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1. Introduction

Let GR be a real form of a connected complex simple Lie group G and let X be the flag
variety of G. The moment map for the natural action of G on the cotangent bundle T ∗X

plays an important role in the theory of the associated cycle of Harish-Chandra modules.
Viewing the cotangent bundle as {(b, ξ) : b ∈ X, ξ ∈ (g/b)∗}, the moment map is given by
µ((b, ξ)) = ξ. It follows that µ maps T ∗X into the nilpotent cone N ∗ in g∗. For f ∈ N ∗,
µ−1(f) is an interesting subvariety of T ∗X, which is called the Springer fiber over f . Let
g = k ⊕ p be the complexification of a Cartan decomposition of the Lie algebra of GR.
Of particular importance in the representation theory of GR is the Springer fiber when
f ∈ (g/k)∗. In this case the irreducible components of µ−1(f) may be described as follows.
Let K be the fixed point group of the lift to G of the complexified Cartan involution of
g. Then, at least when K is connected, the irreducible components of µ−1(f) are all of
the form T ∗

ZX ∩ µ−1(f), where Z is a K-orbit in X and T ∗
ZX is the conormal bundle to

Z in T ∗X. The purpose of this article is to give an explicit description of the components
of the Springer fiber that correspond to the closed orbits Z when GR is the real group
SU(p, q). The main result is contained in Theorem 4.8. This result is then used to give
an algorithm that computes the associated cycles of discrete series representations. To
describe the statement of Theorem 4.8 we take GR = SU(p, q). Then G is the complex
group SL(p + q) and K = S(GL(p) × GL(q)). Fix a closed K-orbit Z in X. There is a
positive system of roots ∆+ (with respect to the diagonal compact Cartan subalgebra) that
is naturally associated to Z. The first point is to obtain a useful description of the image
of T ∗

ZX under µ. For this it is convenient to use the Killing form to identify g∗ with g and
(g/k)∗ with p. It is a fact that µ(T ∗

ZX) is the closure of a single K-orbit K · f in Nθ, the
cone of nilpotent elements in p. A procedure for finding such a nilpotent element f , which
we will call generic, is contained in Section 3. We mention here that f = f0 + f1 + f2 + . . . ,
where f0 is specified first (as a sum of certain root vectors), then there is a reduction to a
smaller rank group G1 where f1 is specified, and so on. At each stage of the procedure a
reductive subgroup Li of K ∩Gi (where G0 = G) is defined. The groups Li, i = 0, 1, 2, . . . ,
are easy to describe; the Lie algebra of Li has root system generated by the simple compact

November 7, 2008.

1
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roots in gi. Theorem 4.8 states that the corresponding component of the Springer fiber is

T ∗
ZX ∩ µ−1(f) ' Lm · · ·L2L1L0 · b. (1.1)

(Here we are identifying the Springer fiber with a subvariety of the flag variety X = G · b,
as described in formula (2.3) below.) The proof of this theorem is given in Section 4. In
Section 5 we give some geometric consequences.

Our motivation for understanding these components of the Springer fiber was the prob-
lem of computing the associated cycles of discrete series representations. It is convenient
to write γ for µ|T∗

ZX ; the component of the Springer fiber corresponding to Z is therefore
γ−1(f). J.-T. Chang ([6]) has given a formula for the associated cycle in terms of a sheaf
cohomology space on γ−1(f). It says that the associated cycle of a discrete series representa-
tion associated to Z is m ·γ(T ∗

ZX) and the ‘multiplicity’ m is the dimension of a cohomology
space. To each discrete series representation there naturally corresponds a parameter λ and
a line bundle Lτ → Z (τ = λ + ρ − 2ρc). Then for the sheaf of local sections O(τ) of Lτ

restricted to γ−1(f), Chang’s theorem states that

m = dim H0(γ−1(f),O(τ)).

The important point is that the description of γ−1(f) given in (1.1) is explicit enough to
compute the cohomology space using the Borel-Weil Theorem (and a simple branching law).
This is carried out in Section 6.

An algorithm for finding the image of γ, i.e., the orbit closure K · f , has been given by
P. Trapa ([22]). He describes the orbit in terms of signed tableaux. His inductive procedure
is quite different from ours. A. Yamamoto ([26]) has described the image of γ in terms of
matrices. The significance of our procedure for producing the generic element f is that the
method allows us to compute γ−1(f). We believe that our method will compute γ−1(f)
for other classical groups. Chang ([6], [8]) has used his formula to determine the associated
cycles for holomorphic discrete series representations and for the discrete series of rank one
groups. From a different point of view, D. King has computed character polynomials (which
give the multiplicities in the associated cycles) for the holomorphic discrete series and for
discrete series of SU(n, 1).

In the appendix P. Trapa sketches an algorithm to compute associated cycles of any
irreducible Harish-Chandra module for U(p, q) with regular integral infinitesimal character.
While the method of Section 6 uses our geometric description of components of the Springer
fiber, the appendix draws on numerous deep results from representation theory. Carrying
out the algorithm requires the computation of Kazhdan-Lusztig-Vogan polynomials.

We thank D. Barbasch, H. Ochia and P. Trapa for useful conversations. We also thank
H. Yamashita for showing us an example which greatly influenced this paper.
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2. Preliminaries

Let GR be a real form of a connected complex semisimple Lie group G. The Lie algebra
of G will be denoted by g, and similar notation will be used for the Lie algebras of other Lie
groups. Fix a Cartan involution of the Lie algebra of GR and let θ denote its complex linear
extension to g. Then θ lifts to an involution of G, which we will also denote by θ. Define K

to be the fixed point group of θ. The Cartan decomposition of g is written as g = k⊕ p.

The variety of all Borel subalgebras of g, the flag variety, is denoted by X. As mentioned
in the introduction, our main interest is in the restriction of the moment map of T ∗X

to the closures of the conormal bundles to certain K-orbits in X. Therefore we need to
carefully define these objects and express them in a useful way. For any point b in X,
letting B = NG(b), X is the homogeneous space G/B. The tangent space to X at a point
b ∈ X is naturally identified with g/b. Therefore the cotangent bundle is the homogeneous
bundle built on the B-representation (g/b)∗:

T ∗X = G×
B

(g/b)∗.

