi) boxes in the ith row.

1By tableau of size N we mean N boxes arranged in rows where each row has no more boxes
than the preceding row.
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We now state a fact that will be used in Section 1.4. Suppose that q = l⊕ u−

is a parabolic subalgebra of g. Then q is the stabilizer of a flag

{0} = W0 ( W1 ( W2 ( · · · ( WM−1 ( WM = CN .

Let di = dim(Wi/Wi−1), i = 1, . . . ,M . Then N =
∑
di is a partition of N , and

thus determines a tableau. The tableau of the dual partition (obtained by switching
rows and columns) corresponds to a nilpotent orbit O. The following proposition
is easily verified. (See [5, Section 7.2].)

Proposition 1.1. With q and O as above O∩u− is dense in u− and is a single
Q-orbit.

This orbit O is referred to as a Richardson orbit for Q, due to the general
results in [10]. It is a fact that dim(O) = 2 dim(u−).

Now we describe the K-orbits in Nθ = N ∩ p. Suppose Y ∈ Nθ. Then there
exists an X ∈ p and H ∈ k satisfying (1.2) (see for example [5, Thm. 9.4.2]).
Consider the decomposition CN = ⊕Vi of CN as a representation of sl(2,C)Y .
The proofs of the following are exercises in linear algebra.

Lemma 1.2. In the decomposition of CN into irreducible sl(2,C)Y representa-
tions the Vi may be chosen to be mutually orthogonal.

Let us assume CN = ⊕Vi with the Vi mutually orthogonal.

Lemma 1.3. Suppose V is one of the irreducible constituents and dim(V ) = d.
Then V has a basis {v1, v2, . . . , vd} so that v1 is a highest weight vector,

vj = Y j−1v1, j = 1, ..., d, and (vk, vl) = δk,d−l+1, 1 ≤ k, l ≤ d.

We associate to the orbit K · Y the partition N =
∑

dim(Vi) and the cor-
responding tableau as above. It follows easily from this discussion that there is
a one-to-one correspondence between K-orbits in Nθ and the tableau. It is also
follows that each G-orbit in N meets p in a single K-orbit. This is a fact that is
special to GL(N,R).

1.2. Generalized flag varieties and γ−1
Q

(f). The parabolic subalgebras of
interest to us are the θ-stable parabolics. We begin by describing them. There will
be slight differences for cases of N even and N odd.

Let h be a fundamental Cartan subalgebra, that is, t ≡ h ∩ k is a Cartan
subalgebra of k.

Lemma 1.4. There is a basis {εi : i = 1, . . . , N} of h∗ with the following
properties. The set of roots in g is ∆ = ∆(h, g) = {εj − εk : j 6= k} and

θ(εj) = −εN−j+1.

Proof. The Cartan subalgebra h may be chosen to be the subalgebra of diag-
onal matrices. Now the lemma is easy to verify. �
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We will write Λ =
∑

Λiεi ∈ h∗ as (Λ1, . . . ,ΛN ). Each such Λ defines a parabolic
subalgebra by

q(Λ) = l + u−

=
(
h +

∑
〈Λ,α〉=0

g(α)
)

+
∑
〈Λ,α〉<0

g(α).

It is clear that q(Λ) is a θ-stable parabolic if and only if θ(Λ) = Λ. By Lemma 1.4
this is the case precisely when

(1.3) Λ =

{
(λ,−λ′), if N is even
(λ, 0,−λ′), if N is odd

where λ′ = (λn, . . . , λ1) for λ = (λ1, . . . , λn).

One easily sees that the Weyl group of K acts on {Λ : θ(Λ) = Λ} by all per-
mutations and sign changes of the coordinates of λ. Thus, each θ-stable parabolic
subalgebra is conjugate to some q(Λ) with λ1 ≥ · · · ≥ λn ≥ 0.

Suppose that Q = LU− is a parabolic subgroup of G and F is the generalized
flag variety of parabolic subalgebras conjugate to q. Then, F ' G/Q. It follows
from [15] and [8] that there is just one closed K-orbits in F.

We remark that the situation is slightly different when the group G is replaced
by SL(N,C).

Now assume that Q = Q(Λ) and q = q(Λ) for some Λ satisfying (1.3). We
assume that λ = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn ≥ 0. Then the unique closed
orbit in F is Q ≡ K · q.

Let

γ
Q

: T ∗Q(F)→ Nθ
γ

Q
(k, Y ) = Ad(k)Y

be as in the introduction. The image of γ
Q

is a the closure of a single K-orbit in
Nθ.

Definition 1.5. We say that f ∈ u− ∩ p is generic in u− ∩ p if O = K · f is
dense in im(γ

Q
).

Note that if f is generic in u− ∩ p then K · f is the orbit of greatest dimension
that meets u− ∩ p.

As indicated in the introduction, our main interest is in explicitly describing
γ−1

Q
(f) when f is generic in u− ∩ p.

It is useful to view the Springer fiber associated to Q as a subvariety of the flag
variety Q ' K/Q ∩K. This is done as follows. Let

N(f, u− ∩ p) = {k ∈ K : k · f ∈ u− ∩ p}.



6 L. BARCHINI AND R. ZIERAU

Then

γ−1
Q

(f) = {(k, ξ) ∈ K ×
Q∩K

(u− ∩ p) : k · ξ = f}

= {(k, k−1 · f) : k−1 ∈ N(f, u− ∩ p)}
' {k · q ∈ Q : k−1 ∈ N(f, u− ∩ p)}
= N(f, u− ∩ p)−1 · q.

(1.4)

1.3. Weight vectors in p. To prove our main result we will need to work
with weight vectors in p. We give a lemma that describes the t-weight vectors in p
and their actions on CN .

Let µi = εi|t. The weights in p are

{±(µj ± µk) : 1 ≤ j ≤ k ≤ n}, for N = 2n and

{±(µj ± µk) : 1 ≤ j ≤ k ≤ n} ∪ {±µj : 1 ≤ j ≤ n}, for N = 2n+ 1.

Lemma 1.6. If N = 2n then there are weight vectors X±(i+j), i ≥ j, and
Xi−j , i 6= j, p so that:

(1.5) X±(i+j) has weight ± (µi + µj) and Xi−j has weight µi − µj ,

Xi−jek = δk,jei + δk,N−i+1eN−j+1

Xi+jek = δk,N−j+1ei + δk,N−i+1ej

X2·iek ≡ Xi+iek = δk,N−i+1ei

X−(i+j)ek = δk,ieN−j+1 + δk,jeN−i+1,

X−2·iek ≡ X−(i+i)ek = δk,ieN−i+1.

(1.6)

If N = 2n + 1 then there are weight vectors X±(i+j), i ≥ j, and Xi−j , i 6= j, and
X±i, 1 ≤ i ≤ n so that: (1.5) and (1.6) hold and

(1.7) X±j has weight ± µj and

Xiek = δk,n+1ei + δk,N−i+1en+1

X−iek = δk,n+1eN−i+1 + δk,ien+1.

Proof. Consider the case N = 2n. We may take {ej} to be the standard basis
vectors and we may write the weight vectors in terms of Ej,k (the matrix with a
one in the (j, k)-place and zeros elsewhere). We get

Xi−j = Ei,j + EN−j+1,N−i+1

Xi+j = Ei,N−j+1 + Ej,N−i+1

X−(i+j) = EN−i+1,j + EN−j+1,i

X−(i+i) = EN−i+1,i.

The first part follows from this. The case N = 2n+ 1 is similar. �



SPRINGER FIBERS 7

1.4. The Springer fiber for Q. Let us fix once and for all Λ ∈ h∗ satisfying
θ(Λ) = Λ. Then Λ determines λ as in (1.3), which we may assume satisfies λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0. We let q = l + u− be the θ-stable parabolic subalgebra q(Λ)
as in Subsection 1.2. This in turn specifies a flag variety F = G · q and a closed
K-orbit Q = K · q in F.

Before describing how to find a nice generic element in q in general, we consider
four examples.

Example 1. Suppose N = 2n and λ = (n, n − 1, . . . , 2, 1). Then q is a Borel
subalgebra. Set

f = X2−1 +X3−2 + · · ·+Xn−(n−1) +X−2·n.

Then f ∈ u− ∩ p. To describe the linear transformation f we will use the follow-
ing convenient notation. For any linear transformation T suppose that T (u) =
v, T (v) = w, . . . , then we will write T : u → v → w, . . . , etc. We will use this no-
tation throughout when T is nilpotent, in which case it is particularly descriptive.
Therefore, Lemma 1.6 tells us that

f : e1 → e2 → e3 → · · · → e2n−1 → e2n → 0.

Thus, fN = 0 and fN−1 6= 0 and the tableau of K · f is

· · · .

It follows that f is a principal nilpotent in g, so G · f is the G orbit of greatest
dimension. We conclude that K · f is the K-orbit in Nθ of greatest dimension (by
[5, Rem. 9.5.2]), and therefore f is generic in u− ∩ p.