This is the space of equivalence classes in G×(g/b)∗ with respect to the equivalence relation
defined by (gb, λ) ∼ (g,Ad∗(b)λ). We fix a Cartan subalgebra h of g that is contained in b

and write the Levi decomposition of b as b = h + n−. The Killing form allows us to identify
the G-representations g∗ and g. Since (g/b)∗ is the space of linear functionals that vanish
on b we have

(g/b)∗ ↪→ g∗,

which, via the Killing form, is the inclusion

n− ↪→ g.

We will therefore take the cotangent bundle to be

T ∗X = G×
B

n−.

The moment map associated to the G-action on T ∗X is, after identification of g∗ with g

using the Killing form, denoted by µ : G×
B

n− → g and is given by the formula

µ(g, ξ) = Ad(g)ξ, for g ∈ G, ξ ∈ n−.

We consider the action of the complex group K on X and let Z be a K-orbit. The
base point b may be chosen so that Z = K · b. The conormal bundle to Z in T ∗X is
the set of cotangent vectors at points of Z that vanish on the tangent space of Z. This is
therefore the homogeneous vector bundle K ×

B∩K
(g/(b+ k))∗, since the tangent space (at b)

is k/b ∩ k ' (k + b)/b ⊂ g/b. We use the Killing form to identify the conormal bundle with

T ∗
ZX = K ×

B∩K
(n− ∩ p).

Definition 2.1. The map γ is defined to be the restriction of the moment map µ to the
closure of T ∗

ZX in T ∗X.
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Note that γ depends on the orbit Z. Since we will be considering just one K-orbit at any
given time, there will be no need to include Z in the notation for γ.

Writing g · ξ = Ad(g)ξ, for g ∈ G, ξ ∈ g, we have

γ(k, ξ) = k · ξ ∈ K · (n− ∩ p).

In particular, the image of γ is the closure of K · (n− ∩ p), which lies in the nilpotent cone

Nθ ≡ N ∩ p, N = {ξ ∈ g : ξ is nilpotent}.

The image of γ is therefore a union of K-orbits in Nθ; it is in fact the closure of a single
K-orbit. Therefore, there exists an f ∈ n− ∩ p so that γ(T ∗

ZX) = K · f .

Definition 2.2. We say that f ∈ n− ∩ p is generic in n− ∩ p whenever γ(T ∗
ZX) = K · f .

It follows that f is generic in n− ∩ p if and only if K · f contains every K-orbit in Nθ that
meets n− ∩ p. In particular, K · f is the K-orbit of greatest dimension meeting n− ∩ p.

Now let us specialize to the situation where Z is a closed K-orbit in X. Then Z is a flag
variety for K. Since T ∗

ZX = T ∗
ZX, the domain of γ is T ∗

ZX and the image is K · (n− ∩ p).
For any f ∈ n− ∩ p,

γ−1(f) = {(k, ξ) ∈ T ∗
ZX : k · ξ = f}

= {(k, k−1 · f) : k−1 · f ∈ n− ∩ p}.

Defining N(f, n− ∩ p) ≡ {k ∈ K : k · f ∈ n− ∩ p}, it follows (by restricting the natural
projection T ∗X → X to γ−1(f)) that

γ−1(f) ' {k · b : k−1 ∈ N(f, n− ∩ p)}
= N(f, n− ∩ p)−1 · b ⊂ Z.

(2.3)

Thus, the fiber γ−1(f) may be identified with a subvariety of the flag variety Z.

Since the remainder of this article deals with closed K-orbits in X, we will need to
describe them. It suffices for our purposes to assume that GR has a compact Cartan
subgroup. We may therefore fix a Cartan subalgebra h of g that is contained in k. Let
∆(h, g) (resp., ∆(h, k)) be the system of roots of h in g (resp., in k), and let W and Wc

be the corresponding Weyl groups. Then it is a well-known fact that the closed K-orbits
in X are in one-to-one correspondence with W/Wc. One way to express such a one-to-one
correspondence is as follows. Fix a positive system ∆+

c in ∆(h, k). Then for each positive
system ∆+ ⊂ ∆(h, g) containing ∆+

c define a Borel subalgebra b = h + n− by specifying
that n− is the sum of all root spaces for roots in −∆+. Since b ∩ k is a Borel subalgebra in
k, Z = K · b is a closed K-orbit in X. All closed orbits occur exactly once in this manner.
Thus, we have a one-to-one correspondence between the set of closed K-orbits and the set
of positive systems of ∆(h, g) containing ∆+

c , which is in bijection with W/Wc.
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We now restrict our attention to the group GR = SU(p, q), where p and q are nonnegative
integers. Let n = p + q. The realization we use is

GR = {g ∈ Mn×n(C) : gtIp,qg = Ip,q,det(g) = 1}, with Ip,q =
(

Ip 0
0 −Iq

)
.

The Cartan involution is chosen to be θ = Ad(Ip,q). Then

G = SL(n) and K =
{(a 0

0 d

)
: a ∈ GL(p), d ∈ GL(q) and det(a) det(d) = 1

}
.

Let h ⊂ k be the Cartan subalgebra of all diagonal matrices of trace zero. Define εj ∈ h∗ to
be the linear functional giving the jth diagonal entry. Then

∆(h, g) = {εj − εk : 1 ≤ j, k ≤ n, j 6= k}.

We fix once and for all the positive system of compact roots

∆+
c = {εj − εk : 1 ≤ j < k ≤ p or p + 1 ≤ j < k ≤ n}. (2.4)

As discussed earlier, the closed K-orbits in X are parameterized by the positive systems
∆+ ⊂ ∆(h, g) that contain ∆+

c . These are in one-to-one correspondence with sequences of
integers (p1, q1, p2, . . . , pr, qr) so that

Σpi = p and Σqi = q,

pi, qi are non-negative integers and (2.5)

pi > 0 for i = 2, 3, . . . , r and qj > 0 for j = 1, 2, . . . , r − 1.

Note that p1 and qr may be zero.

It will be useful to describe such a sequence in terms of an array

s1 . . . sp1

s
p + 1

. . . s
p + q1

sp1 + 1
. . . sp1 + p2

s
p + q1 + 1

. . . s
p + q1 + q2

. . .

We call a sequence of consecutive labelled dots in the array a block. Therefore, the ith block
(counting from left to right) in the upper row has pi dots and the ith block on the lower row
has qi dots. The simple compact roots are the roots εi − εi+1 with (i, i + 1) indices of dots
that belong to the same block. The simple non-compact roots are the roots εi − εj with i, j

indices of consecutive dots that lie in different rows and so that i precedes j when reading
the array from left to right. Thus, the simple non-compact roots correspond to the “jumps”
between the rows. Here is an example. The array

r1 r2
r
7

r3 r4 r5
r
8

r
9

r
10

r6

determines the Dynkin diagram
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c
1-2

s
2-7

s
7-3

c
3-4

c
4-5

s
5-8

c
8-9

c
9-10

s
10-6

where ‘i-j’ means the root εi − εj (and the blackened nodes correspond to non-compact
simple roots).

The final bit of preliminary information is the parametrization of the K-orbits in Nθ.
We will describe these in terms of signed tableaux. This information is well-known and can
be found in the present form in [1]. Suppose that {e, h, f} ⊂ g spans a copy of sl(2). Let
SL(2) be the corresponding complex subgroup of G. Suppose also that e, h and f satisfy
the relations

[e, f ] = h, [h, e] = 2e and [h, f ] = −2f

θ(h) = h, θ(e) = −e and θ(f) = −f.
(2.6)

Form the semidirect product Z2 n SL(2) where the non-trivial element of Z2 acts on SL(2)
by θ. Irreducible finite dimensional representations of SL(2) extend to representations of
the semidirect product in two distinct ways. These are distinguished by the action of the
non-trivial element of Z2 being +1 or −1 on the lowest weight space. Define the signature
of a (possibly reducible) representation π of Z2 nSL(2) to be the pair (a+, a−), where a± is
the dimension of the ±1 eigenspace of θ in the kernel of π(f) (= the lowest weight space).

Now suppose that f ∈ Nθ. Then f fits into a triple {e, h, f} satisfying (2.6); see [9], for
example. This gives a copy of SL(2) inside G = SL(n), thus a representation of SL(2) on
Cn, n = p+q, is specified. Extend this representation to a representation π of Z2 nSL(2) so
that the action of the non-trivial element of Z2 is by Ip,q. Define a±(f j) to be the dimension
of the ±1 eigenspace of Ip,q on the kernel of π(f j). Write a(f j) = a+(f j) + a−(f j) for the
dimension of the kernel of π(f j). Decompose Cn = ⊕Vi into irreducible Z2 n SL(2)-
representations and let δi be the eigenvalue of θ on the lowest weight vector of Vi.

Theorem 2.7. ([10]) Two nilpotent elements f and f ′ are K-conjugate if and only a±(f j) =
a±(f ′j), for every j = 1, 2, . . . . The inclusion O(f ′) ⊂ O(f) holds if and only if for every j

a+(f ′j) ≥ a+(f j) and a−(f ′j) ≥ a−(f j).

To each nilpotent orbit we associate a signed tableau as follows. The tableau has a row
for each irreducible constituent Vi; the number of boxes in the ith row is the dimension of
the representation Vi. Signs are inserted in each box by beginning the ith row with the sign
of δi, then alternating the signs along each row. Then two such signed tableaux correspond
to the same orbit if and only if they are the same up to a permutation of the rows.

Lemma 2.8. A nilpotent element f is generic in n− ∩ p if and only if for all j

a+(f j) = min{a+(f ′j) : f ′ ∈ γ(T ∗
Z(X))} and

a−(f j) = min{a−(f ′j) : f ′ ∈ γ(T ∗
Z(X))}.
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Proof. An element f is generic if and only if γ(T ∗
Z(X)) = K · f . Thus, f is generic if and

only if K · f ′ ⊂ K · f for any other f ′ ∈ γ(T ∗
Z(X)). The lemma now follows from Theorem

2.7. �

3. Generic elements

Let h be the diagonal Cartan subalgebra of g and let b = h + n− be a Borel subalgebra.
An algorithm will now be given for finding a generic element in n− ∩ p.

For the remainder of this section we fix a closed K-orbit Z in X. As in Section 2,
there is therefore a positive system ∆+ ⊂ ∆(h, g) containing ∆+

c and a corresponding Borel
subalgebra b = h + n− so that Z = K · b. Let {p1, q1, p2, . . . , qr} be the sequence of non-
negative integers as in (2.5) that determines ∆+ (and hence Z). The algorithm of this
section will produce f ∈ n− ∩ p so that K · f is dense in the image of γ : T ∗

ZX → g.

The algorithm is as follows. From the sequence {p1, q1, . . . , pr, qr}, first form an array as in
the paragraph following (2.5). Second, form a string consisting of diagonal lines connecting
the first dots in each pair of consecutive blocks. Define a nilpotent element f0 of n− ∩ p as
follows. Let A0 = {i1, i2, . . . , iN} be the set of indices of dots that the string passes through,
ordered from left to right. Then set

f0 =
N−1∑
s=1

Xis+1,is
, (3.1)

where Xi,j is the matrix that is a root vector for εi − εj with a one in the (i, j) place. In
the example following (2.5), we have

r1HH
HHHH

r2
r
7
�

�
�

r3PPPPPPPPP

r4 r5
r
8
���������

r
9

r
10

r6

Third, omit the dots that the string passes through and repeat the procedure with the
smaller array to obtain an f1 and an A1. The procedure is continued until no more diagonals
can be drawn. In the example, we have

r1H
HHHHH

r2hhhhhhhhhhhhhhhhhhr
7
�

�
�

r3PPPPPPPPP

r4XXXXXXXXXXXX

r5
r
8
���������

r
9

r
10

r6

Note that as the dots in the most recent string are omitted a new array is formed. For
example, to choose the second string in the example we omit the dots numbered 1, 7, 3, 8
and 6 to get
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r2 r4 r5 r
9

r
10

Each string corresponds to a sum of root vectors in n− ∩ p. In the example we have

f0 = X7,1 + X3,7 + X8,3 + X6,8, f1 = X9,2 and f2 = X10,4.

Set
f = f0 + f1 + . . . + fm−1, with m equal to the number of strings.