Example 2. Consider N = 2n+ 1. Let λ = (n, n− 1, . . . , 2, 1). Set

f = X2−1 +X3−2 + · · ·+Xn−(n−1) +X−n.

Then

f : e1 → e2 → e3 → · · · → e2n → e2n+1 → 0.

It follows that f is a principal nilpotent element in g, so is generic in u−∩p. Again,
the tableau has just one row.

Example 3. Consider N = 2n+ 1 and λ = (n− 1, . . . , 2, 1, 0). Then

f = X2−1 +X3−2 + · · ·+X(n−1)−(n−2) +X−(n−1).

is in u− ∩ p and

e1 → e2 → · · · → en−1 → en+1 → en+3 → en+4 · · · → e2n → e2n+1 → 0
en → 0, en+2 → 0.

The tableau is

(1.8)
· · ·

.



8 L. BARCHINI AND R. ZIERAU

To see that f is generic in u− ∩ p note that the parabolic subalgebra q is given as
the stabilizer of the flag

{0} = F2n−1 ( F2n−2 ( · · · ( F1 ( F0 = CN :

Fi = spanC{ei+1, ei+2 . . . , eN}, for i = 0, 1, . . . , n− 1,

Fn+j−1 = (Fn−j)⊥ = spanC{en+j+2, en+j+3 . . . , eN}, for j = 1, . . . , n.

So the partition N =
∑

dim(Fi−1/Fi) = 1 + · + 1 + 3 + 1 + · + 1 has dual giving
the partition of (1.8). Now Proposition 1.1 tells us that if Y ∈ u− then Y ∈ G · f .
In particular, for any Y ∈ u− ∩ p, dimC(K · Y ) ≤ dimC(K · f) ([5, Rem. 9.5.2]), so
f is generic in u− ∩ p.

Example 4. Let N = 2n and λ = (n− 1, . . . , 2, 1, 0). Then

f = X2−1 +X3−2 + · · ·+Xn−(n−1) +X−(n+(n−1)).

is in u− ∩ p and

f : e1 → e2 → · · · → en−1 → en + en+1 → 2en+1 → 2en+2 → · · · → 2e2n → 0
and en − en+1 → 0.

The tableau is

(1.9)
· · ·

.

To see that f is generic in u−∩p note that the parabolic subalgebra q is the stabilizer
of the flag

{0} = F2n−1 ( F2n−2 ( · · · ( F1 ( F0 = CN :

Fi = spanC{ei+1, ei+2 . . . , eN}, for i = 0, 1, . . . , n− 1,

Fn+j−1 = (Fn−j)⊥ = spanC{en+j+2, en+j+3 . . . , eN}, for j = 1, . . . , n.

The argument for f being generic is the same as in Example 3.

We now return to our arbitrary θ-stable parabolic subalgebra q defined by Λ
as above and give a construction of a generic element f in u− ∩ p. This will be
accomplished by an inductive procedure; first f0 will be specified (roughly as in
the examples), then a reduction will be made to a lower rank general linear group
where f1 will be specified, etc. Then f = f0 + f1 + · · ·+ fm−1 will be our generic
element.

Write λ = (λ1, . . . , λn) as

(1.10) λ = (a, . . . , a︸ ︷︷ ︸
d1

, b, . . . , b︸ ︷︷ ︸
d2

, . . . , c, . . . , c︸ ︷︷ ︸
dl

), with a > b. · · · > c ≥ 0.

To facilitate the description of f we will refer to the indices of each set of equal
coordinates of λ as blocks. There are l blocks.

Specifying f0 depends on two things. It depends on whether or not λn = c is
zero and if N = 2n or N = 2n+ 1.

Case 1. Suppose λn = c 6= 0. For i = 1, . . . , l let ki be the last index in the ith

block (counting from left to right).
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When N = 2n define

f0 = (
l−1∑
i=1

Xki+1−ki
) +X−2·kl

.

When N = 2n+ 1 define

f0 = (
l−1∑
i=1

Xki+1−ki
) +X−kl

.

It will be useful for us to extend the sequence k1, k2, . . . , kl to k1, . . . , kl, . . . , k`
with

` =

{
2l, if N = 2n
2l + 1 if N = 2n+ 1

This is done by setting k`−i+1 = N − ki + 1, for i = 1, 2, . . . , l and, in the odd case,
kl+1 = n+ 1 (= kl + 1).

Then in both even and odd cases of N , using the notation of the four examples,

f : ek1 → ek2 → · · · ek`−1 → ek`
→ 0 and ek → 0 for k /∈ {ki}.

Set
V ′ = spanC{eki

: i = 1, . . . , `}
and let V = (V ′)⊥. Observe that ( , ) is nondegenerate on both V ′ and V , and
CN = V ⊕ V ′. Define

G′1 = {g ∈ G : g(V ′) ⊂ V ′ and g|V = IV } and

G1 = {g ∈ G : g(V ) ⊂ V and g|V ′ = IV ′}.
(1.11)

Observe that G′1 and G1 are mutually commuting Θ-stable subgroups of G, each
isomorphic to a general linear group.

Since f0 ∈ g′1∩p, we may choose e0 ∈ g′1∩p and h0 ∈ g′1∩k so that {e0, h0, f0} is
a standard basis for a subalgebra isomorphic to sl(2,C). Let us call this subalgebra
sl(2)f0 . In fact, h0 may be chosen to lie in h ∩ g′1. Therefore, the standard basis
vectors ek are h0-weight vectors. It is immediately seen that V ′ is an irreducible
sl(2)f0 -representation and ek1 is a highest weight vector; this is essentially Examples
1 and 2.

Case 2. λn = c = 0. Again let ki be the last index in the ith-block. Let ` = 2l − 1
and k`−i+1 = N − ki + 1, for i = 1, 2, . . . , l − 1.

First consider the case N = 2n+ 1. Let Define

f0 = (
l−2∑
i=1

Xki+1−ki
) +X−kl−1 .

Then

f : ek1 → ek2 → · · · · · · ek`−1 → ek`
→ 0 and ek → 0 for k /∈ {ki}.

Let
V ′ = spanC{eki : i = 1, . . . , `}



10 L. BARCHINI AND R. ZIERAU

Now consider N = 2n. This case is a little more involved. Define

f0 = (
l−1∑
i=1

Xki+1−ki
) +X−(kl+kl−1).

Then

f : ek1 → · · · → ekl−1 → ekl
+ ekl+1 → 2ekl+1 → · · · → 2ek`

→ 0

ekl
− ekl+1 → 0 and ek → 0 for k /∈ {ki}.

We set
V ′ = spanC({eki

, ek`−i+1 : i = 1, . . . , l − 1} ∪ {ekl
+ ekl+1}).

In either case N = 2n or 2n + 1, let V = (V ′)⊥ and define G′1 and G1 as in
(1.11). Choosing sl(2)f0 as in Case 1 we see that V ′ is irreducible.

Note that in the four cases ` = dim(V ′) is given by

(1.12) ` =


2l + 1, if λn 6= 0 and N = 2n+ 1
2l, if λn 6= 0 and N = 2n
2l − 1, if λn = 0 and N = 2n or 2n+ 1.

In both Cases 1 and 2, G1 is a general linear group of lower rank than G, and
(G1,K1), K1 = K ∩ G1, is a pair of the same type as (G,K). The Lie algebra g1

contains the θ-stable parabolic subalgebra q1 = q ∩ g1. Write q1 = l1 + u−1 . This
parabolic q1 is defined by Λ1 = Λ|h∩g1 .

Now choose f1 ∈ u−1 ∩ p inside g1 by the same procedure that was used to
choose f0 ∈ u− ∩ p. Define G′2 and G2 in G1 in the same way that G′1 and G1 were
defined in G. Continue by choosing f2 ∈ u−2 ∩ p inside g2, etc. The procedure ends
when Λ|h∩gm = 0. Finally, we take

(1.13) f = f0 + f1 + f2 + · · ·+ fm−1.

Before stating and proving the main result, we shall give a description of the
parabolic subalgebra q as the stabilizer of a flag in CN . First consider the case
when λn = c 6= 0. Let F0 = CN ,

Fi = spanC{ek : k > ki}, for i = 1, . . . , l

and

Fl+i =

{
(Fl−i+1)⊥, i = 1, . . . , l + 1, if N = 2n+ 1,
(Fl−i)⊥, i = 1, . . . , l, if N = 2n

.

Now suppose that λn = c = 0. Let F0 = CN ,

Fi = spanC{ek : k > ki}, for i = 1, . . . , l − 1

and

Fl+i−1 = (Fl−i)⊥, i = 1, . . . , l, for N = 2n or N = 2n+ 1.

Therefore we have defined a flag

{0} = F` ( F`−1 ( F`−2 ( · · · ( F1 ( F0 = CN ,

where ` is as in (1.12)
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It is easy to see that q = {X ∈ g : X(Fi) ⊂ Fi, for i = 1, . . . , `} and

(1.14) u− = {X ∈ g : X(Fi−1) ⊂ Fi, for i = 1, . . . , `}.