Theorem 3.2. Let Z be a closed K-orbit in X, and let the Borel subalgebra b and the
sequence {p1, q1, p2, . . . , pr, qr} be as described above. Then the element f built by the algo-
rithm is generic in n− ∩ p, i.e., K · f = γ(T ∗

ZX).

The remainder of this section is devoted to a proof of this Theorem. It should be empha-
sized that the method of proof allows us to describe the relevant components of the Springer
fiber. This will be done in Section 4; the crucial ingredient is isolated in Proposition 3.14.

Observe that for each string, fj is a principal nilpotent element in a subalgebra sl(dj)
where dj is the number of dots in the corresponding string. Starting with fj it is possible
to form an sl(2)-triple {fj , hj , êj} (inside sl(dj)) so that hj ∈ h and

êj =
∑

{(k,l): Xl,k occurs in fj}

ak,l Xk,l

with non-zero coefficients ak,l. Since the sl(dj)’s commute, {f, h =
∑

hj , e =
∑

êj} spans
a copy of sl(2). Let SL(2)f be the Lie subgroup of SL(n) whose Lie algebra is this copy of
sl(2). It is clear that the standard basis vectors el ∈ Cn are weight vectors for the action π

of Z2 n SL(2)f on Cn. Consider the decompose Cn under π. We may conclude from this
discussion that

(1) the dimension of the non-trivial irreducible subrepresentations of Cn are given by
the numbers of dots in the various strings,

(2) the lowest weight vector of a non-trivial irreducible subrepresentation is the standard
basis vector ek where k is the label of the last dot (that is, the dot farthest to the
right) in the corresponding string, and

(3) the trivial subrepresentations are spanned by the t vectors ek for which k is not the
label of any dot in any string.

This information translates into the following description of the signed tableau for f .

Fact 3.3. The signed tableau corresponding to the nilpotent K-orbit K · f has m + t rows.
If 1 ≤ i ≤ m, then the length of the ith row in the tableau is the number of dots occurring
in the ith string. If the ith string ends at a dot in the top row of the array, then the ithrow
of the tableau has alternating signs starting with +. Otherwise, the ithrow of the tableau
has alternating signs starting with −. The remaining t rows have length one and their
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corresponding signs are so that the total number of + signs in the tableau is p and the total
number of − signs is q.

In our example the tableau corresponding to K · f is

+ − + − +

− +

− +

+

The subgroups defined below are crucial to both our description of the Springer fiber and
to the inductive proofs in the rest of the paper.

Let S be the set of simple compact roots in ∆+ and 〈S〉 the set of roots generated by S.

Definition 3.4. (a) Define q to be the parabolic subalgebra of g defined by the simple roots
S, i.e.,

q = l + u−, with l = h +
∑

α∈〈S〉

g(α) and u− =
∑

α∈∆+\〈S〉

g(−α).

The connected subgroup of G with Lie algebra q (resp., l) will be denoted by Q (resp., L).
Set QK = Q ∩K.
(b) Consider the array that is the result of omitting all dots that are passed though by any
one of the first i strings. Then ∆i

∼= {εj − εk : j, k are indices of remaining dots} is a root
system of type An′ , n

′ < n. The Lie subalgebra generated by root spaces for roots in ∆i is
denoted by gi. The corresponding subgroup of G is denoted by Gi. We set Ki = K ∩Gi.
(c) Let Si be the set of simple compact roots in ∆+

i , then Si determines a parabolic subal-
gebra qi = li + u−i of gi as in (a). Let Qi (resp., Li) be the subgroup of Gi with Lie algebra
qi (resp., li); we set Qi,K = Qi ∩K.

We will sometimes write g0 for g, and similarly for q0, l0, etc.

The subalgebra gi is θ-stable and is the complexification of a smaller indefinite unitary Lie
algebra. Furthermore, hi

∼= h∩ gi is a Cartan subalgebra of gi and bi = b∩ gi = hi +n−i is a
Borel subalgebra so that the negative root vectors with respect to ∆i span n−i . This positive
system corresponds to the array with the first i strings omitted. There is a corresponding
closed Ki-orbit Zi = Ki · bi in the flag variety for Gi.

Note that g1, for example, is the subalgebra of sl(n) consisting of matrices having 0’s in
the jth row and jth column for each index j occurring as index of a dot in the first string.

Remark 3.5. The following properties follow easily.

(1) n− ∩ p = u− ∩ p, and so QK normalizes n− ∩ p.
(2) Li ⊂ K and u−i ∩ p = gi ∩ (n− ∩ p).
(3) u−i ⊂ u−i−1.
(4) Qi · fk = fk for all k = 0, 1, . . . , i− 1.
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One should be aware that it is not always the case that q ∩ gi = qi and li ⊂ li−1. Our
example in SL(10) illustrates this; when a string is omitted, several blocks ‘collapse’ to one
block in the smaller array.

We next describe the parabolic subgroup Q as the subgroup of G consisting of all linear
transformations preserving a flag in Cn. The following definition specifies the correct flag.
Let N be the number of blocks in the array.

Definition 3.6. Define Fj to be the span of the ei for all i occurring in any one of the
N − j + 1 blocks farthest to the right. Set FN+1 = {0}.

Lemma 3.7. The following hold.

(1) If Y ∈ n− ∩ p, then Y (Fk) ⊂ Fk+1 and Y j(Fk) ⊂ Fk+j.
(2) If Y ∈ n− ∩ p, then Y N−k+1(Fk) = 0. In particular Y N = 0.
(3) The spaces Fk are preserved by the QK-action.
(4) The stabilizer of the flag Cn = F1 ) F2 ) F3 ) . . . FN ) FN+1 = {0} is Q.

We are now in position to begin the proof of Theorem 3.2. Continue with our fixed
positive system ∆+ containing ∆+

c , and resulting sequence {p1, q1, p2 . . . , qr} as in (2.5) and
f = f0 + · · · fm−1 built by the algorithm. Set f = f0 + f ′, f ′ = f1 + · · · + fm−1. Let e, h

be chosen as in the paragraph preceding Facts 3.3. Then SL(2)f denotes the corresponding
subgroup of G. Let (π,Cn) be the representation of Z2 n SL(2)f for which the non-trivial
element of Z2 acts by Ip,q and SL(2)f acts by it embedding in G. Let A0 be the indices
labelling dots in the array that the string for f0 passes through. Thus #A0 = N , which is
the length of the first string as well as the length of the flag (Fj) that defines the parabolic
subgroup Q. The proof of the following lemma is immediate from the definitions.

Lemma 3.8. Let V0 = spanC{ei : i ∈ A0} and W0 = spanC{ek : k /∈ A0}. Under the
action of π, Cn decomposes as Cn = V0 ⊕W0 and

π(f0)|W0 = 0 and π(f0)V0 ⊂ V0

π(f ′)|V0 = 0 and π(f ′)W0 ⊂ W0.

Observe that g1 is the Lie algebra of all X ∈ g so that X|V0 = 0 and X(W0) ⊂ W0.

Now let Y ∈ n− ∩ p. Form a triple {X, H, Y } spanning a copy of sl(2) with X ∈ n ∩ p

and H ∈ k and let SL(2)Y be the subgroup of G with Lie algebra spanC{X, H, Y }. Then
Z2 n SL(2)Y acts on Cn.

Lemma 3.9. If K · f ⊂ K · Y , then Cn has a Z2 n SL(2)Y -irreducible constituent of
dimension N .

Proof. By Lemma 3.7, Y N = 0. Hence, Cn admits no irreducible constituent of di-
mension greater than N . Assume that no Z2 n SL(2)Y -constituent is of dimension N .
Write Cn = R1 ⊕ . . . ⊕ Rt where Ri are Z2 n SL(2)Y -irreducible subrepresentations.
Then maxi{dim(Ri)} = N ′ with N ′ < N , so dim(Ker (Y N ′

)) = p + q. On the other
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hand, since Z2 n SL(2)f admits an irreducible subrepresentation of Cn of dimension N ,
dim(Ker(fN ′

)) < p + q. Then Theorem 2.7 gives a contradiction to our hypothesis that
K · f ⊂ K · Y . �

Continue with Y as in Lemma 3.9. Decompose Cn under the Z2 n SL(2)Y -action as
Cn = VN ⊕W with VN irreducible of dimension N . Denote by v0 the highest weight vector
of VN . The set {v0, Y v0, . . . , Y

N−1v0} is therefore a basis for VN . Note that Y k−1v0 ∈ Fk.

Lemma 3.10. For each k, Fk = (Fk ∩ VN )⊕ (Fk ∩W ).

Proof. Write v ∈ Fk as v = vN + w with vN =
∑N−1

j=0 ajY
jv0 ∈ VN and w ∈ W . We need

to show that vN and w belong to Fk. It is enough to show that vN ∈ Fk.

Observe that 0 = Y N−k+1v = Y N−k+1vN + Y N−k+1w, so

0 = Y N−k+1vN =
k−2∑
j=0

ajY
N−k+1+jv0.

Since the vectors {v0, Y v0, . . . , Y
N−1v0} are linearly independent, aj = 0 for all j ≤ k − 2.

Thus, vN =
∑N−1

j=k−1 ajY
jv0 lies in Fk, by Lemma 3.7 (1). �

Since Fk ∩ VN = C · Y k−1v0 + Fk+1 ∩ VN , we have the following corollary.

Corollary 3.11. With W as above

dim (Fk ∩W )/(Fk+1 ∩W ) = dim(Fk/Fk+1)− 1.

Lemma 3.12. There is a basis β = β1 ∪ · · · ∪ βN of Cn with the following properties.

(a) βj is contained in either Fj ∩ (Cp × {0}) or Fj ∩ ({0} ×Cq).
(b) the cardinality of βj is dim(Fj/Fj+1), j = 1, . . . , N.

(c) Y j−1v0 is in βj.
(d) βj \ {Y j−1v0} ⊂ Fj ∩W .

Proof. Each βj may be defined as follows. Put Y j−1v0 in βj . If the jth block in the array
is up, then, by the definition of the flag and the fact that Fj ∩W is Ip,q-stable, the natural
map

(Fj ∩W ) ∩ (Cp × {0}) → Fj ∩W/Fj+1 ∩W

is a surjection. If the jth block is down then we have a surjection

(Fj ∩W ) ∩ ({0} ×Cq) → Fj ∩W/Fj+1 ∩W.

Fill out the remainder of βj by pulling back a basis of Fj ∩W/Fj+1 ∩W . �

A basis as in the Lemma may be ordered by (1) putting Y j−1v0 first in each βj , and (2)
by choosing the βj ’s in the order

β1, β3, . . . , β2, β4, . . . (odd indices first), if the first block is up
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and

β2, β4, . . . , β1, β3, . . . (even indices first), if the first block is down.

Let q be the matrix with the basis vectors of β inserted as columns, ordered as above. Then
q preserves the flag (Fj), so lies in Q. It follows from (a) that q is also in K. Then, writing
A0 = {i1, . . . , iN} for the indices of the dots passed through by the first string, ordered from
left to right, we have

q−1Y qeij
= q−1Y Y j−1v0

= q−1Y jv0

= eij+1

= f0eij
.

For i /∈ A0,

q−1Y qei ∈ spanC{ej : j /∈ A0} = W0

by (d). Therefore f0− q−1 ·Y ∈ (n−∩p)∩g1 = u−1 ∩p, by the observation following Lemma
3.8. The following lemma is now proved.

Lemma 3.13. Suppose Y ∈ n− ∩ p and K · f ⊂ K · Y , then there exists q ∈ QK so that
q · Y = f0 + Y1, with Y1 ∈ u−1 ∩ p.

Proposition 3.14. If Y ∈ n−∩p with K ·f ⊂ K · Y , then there exists q ∈ QK and qi ∈ Qi,K

so that qm−1 · · · q2q1q · Y = f .

Proof. We use induction on the complex rank of g. Lemma 3.13 tells us that there exists
q ∈ Q so that q · Y = f0 + Y1, Y1 ∈ u−1 ∩ p. Recall that we have written f = f0 + f ′. We
claim that for K1 = K ∩ G1, K1 · f ′ ⊂ K1 · Y1. Once this claim is proved the inductive
hypothesis gives qm−1 · · · q1 ·Y1 = f ′. Since qi · f0 = f0, for all i = 1, . . . ,m− 1 (as observed
in Remark 3.5), qm−1 . . . q1q · Y = f0 + f ′ = f .