Remark 1.7. This flag may also be defined as follows. Consider

HΛ =

0BBBBBBBB@

λ1

. . .

λn

−λn

. . .

−λ1

1CCCCCCCCA
or

0BBBBBBBBBBB@

λ1

. . .

λn

0
−λn

. . .

−λ1

1CCCCCCCCCCCA
,

for N = 2n or 2n+ 1. Then F`−i (i = 1, . . . , `) is the sum of the eigenspaces of HΛ

for the i smallest eigenvalues.

It follows from the tableau of K · f and the description of the flag that Propo-
sition 1.1 implies that f is Richardson in u−.

Remark 1.8. At this point we may conclude that the statement of Theorem
1.15 holds by appealing to the well-known fact that the moment map µ is birational
for GL(N,C). This follows, for example, from [5, Section 7.2] and the description
of the the centralizers of nilpotent elements in gl(N,C) given in [5, Theorem 6.1.3]
However, we shall give an independent proof. This is for two reasons; we will obtain
slightly more information (Theorem 1.11) and the method of proof applies to other
classical groups.

Remark 1.9. There is a basis {e′k} of CN with the following properties:
(a) V ′ is the span of {e′ki

: i = 1, 2, . . . , `} and this basis is as in Lemma 1.3,
(b) V is spanned by {ek : k /∈ {ki}},
(c) Setting k0 = 0, {ek : ki−1 < k < ki} maps to a basis in Fi−1 ∩ V/Fi ∩ V .

To see this take e′k = ek unless λn = c = 0 and N = 2n. When λn = c = 0 and
N = 2n set

e′ki
=

{
eki
/
√

2, if i 6= l

(ekl
+ ekl+1)/

√
2, if i = l

e′k =

{
(ekl
− ekl+1)/

√
−2, if k = kl + 1

ek, if k 6= kl + 1 or ki(any i)
.

Proposition 1.10. Let f be as in (1.13) and suppose that Y ∈ u− ∩ p and
f ∈ K · Y . Then there exists q ∈ Q ∩K so that

(a) Y1 ≡ (q · Y )− f0 ∈ u−1 ∩ p and

(b) f1 + · · · fm−1 ∈ K · Y1.

Proof. Let Y ∈ u− ∩ p with f ∈ K · Y . Consider a standard triple {X,H, Y }
with the property that X ∈ p and H ∈ h. Let sl(2)Y be the span of {X,H, Y }. It
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follows from [5, Lem. 6.2.2] that

(1.15) rank(f j) ≤ rank(Y j), for all j = 1, 2, . . . .

Since f `−1
0 6= 0 (because ` = dim(V ′)) it follows that Y `−1 6= 0. On the other

hand, since Y ∈ u− it follows from (1.14) that Y ` = 0. We conclude that CN

has an irreducible sl(2)Y -subrepresentation of dimension `. Let us call this sub-
representation W ′. By Lemma 1.2 we may assume that ( , ) is nondegenerate on
W ′. Let W = (W ′)⊥. Let w′1, w

′
2, . . . , w

′
` be a basis as in Lemma 1.3. Note that

w′j ∈ Fj \ Fj−1.
Claim. For each i, Fi = (Fi ∩W ′)⊕ (Fi ∩W ), therefore dim(Fi+1 ∩W/Fi ∩W ) =
dim(Fi+1/Fi)− 1.
Let us prove the claim. Let v ∈ Fi. Write v = w′ + w ∈ W ′ ⊕W . Therefore,
v =

∑`
j=1 αjw

′
j + w. Since v ∈ Fi, Y `−i+1v = 0. It follows that

0 =
∑̀
j=1

αjY
`−iw′j + Y `−iw.

But W ′ and W are Y -stable, so

0 =
∑̀
j=1

αjY
`−i+1w′j =

∑̀
j=i+1

αjw
′
j .

Therefore, αi+1 = αi+2 = · · · = α` = 0. We may now conclude that
∑`
j=1 αjw

′
j ∈

Fi ∩W ′, and therefore w ∈ Fi ∩W . This proves the claim.

It follows from the claim that there is an ordered basis u1, u2, . . . , uN of CN so
that

(i) uki = w′i, i = 1, 2, . . . , `

(ii) {uk : ki−1 < k < ki} maps to a basis in Fi−1 ∩W/Fi ∩W and

(ii) (uj , uN−k+1) = δjk.

Define a linear transform q : CN → CN by q(uk) = e′k, for all k = 1, 2, . . . , N .
By (ii) and (iii) q ∈ Q ∩K. Now we will prove statement (a) of the proposition by
showing that Y1 = q · Y − f0 satisfies Y1|V ′ = 0 and Y1(V ) ⊂ V . By (i),(

(q · Y )−f0

)
(e′ki

) = qY (w′i)− e′ki+1

= qw′i+1 − e′ki+1
= 0

and for k /∈ {ki}

(q · Y − f0)(e′k) = qY uk − 0 ∈ q(W ) ⊂ V.

Therefore Y1 = q · Y − f0 ∈ g1. But q ∈ K, so Y1 ∈ p. We now conclude that
Y1 ∈ u−1 ∩ p, proving (a).

For statement (b) note that

rank((f − f0)j) = rank(f j)− (`− j) and

rank(Y j1 ) = rank(Y j)− (`− j)

and apply (1.15) and [5, Lem. 6.2.2]. �
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Theorem 1.11. Let q be any θ-stable parabolic subalgebra of g = gl(N,C).
Then any two generic elements in q are conjugate under Q ∩K.

Proof. This is a consequence of the following lemma.

Lemma 1.12. Let Y ∈ u− ∩ p and f be as in (1.13). If f ∈ K · Y , then there
exists q ∈ Q ∩K so that q · Y = f .

Proof. The proof is by induction on N . By Proposition 1.10 there is q ∈
Q ∩ K, Y1 = (q · Y ) − f0 ∈ u−1 ∩ p and f1 + · · · + fm−1 ∈ K · Y1. Since G1 is
a lower rank general linear group, the inductive hypothesis says that there exists
q1 ∈ Q1 ∩K ⊂ Q ∩K so that q1 · Y1 = f1 + ·+ fm−1 = f − f0. Therefore,

f = q1 · Y1 + f0

= q1 · (Y1 + f0), since f0 ∈ g′1 commutes with g1,

= q1q · Y.

�

The theorem now follows since the lemma implies that any two generic elements
in q are Q ∩K-conjugate to f . �

Corollary 1.13. f is generic in u− ∩ p.

We now turn to the fiber of γ
Q

. As described in (1.4)

γ−1
Q

(f) = (N(f, u− ∩ p))−1 · q.

Suppose that k is in N(f, u− ∩ p). Then k · f lies in u− ∩ p and is generic. By
Theorem 1.11 there is a q ∈ Q ∩K so that k · f = q · f . Therefore, q−1k ∈ ZK(f),
the centralizer of f in K, so

γ−1
Q

(f) = ZK(f) (Q ∩K) · q = ZK(f) · q.

Lemma 1.14. γ−1
Q

(f) is finite.

Proof. Since f is Richardson in u−, dim(G · f) = 2 dim(u−). Therefore we
have dim(K · f) = dim(u). Now

dim(γ−1
Q

(f)) = dim(T ∗QF)− dim(K · f)

= dim(F)− dim(u−)
= 0

�

Theorem 1.15. Let q be any θ-stable parabolic in g and Q = K · q the corre-
sponding closed orbit in F. Then γ−1

Q
(f) = {q}.

Proof. Since the unipotent part of ZK(f) is connected it is enough to show
that the reductive part of ZK(f) is contained in Q. We consider ZK(f)red =
ZK(sl(2)f ), the sl(2)f -intertwining operators of CN .
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We prove that ZK(f)red ⊂ L ⊂ Q by induction on N . Let V (`) be the isotypic
subspace of CN for the `-dimensional irreducible representation of sl(2)f . Then
CN = V (`)⊕ (V (`))⊥. Define

G̃′ = {g ∈ G : g(V (`)) ⊂ V (`), g|(V (`))⊥ = I(V (`))⊥}

G̃ = {g ∈ G : g((V (`))⊥) ⊂ (V (`))⊥, g|V (`) = IV (`)}.

Since (V (`))⊥ contains no irreducible subrepresentation of dimension `, ZK(f)red ⊂
G̃′ × G̃. In fact

ZK(f)red = (G̃′ ∩ ZK(f)red)× (G̃ ∩ ZK(f)red).

The first factor is contained in L since each intertwining map must preserve h-
weight spaces in V (`) (thus preserve the flag, see 1.7). The second factor is in
L ∩ G̃ ⊂ L by induction. �

2. Indefinite unitary groups

Let GR = U(p, q) be the group of linear transformations g satisfying gIp,qgt =
Ip,q, where

(2.1) Ip,q =
(
Ip 0
0 −Iq

)
.

Let n = p+q. The complexification of GR is G = GL(n,C) and θ = Ad(Ip,q) : g→
g is the complexification of a Cartan involution of gR. The complexified Cartan
decomposition is g = k + p where

k =
{(A 0

0 D

)
: A ∈ gl(p,C) and D ∈ gl(q,C)

}
and

p =
{(0 B

C 0

)
: B,Ct ∈Mpq(C)

}
.

The group

K =
{(

a 0
0 d

)
: a ∈ GL(p,C) and d ∈ GL(q,C)

}
is the fixed point group of the involution Θ of G given by conjugation by Ip,q. Thus,
we consider the pair

(2.2) (G,K) = (GL(n,C), GL(p,C)×GL(q,C)).

We will show how to find generic elements in θ-stable Borel subalgebras b of g
and compute the Springer fibers associated to the closed K-orbits Q = K · b in B.
These results are proved in [1]. The method used there is similar to the method
used in Section 1.4. The result for (G,K) = (GL(n,C), GL(p,C) × GL(q,C))
is however quite different from the case of (GL(N,C), O(N,C)) described in the
preceding section. The purpose of this section is two-fold. First, we illustrate these
differences by means of a few examples. Second, the cases of GR = Sp(2n,R) and
GR = O(p, q) in the following sections are more easily understood in terms of this
case along with an embedding of these groups into indefinite unitary groups.



SPRINGER FIBERS 15

To describe the K-orbits in Nθ two well-known lemmas, analogous to Lem-
mas 1.2 and 1.3, will apply. To state these lemmas let 〈 , 〉 be the hermitian
form having matrix Ip,q with respect to the standard basis of Cn. Suppose Y
is in Nθ \ {0} and {X,H, Y } is a standard triple with X ∈ p and H ∈ k. Let
sl(2)Y = spanC{X,H, Y }. Write the decomposition of Cn into irreducible sl(2)Y -
representations as Cn = ⊕Vi.

Lemma 2.1. In the decomposition of Cn into irreducible sl(2)Y -representations
we may assume that each Vi is Ip,q-invariant and the Vi’s are mutually orthogonal
with respect to 〈 , 〉 (and therefore the hermitian form is nondegenerate on each Vi).

Lemma 2.2. If V is any one of the irreducible constituents in Cn (as in the
previous lemma), then there is a basis v1, v2, . . . , v` so that each vi is an H-weight
vector,

vi = Y i−1v1 and 〈vj , v`−k+1〉 = δjk.

Necessarily, each vi is and eigenvector for Ip,q of eigenvalue ±1 and these eigen-
values alternate in the sense that Ip,qvi = (−1)ivi, for all i, or Ip,qvi = (−1)i−1vi,
for all i.

A signed tableau is associated to K ·Y as follows. Arranging the decomposition
Cn = ⊕Vi as in the first lemma and so that dim(Vi) ≥ dim(Vi+1) for all i, the
tableau has dim(Vi) boxes in the ith row. A plus or minus sign is placed in the first
block of the ith row according to the sign of the eigenvalue of Ip,q on the lowest
weight vector in Vi. Then the remaining boxes are filled with + or − signs so that
the signs alternate along each row. There is a one-to-one correspondence between
K-orbits in Nθ and such tableaux up to permutation of equal size rows.

Now let us describe the closed K-orbits in the full flag variety B. Let h be
the diagonal Cartan subalgebra in g; h is also a Cartan subalgebra in k. Fix the
positive system of compact roots

(2.3) ∆+
c = {εi − εj : 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n}.

Suppose Λ ∈ h∗ is ∆+
c -dominant and regular. Then the positive system ∆+ = {α :

〈Λ, α〉 > 0} in ∆ = ∆(h, g) contains ∆+
c . This ∆+ defines a Borel subalgebra by

b(Λ) = b = h + n− with

n− =
∑
〈Λ,α〉<0

g(α)

and Q = K · b is a closed K-orbit in B. In fact, the closed K-orbits in B are in
one-to-one correspondence with positive systems of roots in ∆(h, g) that contain
∆+
c ([15]). Therefore, each closed orbit is determined by a ∆+

c -dominant and ∆-
regular Λ ∈ h∗. The first p coordinates of such a Λ are decreasing as are the last q
coordinates. Let us fix such a Λ and Borel subalgebra b(Λ) = b = h + n−.

We will give an algorithm for finding a generic element in n− ∩ p and describe
the structure of γ−1

Q
(f). The discussion will be somewhat informal and will be

accompanied by an example.

The example we will use is in U(4, 3). Take Λ = (7, 6, 4, 3 | 5, 2, 1). Then we
associate to Λ the positive system as described above. We also associate to Λ the
following array.
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r1 r2
r
5

r3 r4
r
6

r
7

This array is formed by placing dots in one of two rows . The first dot (counting
from left to right) is labelled with the index of the greatest coordinate of Λ. It is
placed in the upper row if this coordinate is one of the first p coordinates of Λ and
in the lower row otherwise. The next dot is labelled with the index of the of the
next greatest coordinate of Λ, and is placed in the upper or lower row in the same
manner as the first dot. This is continued until n dots are placed.

A few observations are useful. If i and j are labels of dots in the array, then
εi − εj is in ∆+ if and only if i appears to the left of j. Also, εi − εj is a compact
(respectively, noncompact) root if both i and j are in the same row (respectively,
in different rows). The simple roots in ∆+ are εi − εj with i and j the labels of
consecutive dots (with i to the left of j). In the example the simple roots are
ε1 − ε2, ε2 − ε5, ε5 − ε3, ε3 − ε4, ε4 − ε6 and ε6 − ε7. The compact simple roots are
ε1 − ε2, ε3 − ε4 and ε6 − ε7.

Before giving our description of a generic element in n− ∩ p we introduce one
piece of terminology. A block is a subset of {1, 2, . . . , n} that is a maximal with
respect to being labels of dots (i) that are consecutive and (ii) lie in just one of the
two rows. Therefore, there are four blocks in the example; they are {1, 2}, {5}, {3, 4}
and {6, 7}.

Our generic f will be determined by first choosing f0, then forming a smaller
array and choosing f1, etc. Begin by connecting a dot in the first block with one
in the second block. Then connect this to a dot in the third block, etc. One such
choice for the example is

r1HH
HHHH

r2
r
5
�
�
�

r3HH
HHHH

r4
r
6

r
7

Write {k1, k2, . . . , k`} for the labels of dots in each block that have been con-
nected. These are listed from left to right, i.e., ki is the label of a dot in the ith

block. Set

f0 =
`−1∑
i=1

Eki+1,ki = E6,3 + E3,5 + E5,1.

Here Ei,j is the matrix with 1 in the i, j place and 0 elsewhere, an εi − εj-root
vector. Observe that

f0 : ek1 → ek2 → · · · → ek`
→ 0 and ek → 0, for ek /∈ {ki}.

Now omit the dots labelled by the ki and form a new (smaller) array and repeat.
In the example we get
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r2HH
HHHH

r4
r
7

and f1 = E7,2. Note that f1 : e2 → e7 → 0 and ek → 0 for all k 6= 2.

For the example f = f0 + f1. In general, this procedure of choosing an fi by
connecting dots in consecutive blocks, then deleting dots in the array will end after,
say, m repetitions. Then

f = f0 + f1 + · · · fm−1.

One easily sees that the standard basis vectors are h-weight vectors for sl(2)f =
spanC{e, h, f}. Therefore the tableau of K · f is easily read off from the diagram.
In the example the tableau is

− + − +

− +

+

The fact that the f constructed above is generic in n−∩p is proved by essentially
the same method used in Section 1.4. However, the situation here is much more
complicated. In fact, Proposition 1.10 does not hold ; it is clear that B ∩ K · f
consists of generic elements in n−∩p (since B∩K normalizes n−∩p), but typically
this is not all of the generic elements. To see this, let q = l + u− be the parabolic
subalgebra of g containing b = h + n− determined by the property that ∆(l) =
span{compact simple roots} ∩ ∆. Then Q ∩ K normalizes n− ∩ p = u− ∩ p, so
Q ∩K · f consists of generic elements. The real issue is that Q ∩K · f is still not
all of the generic elements (in general).

It takes a little preparation to give the correct analogue of Proposition 1.10. In
our inductive procedure for finding f we have chosen f0, thus determining the set
S0 = {k1, k2, . . . , k`}. Let

V ′ = spanC{eki
: i = 1, 2, . . . , `}

V = spanC{ek : k /∈ S0}

and define

G1 = {g ∈ G : g(V ) ⊂ V and g|V ′ = IV ′}.
Note that G1 ' GL(n − `,C), a lower rank general linear group, and (G1,K1),
with K1 = K ∩ G1, is a pair as in (2.2). Then f1 is chosen in n− ∩ p ∩ g1, etc.
Inside g1 we may define q1 (as q was defined inside g). The key observation is that
q1 * q∩g1. This is illustrated by our example. When 1, 5, 3 and 6 are omitted from
the array, dots 2 and 4 ‘collapse’ to form a single block. Therefore the root vectors
for ±(ε2 − ε4) are in l1, but the root vector for ε2 − ε4 is not in q. Similarly define
G2, Q2, . . . , Gm, Qm, and write Qi = LiU

−
i . Now, the analogue of Proposition 1.10

is the following ([1, Sections 3 and 4]).