Now we turn to the proof of the claim. Write Cn = V0 ⊕W0 as earlier. Then by Lemma
3.8

a±(f j) = a±((f0|V0)
j) + a±((f ′|W0)

j)

a±(Y j) = a±((q · Y )j) = a±((f0|V0)
j) + a±((Y1|W0)

j).

Since K · f ⊂ K · Y we conclude from Theorem 2.7 that

a±((Y1|W0)
j) ≤ a±((f ′|W0)

j),

for each j = 1, 2, . . . . Now Theorem 2.7 (applied in G1) proves the claim. �

Proof of Theorem 3.2. Assume that Y ∈ n−∩p is generic. Then K ·Y is dense in K ·n−∩p.
Hence, K · f ⊂ K · Y . By Proposition 3.14, there exist k0 = qm−1 . . . q1qk ∈ K so that
k0 · Y = f . Hence, K · Y = K · f , so f is also generic. �
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4. The Springer Fiber

In this section Proposition 3.14 is used to determine the structure of the fiber of γ over
a generic element. We continue with the setup of Section 3. In particular, a closed K-orbit
in X, which determines a sequence (p1, q1, p2, . . . , qr) and a corresponding array, has been
fixed. We write f = f0 + · · ·+fm−1 for the generic element of n−∩p built by the algorithm.
We denote the centralizer of f in K by ZK(f).

Theorem 4.1. The following expression for the fiber of γ holds.

γ−1(f) = ZK(f)Lm−1Lm−2 . . . L1LK · b ⊂ K/K ∩B. (4.2)

Proof. We begin by showing that

γ−1(f) = ZK(f)Qm−1,KQm−2,K . . . Q1,KQK · b ⊂ K/K ∩B. (4.3)

By equation (2.3), γ−1(f) = (NK(f, n− ∩ p))−1 · b, where

NK(f, n− ∩ p) = {k ∈ K : k · f ∈ n− ∩ p}.

To prove (4.3) it is therefore enough to show that

NK(f, n− ∩ p) = QKQ1,K . . . Qm−1,KZK(f).

To show NK(f, n−∩p) ⊂ QKQ1,K . . . Qm−1,KZK(f), take k ∈ NK(f, n−∩p). Then, k ·f
lies in n−∩p and is generic. Therefore by Proposition 3.14 there exist qi ∈ Qi,K and q ∈ QK

so that qm−1qm−2 . . . q1q · (k · f) = f . Thus, qm−1qm−2 . . . q1qk ∈ ZK(f). The inclusion
follows.

For the other inclusion observe that QK normalizes n− ∩ p (= u− ∩ p) and ZK(f) fixes
f . Hence, it is enough to show that Q1,KQ2,K . . . Qm−1,K ⊂ NK(f, n− ∩ p). Recall that in
the expression f = f0 + f1 + . . . + fi + . . . + fm−1 we have f0 ∈ n− ∩ p and fi ∈ u−i ∩ p for
all i ≥ 1. By definition Qi,K normalizes u−i ∩ p, and by remark 3.5, u−i ∩ p ⊂ u−i−1 ∩ p and
Qi,K stabilizes all fj with j < i. Therefore,

Qm−1,K · f ⊂ f0 + f1 + . . . + fm−2 + Qm−1,K · fm−1

⊂ f0 + f1 + . . . + fm−2 + (u−m−1 ∩ p).

Proceeding by (downward) induction on i, assume that

Qi,KQi+1,K . . . Qm−1,K · f ⊂ f0 + f1 + . . . + fi−1 + (u−i ∩ p).

Then,

Qi−1,KQi,KQi+1,K . . . Qm−1,K(f)

⊂ f0 + f1 + . . . + fi−2 + Qi−1,K

(
fi−1 + (ui ∩ p)

)
⊂ f0 + f1 + . . . + fi−2 + Qi−1,K

(
fi−1 + (ui−1 ∩ p)

)
⊂ f0 + f1 + . . . + fi−2 + (ui−1 ∩ p).

Therefore, we conclude that Q1,KQ2,K . . . Qm−1,K · f ⊂ f0 + (u−1 ∩ p) ⊂ n− ∩ p and (4.3)
holds.



14 L. BARCHINI AND R. ZIERAU

Now we check that each Qi,K may be replaced by Li. Since u− ∩ k ⊂ b it is clear that
QK · b = L · b, so QK may be replaced by L. We show by induction that

Qj,K · · ·Q1,KQK · b = Lj · · ·L1L · b. (4.4)

Since u−1 ∩ k ⊂ u− ∩ k, we have Q1,KQK · b = L1QK · b = L1L · b, proving the j = 1
case. By Remark 3.5 u−i ⊂ u−i−1, so [li−1, u

−
i ∩ k] ⊂ [li−1, u

−
i−1 ∩ k] ⊂ qi−1 ∩ k. Therefore,

Qi,KQi−1,K = LiQi−1,K . Assuming (4.4) holds for j = i− 1,

Qi,KQi−1,K · · ·Q1,KQK · b = LiQi−1,K · · ·Q1,KQK · b = LiLi−1 · · ·L1L · b.

The proposition is now proved. �

Theorem 4.8 below makes the structure of the fiber of γ much more tractable. It essen-
tially says that the centralizer may be dropped from the expression for the fiber given in
the above theorem. We must however include Lm, which is formed in the algorithm for the
generic element f after the last string is formed. Note that ∆(lm) consists of roots with
indices not in any of the strings, therefore Lm is contained in the centralizer of f (which is
why Lm is not needed in (4.2)).

The proof will use an explicit description of the centralizer of f , and this will require the
introduction of some (temporary) notation. Recall that m is the number of strings. For
a = 0, 1, . . . ,m − 1 define Aa to be the set of all indices of dots in the string from which
fa is formed. In other words Aa is the set of indices occurring in the root vectors in the
expression for fa. Let Am be the set of indices not occurring in any of the strings. For
0 ≤ a, b ≤ m set

Va,b = spanC{Xi,j : i ∈ Aa, j ∈ Ab}.
Recall that Xi,j is the root vector with a 1 in the (i, j)-place and zeros elsewhere. Let
z = zk(f), the Lie algebra of ZK(f), and set

za,b = z ∩ Va,b.