Proposition 2.3. The set of generic elements in n− ∩ p is

QQ1 · · ·Qm−1 · f.
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From this it can be shown that

γ−1
Q

(f) = LmLm−1 · · ·L1L · b ⊂ Q.

In our example we see that γ−1
Q

(f) = L2L1L · b = L1L · b. It is clear from the
collapse that this properly contains L · b = Q ∩K · b.

We end this section with two examples, both of which we will return to in later
sections.

Example 2.4. Consider GR = U(8, 8) and

Λ = (16, 15, 12, 9, 7, 6, 4, 3 | 14, 13, 11, 10, 8, 5, 2, 1).

Then the diagram is

s1 s2
s
9

s
10

s3
s

11
s

12

s4
s

13

s5 s6
s

14

s7 s8
s

15
s

16

Connecting the dots in consecutive blocks gives

s1
@
@
@
@

s2
s
9
�
�
�
�

s
10

s3
A
A
A
As
11
�
�
�
�

s
12

s4
A
A
A
As
13
�
�
�
�

s5 s6
A
A
A
As
14
�
�
�
�

s7 s8
@
@
@
@s

15
s

16

and

(2.4) f0 = E16,8 + E8,14 + E14,6 + E6,13 + E13,4 + E4,11 + E11,3 + E3,9 + E9,1.

Omitting the dots labelled by the ki and connecting the blocks gives

r2
@
@
@r

10
��

��
��

��
�

r
12

r5 r7
@
@
@r

15

and
f1 = E15,7 + E7,10 + E10,2.

Finally, f2 = E5,12.

Thus, f = f0 + f1 + f2 and the tableau is

− + − + − + − + − +
− + − +
+ −

.
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For the fiber, we see that

∆(l) = {±(ε1 − ε2),±(ε5 − ε6),±(ε7 − ε8),±(ε9 − ε10),±(ε11 − ε12),±(ε15 − ε16)},

∆(l1) = {±(ε5 − ε7),±(ε10 − ε12)}
and L2 and L3 are contained in H = exp(h) (so do not contribute to the fiber).
Therefore,

γ−1
Q

(f) = L1L · b.

Example 2.5. Let GR = U(8, 4) and Λ = (12, 11, 9, 8, 5, 4, 2, 1 | 10, 7, 6, 3).
This gives the array

s1 s2
s
9

s3 s4
s

10

s
11

s5 s6
s
12

s7 s8

Connecting adjacent blocks gives

s1
@
@
@
@@

s2
s
9

�
�
�
��
s3
@
@
@
@@

s4
s

10

�
�
�
�
�
��

s
11

s5 s6
A
A
A
AAs
12

�
�
�
��

s7 s8

and
f0 = E9,1 + E3,9 + E10,3 + E6,10 + E12,6 + E8,12.

Omitting the indices 1, 9, 3, 10, 6, 12, 8 gives the smaller array

s2
@
@
@
@@

s4
s
11

�
�
�
��

s5 s7

and
f1 = E11,2 + E7,11.

Set f = f0 + f1. Then

f : e1 → e9 → e3 → e10 → e6 → e12 → e8 → 0,
e2 → e11 → e7 → 0
e4 → 0, e5 → 0.

The tableau for K · f is
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+ − + − + − +
+ − +
+
+

.

3. Real symplectic groups

In this section we consider the real symplectic group and show how to find
generic elements in n− ∩ p for a θ-stable Borel subalgebra b = h + n− and we show
how to compute the fiber γ

Q
. This works much as in the U(p, q) case and we do

not provide proofs of the statements given.

Consider G = Sp(2n,C) = {G ∈ GL(2n,C) : gJgt = J} where the matrix J
is

J =
(

0 S
−S 0

)
,

with S as in (1.1). Then

GR = U(n, n) ∩ Sp(2n,C)

is the split real form of G, i.e., GR is a real symplectic group. The involution
g 7→ (gt)−1 is a Cartan involution of GR. As this coincides with conjugation by
In,n on GR, the Cartan involution extends to Θ(g) = In,ngIn,n for g ∈ G. The
fixed point group of Θ is

K =
{(

a 0
0 −SatS

)}
' GL(n,C).

Thus we consider the pair (G,K) = (Sp(2n,C), Gl(n,C)).

In our realization of Sp(2n,C), the Lie algebra is given in block form as follows.
Let η : gl(n,C) → gl(n,C) be defined by η(A) = −Ad(S)At. Note that η(A) = A
(resp. η(A) = −A) means that A is skew symmetric (resp., symmetric) with respect
to the anti-diagonal. We may write

g =
{(A B

C η(A)

)
: A,B,C ∈ gl(n,C), η(B) = −B and η(C) = −C

}
.

One sees right away that

h =
n

0BBBBBBBB@

t1
. . .

tn
−tn

. . .

−t1

1CCCCCCCCA
o

is a Cartan subalgebra of both k and g. Since θ = Ad(In,n), one also easily sees
that

p =
{(0 B

C 0

)
: η(B) = −B and η(C) = −C

}
.

Letting µi, i = 1, 2 . . . , n, be as in Subsection 1.3 the roots in g are

± (µi − µj), 1 ≤ i < j ≤ n, the compact roots,

± (µi + µj), 1 ≤ i ≤ j ≤ n, the non-compact roots.
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We fix once and for all the positive system of compact roots

∆+
c = {µi − µj , 1 ≤ i < j ≤ n}.

Our expression for a generic f is a sum of noncompact root vectors. We choose
root vectors as follows.

Xi+j = Xµi+µj = Ei,2n−j+1 + Ej,2n−i+1

X−(i+j) = X−(µi+µj) = E2n−j+1,i + E2n−i+1,j
(3.1)

The closed K-orbits in B are in one-to-one correspondence with Weyl chambers
in h that are ∆+

c -dominant. Therefore, the closed K-orbits in B are parameterized
by the Weyl group conjugates of (n, n− 1, . . . , 2, 1) that are ∆+

c -dominant. If λ is
such a Weyl group conjugate then λ determines the Borel subalgebra

(3.2) b(λ) = b = h + n− with n− =
∑
〈λ,α〉<0

g(α).

The corresponding closed K-orbit in B is Q = K · b.

It is a very important observation for us that if

(Ĝ, K̂) = (GL(2n,C), GL(n,C)×GL(n,C))

is the pair from Section 2, then

G ⊂ Ĝ and K = K̂ ∩G.

This embedding of (G,K) into (Ĝ, K̂) has several very nice properties. If we let ĥ

be the diagonal Cartan subalgebra and ∆̂+
c the fixed system of positive compact

roots in ĝ (as in Section 2) then

∆+
c = {α|h : α ∈ ∆̂ +

c }.

In addition, given a ∆+
c -dominant λ ∈ h∗ and corresponding Borel subalgebra b(λ)

of g, there exists Λ ∈ ĥ∗ that is ∆̂−c -dominant and Λ|h = λ. For this we may take
Λ = 1

2 (λ,−λ′), λ′ = (λn, . . . , λ2, λ1).

The K-orbits in Nθ are parameterized by signed tableau: odd length rows occur
an even number of times, the signs along each row alternate and for each odd row
beginning with a + (resp. −) sign there is another row of the same length beginning
with a − (resp., +) sign. Much like the cases already considered, the row lengths
correspond to the dimensions of irreducible sl(2,C) representations on C2n and the
signs beginning rows correspond to the eigenvalues of In,n on lowest weight vectors.

For a given ∆+
c -dominant Weyl group conjugate λ of (n, . . . , 2, 1), and corre-

sponding closed K-orbit Q = K ·b in B, we describe how to find a nice generic f in
n− ∩ p. As an example consider G = Sp(16,C) and λ = (8, 7, 4, 1,−2,−3,−5,−6).
Then

Λ = (8, 7, 4, 1,−2,−3,−5,−6 | 6, 5, 3, 2,−1,−4,−7,−8)
gives a diagram (as described in Example 2.4).

s1 s2
s
9

s
10

s3
s

11
s

12

s4
s

13

s5 s6
s

14

s7 s8
s

15
s

16
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Note that the diagram is symmetric about its center of mass; this symmetry is
equivalent to the property that the positive system for ĝ restricts to a positive
system for g.

Choose the fi as we did in Section 2 with the following additional requirement.
The choice of dots to be connected should be symmetric in the sense that for
blocks in the left half of the diagram dots farthest to the left in each block should
be connected and in the right half of the diagram dots farthest to the right in each
block should be connected. We arrive at the exact same f = f0 + f1 + f2 as in
Example 2.4. Note that this is a sum of root vectors in ĝ. However. the symmetry
condition implies that each fi ∈ g and may easily be written in terms of root vectors
in g. Writing X±(i±j) for root vectors for ±(µi + µj) we see that

f0 = X−(4+4) +X4+6 +X−(6+3) +X3+8 +X−(8+1),

f1 = X7+7 +X−(7+2),

f2 = X5+5.

Note that in the expression for f0 (for example) as in (2.4) the first and the last
terms in (2.4) combine to give a root vector in g by (3.1). Similarly for the second
and the second to the last, etc. The middle ĝ-root vector is always some X±(i+i).
The tableau for f is the same as in Example 2.4 and the generic element in n− ∩ p
is also generic in n̂− ∩ p̂.

The set of generic elements is described much as it is in the case of GR =
U(p, q). Let q = l + u− be defined by ∆(l) being the the roots in the span of the
compact simple roots. With Ĝ1, Ĝ2, . . . and Q̂1, Q̂2, . . . defined as in Section 2, set
Qi = Q̂i ∩Gi, for i = 1, 2, . . . ,m. It can be shown that QQ1Q2 · · ·Qm−1 · f is the
set of generic elements in n−. From this it can be shown that the Springer fiber for
Q is

γ−1
Q

(f) = Lm · · ·L2L1L · b.
In the example

(3.3) γ−1
Q

(f) = L1L · b
with L1 the copy of GL(2.C) having roots ±(µ5 − µ7) (along with a torus).

The description of the generic element f and γ−1
Q

(f) given for the above example
extends in a straightforward way to an arbitrary closed orbit in the flag variety for
sp(2n,C).

In Section 5 we will illustrate how to compute the multiplicity from this de-
scription of γ−1

Q
(f).

4. Indefinite orthogonal groups

As an example of the computation of the Springer fiber for a closed orbit Q in
B for the indefinite orthogonal groups we will work with O(8, 4). No attempt will
be made to explain the algorithm that applies to all orthogonal groups for either
finding a generic f or for computing γ−1

Q
(f). We will however pick an example and

explicitly construct the generic element in n−∩p and describe the fiber; reasonably
complete proofs will be given. With considerable effort the proofs can be made to
work for general indefinite orthogonal groups. The techniques of Section 1 will be
used.
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4.1. Notation and generalities for O(2p, 2q). Our realization of O(2p, 2q)
will not be the usual realization. The reason is that it is very convenient to use
a realization with an embedding into an indefinite unitary group that allows us to
easily adapt the method of Section 2.

Let ĜR = U(2p, 2q) be defined by the hermitian form having matrix

I2p,2q =
(
I2p 0
0 −I2q

)
with respect to the standard basis of C2n (with n = p + q). The corresponding
pair is (Ĝ, K̂) = (GL(2n,C), GL(2p,C) × GL(2q,C)). Now let G = O(2n,C) be
defined by the symmetric form ( , ) having matrix(

S2p 0
0 S2q

)
with respect to the standard basis of C2n. Here S2p (resp., S2q) is the matrix of
(1.1) of size 2p × 2p (resp., 2q × 2q). Write ηp(A) = −Ad(S2p)(At) and ηp(D) =
−Ad(S2p)(Dt). Then

g =
{(

A B
−S2qB

tS2p D

)
: B ∈M2p×2q(C), ηp(A) = A, ηp(D) = D

}
Note that ηp(A) = A means that A is skew symmetric with respect to the anti
diagonal. The complexified Cartan involution of g is θ = Ad(I2p,2q) and

k =
{(A 0

0 D

)
: ηp(A) = A, ηp(D) = D

}
.

The subalgebra of diagonal matrices

h ∼= diag(t1, . . . , tp,−tp, . . . ,−t1 | tp+1, . . . , tp+q,−tp+q, . . . ,−tp+1)

is a Cartan subalgebra of g. Define µi ∈ h∗, i = 1, 2, . . . , n, by

µi(diag(t1, . . . , tp,−tp, . . . ,−t1 | tp+1, . . . , tp+q,−tp+q, . . . ,−tp+1)) = ti.

The roots of h in g are

± (µi ± µj), 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ p+ q (the compact roots)

± (µi ± µj), 1 ≤ i ≤ p < j ≤ p+ q (the noncompact roots).

Let us fix a positive system of compact roots by

∆+
c = {µi ± µj : 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ p+ q}.

As in the previous section, take ĥ to be the diagonal Cartan subalgebra in
ĝ = gl(2n,C). Then ∆+(ĥ, ĝ) = {±(εi − εj) , 1 ≤ i < i ≤ 2n} and let ∆̂+

c be the
fixed system of positive compact roots as in Section 2. Then it follows that

∆+
c = {α|h , α ∈ ∆̂+

c }.

If λ = (λ1, . . . , λn) =
∑
λiµi is ∆+

c -dominant, then there exists Λ ∈ ĥ∗ that is ∆̂+
c -

dominant and λ = Λ|h. It follows that if b(λ) = b = h + n− is the Borel subalgebra
determined by a ∆-regular, ∆+

c -dominant λ (n− =
∑
〈λ,a〉<0 g(α)) then there is a

Borel subalgebra b̂ (defined by some Λ) so that b = b̂ ∩ g.

The K-orbits in Nθ are described in much the same manner as for the other
groups. Let Y ∈ Nθ and form a standard triple {X,H, Y } with X ∈ p and H ∈ h,
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and let sl(2)Y = spanC{X,H, Y }. Write C2n = ⊕Vi for a decomposition of C2n

into irreducible sl(2)Y -representations.

Lemma 4.1. Let Y and sl(2)Y be as above. It may be assumed that the Vi in
the decomposition of C2n are pairwise orthogonal with respect to ( , ) and each Vi
is I2p,2q-invariant. For each constituent Vi, a basis {v1, . . . , v`} may be chosen so
that each vi is an H-weight vector, vi = Y i−1v1 and (vj , v`−k+1) = δjk.

The signed tableau for K · Y has rows with dim(Vi) boxes; the number of rows
of a given even length is even. The ith row begins with the sign of the eigenvalue
of the lowest weight vector of Vi and signs are placed in the other boxes so as to
alternate along each row. There are an even number of rows having a given even
number of boxes, and half begin with + and half with −.

The last piece of general information about the indefinite orthogonal groups
that we need is a description of roots vectors. Since we want to determine a par-
ticular f ∈ n− ∩ p in terms of root vectors, only noncompact root vectors need to
be described. Take 1 ≤ i ≤ p < j ≤ p+ q and set

Xi−j ≡ Xµi−µj = Ei,p+j − E2n+p−j+1,2p−i+1

X−(i−j) ≡ X−(µi−µj) = Ep+j,i − E2p−i+1,2n+p−j+1

Xi+j ≡ Xµi+µj = Ei,2n+p−j+1 − Ep+j,2p−i+1

X−(i+j) ≡ X−(µi+µj) = E2n+p−j+1,i − E2p−i+1,p+j .

(4.1)

4.2. The example. Let GR = O(8, 4) and λ = (6, 5, 3, 2, 4, 1). Then Λ ∈ ĥ is
given by Λ = (6, 5, 3, 2,−2,−3,−5,−6 | 4, 1,−1,−4). This gives a positive system
in ∆(ĥ, ĝ) containing ∆̂+

c ; the corresponding array (as described in Section 2) is

s1 s2
s
9

s3 s4
s

10

s
11

s5 s6
s
12

s7 s8

We adjust Example 2.5 by setting

f0 = E9,1 + E3,9 + E10,3 + E11,3 − E6,10 − E6,11 − E12,6 − E8,12,

which we represent by

s1
@
@
@
@@

s2
s
9

�
�
�
��
s3
@
@
@
@@

Q
Q
Q
Q
Q
QQ

s4
s

10

�
�
�
�
�
��

s
11

�
�
�
��

s5 s6
A
A
A
AAs
12

�
�
�
��

s7 s8
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(One easily checks that this is conjugate under L̂ to the f0 chosen in Example 2.5.)
Using (4.1) we may rewrite f0 in terms of root vectors for g as

f0 = X5−1 +X3−5 +X6−3 +X−(6+3).

Similarly

f1 = E10,2 − E11,2 + E7,10 − E7,11

= X6−2 −X−(6+2).

Set f = f0 + f1. It is easy to check (from (4.1)) that

f : e1 → e9 → e3 → e10 + e11 → −2e6 → 2e12 → −2e8 → 0,
e2 → e10 − e11 → 2e7 → 0.

The tableau for K · f is

+ − + − + − +
+ − +
+
+

.

Let

V1 = spanC{e1, e9, e3, e10 + e11, e6, e12, e8}, V3 = spanC{e4},
V2 = spanC{e2, e10 − e11, e7}, V4 = spanC{e5}.

Then C12 = V1 ⊕ V2 ⊕ V3 ⊕ V4 as sl(2)f -representations.