Since Va,b is ad(f)-invariant
z = ⊕za,b.

In fact, Va,b is invariant under the sl(2) corresponding to f .

Consider one of the Aa’s. Write Aa = {i1, . . . , iR}, ordered so that each ir occurs to the
left of ir+1 in the array. Therefore,

fa =
R∑

r=2

Xir,ir−1 .

Similarly, write Ab = {j1, . . . , jr} so

fb =
T∑

t=2

Xjt,jt−1 .

We now find a basis of z by finding a basis for each za,b. There are 5 different cases that
must be considered.
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Case (1) a 6= b and a, b 6= m. Let X =
∑

aijXi,j ∈ Va,b. We see when X commutes with f .

[f,X] = [fa, X] + [fb, X]

= faX −Xfb

=
R∑

r=2

∑
i∈Aa

∑
j∈Ab

aijXir,ir−1Xi,j −
T∑

t=2

∑
i∈Aa

∑
j∈Ab

aijXi,jXjt,jt−1

=
R∑

r=2

∑
j∈Ab

air−1,jXir,j −
T∑

t=2

∑
i∈Aa

ai,jt
Xi,jt−1

=
R∑

r=2

T−1∑
t=1

(air−1,jt
− air,jt+1)Xir,jt

+
R∑

r=2

air−1,jT
Xir,jT

−
T∑

t=2

ai1,jt
Xi1,jt−1 .

This equals 0 precisely when

air,jT
= 0, for r = 1, . . . , R− 1,

ai1,jt
= 0, for t = 1, . . . , T − 1 and

air,jt
= air+1,jt+1 , for r = 1, . . . , R− 1, t = 1, . . . , T − 1.

Therefore, the centralizer of f in Va,b is spanned by
n∑

s=1

XiR−n+s,js
, for n = 1, . . . , R, when R ≤ T (4.5)

and by

n∑
s=1

XiR−n+s,js
, for n = 1, . . . , T, when R ≥ T. (4.6)

Case (2) a = b 6= m. Essentially the same calculation as in Case (1) gives a basis for the
centralizer of f in Va,a as

R∑
s=n

Xis+n−1,js
, for n = 1, . . . , R (= T ). (4.7)

Case (3) a 6= b, b = m. A similar calculation shows that{XiR,j , j ∈ Am} is a basis of the
centralizer of f in Va,m.

Case (4) a 6= b, a = m. Similarly, {Xi,j1 , i ∈ Am} is a basis of the centralizer of f in Vm,b.

Case (5) a = b = m. Then Va,b commutes with f by the construction of f , so za,b = Va,b.

Theorem 4.8. If f is the generic element constructed by the algorithm then

γ−1(f) = Lm · · ·L2L1L · b ⊂ K/K ∩B.

Proof. Since ZK is connected (a special fact for the indefinite unitary groups), ZK is gen-
erated by exp(tZ) with t ∈ C and Z in the basis described above. Therefore, by Theorem
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4.1 it suffices to show that for such Z

exp(tZ)Lm · · ·L2L1Q ⊂ Lm · · ·L2L1Q. (4.9)

The proof is by induction on m, the number of strings in the array. There are four cases.

Case (1) Z ∈ za,b, 1 ≤ a, b ≤ m. This puts us in the situation of f ′ = f − f0 (m− 1 strings)
inside G1. By induction

exp(tZ)Lm · · ·L2Q1 ⊂ Lm · · ·L2Q1.

Therefore,

exp(tZ)Lm · · ·L2L1Q = exp(tZ)Lm · · ·L2Q1Q

⊂ Lm · · ·L2Q1Q

= Lm · · ·L2L1Q.

Case (2) Z ∈ z0,0. Each of the root vectors occurring in Z is in q ∩ k by (4.7). Also, Z

commutes with each Lk, therefore (4.9) holds.

The final two cases are za,0 and z0,a, a > 0. The proofs of (4.9) in these two cases
require some preparation. For this recall that the array consists of a number of blocks and
the string defining f0 passes through each block. Now consider the strings defining fc for
c = 1, 2, . . . ,m− 1. Define an equivalence relation on the set {1, 2, . . . , p + q} of indices by
i ∼ j if and only if either (i) 1 ≤ i, j ≤ p and there exists no ` ∈ Ac so that p+1 ≤ ` ≤ p+ q

and εi − ε` and ε` − εj are both positive or both negative, or (ii) p + 1 ≤ i, j ≤ p + q and
there exists no ` ∈ Ac so that 1 ≤ ` ≤ p and εi − ε` and ε` − εj are both positive or both
negative. We call the equivalence classes c-blocks.

Now define a Levi subalgebra of k1 by specifying its roots: ∆(mc) contains εi − εj if and
only if i, j /∈ A0 and i, j are in the same c-block. Let Mc be the connected subgroup of K1

with Lie algebra mc. Note that for k = 1, 2, . . . , c, ∆(lk) ⊂ ∆(mc). Therefore,

Lc · · ·L2L1 ⊂ Mc.

In the remaining two cases we will show that [ma, za,0] ⊂ q ∩ k and [ma, z0,a] ⊂ q ∩ k. Then
(4.9) will follow.

Case (3) Z ∈ za,0, a ≥ 1. First suppose that a 6= m. Then, as in (4.5), Z is a linear
combination of root vectors XiR+s−n,js

, n = 1, . . . , R. Since js ∈ A0 and f0 passes through
each block in the array, js is the label of the first dot in the sth block. It follows that for
each s = 1, . . . , R, js is to the left of is in the array, and therefore js is also to the left of
iR−n+s. With this observation and the equivalence relation defining the a-blocks we will
show that

[ma, XiR−n+s
] ∈ q ∩ k. (4.10)

Let Y be a root vector in ma. Then

[Y,XiR−n+s,js ] ∈ CXi′,js (4.11)
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with i′ ∼ iR−n+s (i.e., i′ and iR+s−n in the same a-block). If s = 1, then js = j1 is the
dot farthest to the left in the array, so XiR+s−n,js ∈ n− ∩ k ⊂ q ∩ k. When s > 1, consider
εi′ − εjs

. Suppose εi′ − εjs
were positive. Then in the array i′ would be to the left of js,

so also to the left of js−1. But js−1 is to the left of iR+s−n−1 (by the above observation).
Therefore εi′ − εiR+s−n−1 > 0 and εiR+s−n−1 − εiR+s−n

> 0, and we have a contradiction to
i′ ∼ iR+s−n. We therefore have that Xi′,js

∈ n− ∩ k ⊂ q ∩ k.