In order to show that f is generic in n− ∩ p (and compute γ−1
Q

(f)) we need to
give Q as the stabilizer of a flag. Note that ∆(l) = {±(µ1 − µ2),±(µ3 − µ4)} and
Q is the stabilizer of

{0} = F7 ( F6 ( F5 ( F4 ( C12

where

F7 = {0}, F5 = spanC{e12, e7, e8},
F6 = spanC{e7, e8}, F4 = spanC{e5, e6, e12, e7, e8}.

This is an isotropic flag. This flag may be extended to a longer flag by setting
F3 = (F4)⊥, F2 = (F5)⊥, F1 = (F6)⊥ and F0 = (F7)⊥ = C12. Then Q is also the
subgroup of G that stabilizes

(4.2) {0} = F7 ( F6 ( F5 ( F4 ( F3 ( F2 ( F1 ( F0 = C12.

It may checked that

(4.3) u− = {Y ∈ g : Y (Fj) ⊂ Fj+1, j = 0, 1, . . . , 6}

Define
G1 = {g ∈ G : g|V1 = IV1 and g(V ⊥1 ) ⊂ V ⊥1 }.

Then (G1,K1) = (O(5,C), O(4,C)×O(1,C)) and we define Q1 to be the parabolic
subalgebra of G1 stabilizing the flag

(4.4) {0} = F ′3 ( F ′2 ( F ′1 ( F ′0 = V ⊥1 ,
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with

F ′3 = {0}, F ′1 = spanC{e10 − e11, e5, e7},
F ′2 = spanC{e5, e7}, F ′4 = spanC{e2, e4, e10 − e11, e5, e7}.

Note that ∆(l1) = {±(ε2 − ε4)}.

Proposition 4.2. Each generic element in n− ∩ p is of the form qq1 · f , for
some q ∈ Q ∩K and q1 ∈ Q1 ∩K.

Proof. Let Y be generic in n− ∩ p. Therefore f ∈ K · Y . Then

(4.5) rank(f j) ≤ rank(Y j), j = 1, 2, . . . .

Since f6 6= 0, Y 6 is non-zero. By (4.3), Y 7 = 0. Therefore, C12 decomposes
as sl(2)Y -representation as W1 ⊕W⊥1 , with W1 an irreducible seven dimensional
subrepresentation. One can show that

(4.6) Fi = (Fi ∩W1)⊕ (Fi ∩W⊥1 ), for i = 0, 1, . . . , 7.

The argument for this is essentially the same as the argument proving the claim in
Proposition 1.10. A basis of {w1, . . . , w7} of W1 may be chosen as in Lemma 4.1,
and it follows from (4.3) and (4.6) that

wi ∈ Fi−1 ∩W1 \ Fi, i = 1, . . . , 7.

It follows from (4.6) that dim(Fi−1 ∩W⊥1 /Fi ∩W⊥1 ) is one for i = 1, 3, 4, 5, 7, and
is zero for i = 2, 6. Therefore a basis {w8, w9, . . . , w12} may be found so that

w8 ∈ F0 ∩W⊥1 \ F1 ∩W⊥1
w9 ∈ F2 ∩W⊥1 \ F3 ∩W⊥1
w10 ∈ F3 ∩W⊥1 \ F4 ∩W⊥1
w11 ∈ F4 ∩W⊥1 \ F5 ∩W⊥1
w12 ∈ F6 ∩W⊥1

and (w8, w12) = (w9, w11) = (w10, w10) = 1 and (wj , wk) = 0, for other j, k,
8 ≤ j ≤ k ≤ 12.

We now reorder and scale the basis of weight vectors in the sl(2)f -representation
C12 = V1 ⊕ V2 ⊕ V3 ⊕ V4 by

e′1 =
e1√
−2

e′2 =
e9√

2
e′3 =

e3√
−2

e′4 =
e10 + e11√

2

e′5 =
√
−2 e6 e′6 =

√
2 e12 e′7 =

√
−2 e8 e′8 =

e2√
2

e′9 =
e10 − e11√
−2

e′10 =
√

2 e7 e′11 = e11 e′12 = e5

Therefore {e′1, . . . , e′7} is a basis for V1 as in Lemma 4.1, and similarly for the others.

The linear transform q : C12 → C12 defined by q(wi) = e′i, i = 1, 2, . . . , 12,
(i) preserves ( , ), so is in G,
(ii) preserves the I2p,2q-eigenspaces, so commutes with I2p,2q and is therefore

in K, and
(iii) stabilizes the flag (Fi), so lies in Q.

In addition, for v ∈ V1, q−1f0(v) = Y q−1(v). Therefore, (q · Y − f0)|V1 = 0.
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Since W⊥1 is Y -stable we see that q · Y − f0 : V ⊥1 → V ⊥1 . We conclude that
Y1 ≡ q · Y − f0 ∈ g1. Also, Y1 ∈ n− ∩ p = u− ∩ p.

Claim: There exist q1 ∈ Q1 ∩K so that q1 ·Y1 = f1. Once this is accomplished the
proposition will be proved because

f1 = q1 · Y1

= q1(q · Y − f0)
= q1q · Y − f0, since g1 commutes with f0,

therefore Y = q−1q−1
1 · f .

To prove the claim, consider the sl(2)Y -representation on W⊥1 . From (4.5)
we see that W⊥1 contains an irreducible subrepresentation of dimension at least
three. However, the I2p,2q-eigenvalue +1 (resp., −1) on W⊥1 has multiplicity four
(resp., one). Therefore W⊥1 contains an irreducible subrepresentation of dimension
exactly 3, since the eigenvalues must alternate from one weight vector to the next
within an irreducible constituent. Again by considering the eigenvalues of I2p.2q we
conclude that there are two copies of the trivial representation in W⊥1 . Let’s write
W⊥1 = W2⊕W3⊕W4, with dim(W2) = 3. Now choose a basis {u8, . . . , u12} of W⊥1
so that u8, u9, u10 are as in Lemma 4.1, and u11 ∈ F ′0 ∩W3 \F ′1 and u12 ∈ F ′2 ∩W4,
and (u11, u12) = 1 and (u11, u11) = (u12, u12) = 0.

Define q1 : C12 → C12 by q1|V1 = IV1 and q1(ui) = e′i, i = 8, 9, . . . , 12. Then by
the same reasoning as above, q1 ∈ Q1 ∩K. One easily checks that q1 · Y1 − f1 = 0.

�

It follows that N(f, n− ∩ p) = QQ1ZK(f), and γ−1
Q

(f) = ZK(f)Q1Q · b. One
can also show that the centralizer may be omitted from this expression for the fiber
and Q (resp., Q1) can be replaced by L (resp., L1). We arrive at

γ−1
Q

(f) = L1L · b.
Here ∆(l1) = {±(µ2 − µ4)}.

5. Computation of the multiplicity polynomial

The associated cycle of a Harish-Chandra module is a formal linear combina-
tion of closures of K-orbits in Nθ with non-negative integer coefficients. Writing
the associated cycle of a Harish-Chandra module X as AC(X) =

∑
miOi, the as-

sociated variety of X is ∪Oi and mi is referred to as the multiplicity of Oi in the
associated cycle. Suppose that X is an irreducible Harish-Chandra module with
regular integral infinitesimal character. It is well-known that X fits into a coherent
family {X(λ) : λ ∈ Λwt} (with Λwt the weight lattice in the dual of a Cartan
subalgebra h∗); see [13, Lem. 7.2.6 and Cor. 7.3.23]. It is also well-known that the
associated cycles of the X(λ) have the form

AC(X(λ)) =
∑

mi(λ)Oi
and each mi(λ) extends to a W -harmonic homogeneous polynomial on h∗.

Our goal is to illustrate how to use our description of γ−1
Q

(f) to compute the
multiplicity polynomials for various representations of classical groups. The main
tool is a theorem of J.-T. Chang that relates the multiplicity to γ−1

Q
(f). This
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theorem applies to representations associated to closed K-orbits in generalized flag
varieties, that is, to cohomologically parabolically induced representations (the Aq-
lambda representations).

To make precise the connection between the associated cycles of the cohomolog-
ically parabolically induced representations and the Springer fibers we begin with
the discrete series representations. Suppose that GR is a real reductive group with
nonempty discrete series. Then GR has a compact Cartan subgroup HR. Complex-
ification gives a pair (G,K) with the property that there is a Cartan subalgebra h
of g that is contained in k. As in previous sections we fix a positive system of com-
pact roots ∆+

c . The closed orbits are in one-to-one correspondence with positive
systems ∆+ that contain ∆+

c . Letting

b = h + n−, n− =
∑
α∈∆+

g(−α),

the closed orbit corresponding to ∆+ is Q = K · b. For each closed orbit Q there is
a family of discrete series representations; these are in a coherent family {XQ(λ) :
λ ∈ Λ′wt}, where Λ′wt is a translate of the weight lattice in h∗. Each discrete series
representation lies in ⋃

Q closed

{XQ(λ) : λ ∈ Λ′wt}.

We may now state Chang’s theorem ([3]).

Theorem 5.1. Given ∆+ ⊃ ∆+
c and the corresponding closed K-orbit Q = K ·b

in B, let f be generic in n− ∩ p. Then

AC(XQ(λ)) = mQ(λ)K · f

with
mQ(λ) = dim

(
H0(γ−1

Q
(f),O(τ))

)
.

The sheaf O(τ) is the restriction to γ−1
Q

(f) of the sheaf of regular sections of the
homogeneous line bundle Lτ → K · b corresponding to τ = λ + ρ − 2ρc (using the

standard notation of ρ =
1
2

∑
∆+

α and ρc =
1
2

∑
∆+

c

α).

It is important to note that γ−1
Q

(f) is typically not homogeneous, in particu-
lar the Borel-Weil Theorem does not immediately apply to compute the space of
sections.

Now we turn to an example of the computation of the associated cycle for a
discrete series representation. We will consider the example of Section 3 in GR =
Sp(2n,R) and use the formula for the fiber given in (3.3).

The cohomology space H0(γ−1
Q

(f),O(Lτ )) may be computed using the Borel-
Weil Theorem as follows. Let W−τ be the irreducible K-representation of lowest
weight −τ and let w−τ be a lowest weight vector. The Borel-Weil Theorem states
that W ∗−τ ' H0(Z,O(Lτ )). This isomorphism is given in terms of matrix coeffi-
cients by

v 7→ ϕv, v ∈W ∗−τ
ϕv(k) = 〈v, kw−τ 〉.
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Using a small amount of algebraic geometry one may conclude that for λ sufficiently
dominant

(5.1) dim
(
H0(γ−1(f),Oτ )

)
= dim

(
spanC{k−1w−τ : k ∈ N(f, n− ∩ k)}

)
.

Now our description of γ−1(f) says that the multiplicity is

dim
(
spanC{k · w−τ : k ∈ L1L}

)
.

See [6, §6.1-6.3] and [1, Section 6] for a discussion of this method.

Now we will compute the multiplicity polynomial for the family of discrete
series representations {XQ(λ)} associated to the closed orbit of our example in
Section 3. Let τ = (τ1, . . . , τ8) and let U−τ be the irreducible finite dimensional
L-representation of lowest weight −τ . Then U−τ ' spanC{L · w−τ}. To compute
spanC{L1L · w−τ} first decompose U−τ under L1 ∩ L (a torus). Then each weight
vector is annihilated by l1∩u− (since L normalizes u−), therefore spanC{L ·w−τ} is
the direct sum of irreducible L1-representations having these lowest weight vectors.
Let H = exp(h). Then

U−τ |H = −
τ1−τ2∑
a=0

τ5−τ6∑
b=0

τ7−τ8∑
c=0

(τ1 − a, τ2 + a, τ3, τ4, τ5 − b, τ6 + b, τ7 − c, τ8 + c).

Since ∆(l1) = {±(ε5 − ε7)} the dimension of spanC{L1L · w−τ} is
τ1−τ2∑
a=0

τ5−τ6∑
b=0

τ7−τ8∑
c=0

(τ5 − τ7 + 1− b+ c)

= (τ1 − τ2 + 1)
τ5−τ6∑
b=0

τ7−τ8∑
c=0

(τ5 − τ7 + 1− b+ c)

= (τ1 − τ2 + 1)
(
(τ5 − τ6 + 1)(τ7 − τ8 + 1)(τ5 − τ7 + 1)

− (τ5 − τ6 + 1)(τ5 − τ6)
2

(τ7 − τ8 + 1) + (τ5 − τ6 + 1)
(τ7 − τ8 + 1)(τ7 − τ8)

2
)

=
1
2

(τ1 − τ2 + 1)(τ5 − τ6 + 1)(τ7 − τ8 + 1)(τ5 + τ6 − τ7 − τ8 + 2).

In terms of the parameter λ of the family of discrete series representations
{XQ(λ)} (using τ = λ+ ρ− 2ρc = λ+ (1, 2,−2, 0,−1, 0, 0, 1)) we get

mQ(λ) =
1
2

(λ1 − λ2)(λ5 − λ6)(λ7 − λ8)(λ5 + λ6 − λ7 − λ8).

We point out that in general (for GR = Sp(2n,R)) the calculation of mQ(λ) is
not much more involved than the above example. The restrictions of irreducible Li-
representations to Li∩Li+1 are always carried out using the very simple branching
rule for restricting representations from GL(p+ 1,C) to GL(p,C)×GL(1,C).

More generally, now let GR be any real reductive group and F a generalized flag
variety for G. If q = l + u− is a θ-stable parabolic subalgebra in F, then Q = K · q
is a closed orbit in F. There is a family of cohomologically induced representations
associated to Q. Denote the coherent family by {XQ(λ) : λ ∈ Λwt}. The method of
[2] and [3] computes the associated cycle as follows. Let B be the full flag variety
and π : B → F the natural projection. Then π−1(Q) is the closure of a single
K-orbit Q0 in B. We may describe Q0 by noting that π−1(q) is the flag variety BL
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for L, and therefore contains a dense open K ∩ L-orbit. Write this dense orbit as
K∩L ·bL and write bL = hL+n−L , where hL is a maximally split Cartan subalgebra
of l. Then Q0 = K · b, with b = bL + u− = h + n−, is dense in π−1(Q). One may
conclude from the arguments in [2] and [3] that

AC(XQ(λ)) = dim
(
H0(γ−1

Q0
(f),O(τ))

)
K · f,

when f is generic in n−∩p. Here γ
Q0

: T ∗Q0
B→ Nθ is the restriction of the moment

map µ to T ∗Q0
B and τ is described below.

The important geometric observations are that f is generic in u− ∩ p if and
only if f is generic in n− ∩ p, and

γ−1
Q0

(f) = π−1(γ−1
Q

(f)).

To see this, note that since K ∩ L · bL is open in BL, we have k ∩ l + bL = l. From
this it follows that n−L ∩ p = 0 (since l = l∩ k + bL is the orthogonal complement of
n−L ∩ p in l). Therefore, n− ∩ p = u− ∩ p. Now it is immediate that f is generic in
n− ∩ p if it is generic in u− ∩ p. It also follows that N(f, u− ∩ p) = N(f, n− ∩ p).

We are now in position to compute the multiplicity polynomials for the coho-
mologically induced representations for GR = GL(N,R) using Theorem 1.15. For
each θ-stable parabolic subalgebra and corresponding closed K-orbit Q = K · q in
a flag variety F we have shown that N(f, u− ∩ p) = Q ∩K. Therefore,

γ−1
Q0

(f) ' Q ∩K · b = (L ∩K) · b = L · b = BL.

It can be seen that O(τ) is the sheaf of local sections of Lτ → BL, the homogeneous
bundle L ×

BL

Cλ−ρ+2ρ(u∩p). Here 2ρ(u∩ p) is a weight of hL ∩ k extended to be zero

on hL ∩ p. Therefore, the multiplicity polynomial is

mQ(λ) = dim
(
H0(γ−1

Q0
(f),O(Lτ ))

)
= dim

(
H0(BL,O(Lλ−ρ+2ρ(u∩p)))

)
.

By the Borel-Weil Theorem and the Weyl dimension formula we get

mQ(λ) =
∏

α∈∆+(hL,l)

〈λ− ρ+ 2ρ(u ∩ p) + ρ(l), α〉
〈ρ(l), α〉

.

This may be simplified slightly. Referring to (1.10), the structure of the group
LR is

LR =


GL(d1,C)× · · · ×GL(dl,C), if c 6= 0, N = 2n
GL(d1,C)× · · · ×GL(dl,C)×GL(1,R), if c 6= 0, N = 2n+ 1
GL(d1,C)× · · · ×GL(dl−1,C)×GL(2dl,R), if c = 0, N = 2n
GL(d1,C)× · · · ×GL(dl−1,C)×GL(2dl + 1,R), if c = 0, N = 2n+ 1.

It suffices to express the formula for mQ(λ) in terms of the diagonal Cartan subal-
gebra h (as in Section 1). Note that this nearly coincides with hL. Then it is easy
to check that −ρ+ 2ρ(u ∩ p) + ρ(l) = −ρ(u) + 2ρ(u ∩ p) is

n∑
i=1

(εi − εN−i+1), if c 6= 0,

n−dl∑
i=1

(εi − εN−i+1), if c = 0,
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which is orthogonal to ∆(l). Therefore,

mQ(λ) =
∏

α∈∆+(h,l)

〈λ, α〉
〈ρ(l), α〉

.
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Birkhäuser, Boston, 1981.

[14] , Associated varieties and unipotent representations, Harmonic Analysis on reductive
groups (W. Barker and P. Sally, eds.), Progress in Mathematics, vol. 101, Birkhäuser, 1991,
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