From (4.11), it follows that ad(Y )k(XiR−n+s,js
) is contained in the span of Xi,js

with i ∼
iR−n+s, so is in q∩k. Therefore, Ad(exp(Y ))(XiR−n+s,js

) ⊂ q∩k, and so Ad(Ma)(Z) ⊂ q∩k,
for Z in the basis for za,0. In particular, for `k ∈ Lk, k = 1, 2, . . . , a,

exp(tZ)`a · · · `1 ∈ La · · ·L1Q ∩K.

Now, za,0 commutes with Lm, . . . , La+1 (since these lk have no root vectors involving indices
from Aa and A0). Therefore,

exp(tZ)Lm · · ·L1QK = Lm · · ·La+1 exp(tZ)La · · ·L1QK

⊂ Lm · · ·L1QK .

Now suppose a = m. Then Z is a linear combination of root vectors Xi,j1 , i ∈ Am. For
any root vector Y in k1, ad(Y )k(Xi,j1) ∈ q ∩ k. So, Ad(K1)(exp(tZ)) ⊂ Q ∩ K. So (4.9)
follows.

Case (4) Z ∈ z0,b. This case is very similar the previous case. Here, Z is a sum of root
vectors XiR−n+s,js

, with n = 1, . . . , T , as in (4.6). �

5. QK-orbits in u− ∩ p

In this section we continue our study of the fibers of γ. In light of Richardson’s Theorem
[18] it is reasonable to ask the following question. Is there a dense QK = Q ∩ K-orbit in
u−∩p? There are examples in the literature for which B∩K does not have a dense orbit in
n− ∩ p. See [21] for an example in SO(4, 4). We give criteria for QK to be transitive on the
generic elements in u− ∩ p (Theorem 5.9) and for QK to have a dense orbit in the generic
elements in u− ∩ p (Corollary 5.16). These criteria are in terms of the algorithm for the
construction of the generic element f . At the end of this section an example in SU(7, 7) is
given for which there is no dense QK-orbit in u− ∩ p.

We continue with our fixed closed K-orbit Z = K · b in the flag variety X and the
corresponding sequence (p1, q1, p2, . . . , qr) and array. We also continue with the parabolic
subgroup Q defined by the set of compact simple roots.

We begin this section with a proposition, which we learned through discussions with H.
Ochiai, that indicates one reason it is of interest to understand the QK-orbit structure of
u− ∩ p.

Let µ̃ : T ∗(G/Q) → g be the moment map for the cotangent bundle of the generalized
flag variety G/Q. Let Z̃ be the closed orbit K · q. Let γ̃ be the restriction of the moment
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map to the conormal bundle to Z̃. Thus

γ̃ : K ×
QK

(u− ∩ p) → g

is given by the formula γ̃(k, ξ) = k · ξ. For an arbitrary Y ∈ u− ∩ p

γ̃−1(Y ) = N(Y, u− ∩ p)−1 · q

as described in Section 2. Note that (K · Y ) ∩ (u− ∩ p) = {k · Y : k ∈ N(Y, u− ∩ p)}. We
write ZK(Y ) for the centralizer in K of Y .

Proposition 5.1. For arbitrary Y ∈ u− ∩ p, there is a bijection

{ZK(Y )-orbits in γ̃−1(Y )} ↔ {QK-orbits in (K · Y ) ∩ (u− ∩ p)}
ZK(Y )k · q ↔ QKk−1 · Y, k ∈ N(Y, u− ∩ p).

Moreover, if Y is generic in u− ∩ p, then ZK(Y ) · q is open in γ̃−1(Y ) if and only if QK · Y
is open in u− ∩ p.

Proof. For the first statement, notice that for k1, k2 ∈ N(Y, u−∩p) the following statements
are equivalent.

(1) ZK(Y )k1 · q = ZK(Y )k2 · q.
(2) k1 = zk2q, for some q ∈ QK , z ∈ ZK(Y ).
(3) k−1

1 Y = q−1k−1
2 Y, for some q ∈ QK .

(4) QKk−1
1 Y = QKk−1

2 Y.

For the second statement we prove the following formula for the dimension of the fiber of
γ̃. If Y is generic then,

dim γ̃−1(Y ) = codimu−∩p(QK · Y ) + dim ZK(Y )− dim ZQK
(Y ). (5.2)

The proof is a simple computation:

dim γ̃−1(Y ) = dim u− − dim(K · Y )

= dim u− − dim k + dim ZK(Y )

= dim(u− ∩ p)− dim(q ∩ k) + dim ZK(Y )

(since dim k = dim qk + dim(u− ∩ k) and dim u− = dim(u− ∩ p) + dim(u− ∩ k))

= (dim(u− ∩ p)− dim QK + dim ZQK
(Y )) + (dim ZK(Y )− dim ZQK

(Y ))

= (codimu−∩pQK · Y ) + (dim ZK(Y )− dim ZQK
(Y )).

�

For Y ∈ u−∩p generic, we write a formula for the dim(γ̃−1(Y )) in terms of data produced
by the algorithm in Section 3. This formula will be used later in this section to study the
structure of QK-orbits in u− ∩ p.

Let Np (resp., Nq) stand for the number of nonzero pi (resp., qi) occurring in our sequence
(p1, q1, p2, . . . , qr). Then N = Np + Nq. Write Q0,K = QK = L exp(u− ∩ k) and Qi,K =
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Li exp(u−i ∩ k). We will obtain a formula for dim(γ̃−1(Y )) as a corollary of the following
proposition.

Proposition 5.3. Let Y ∈ u− ∩ p be a generic element. Then,

dim ZG(Y ) =
Np∑
1

p2
i +

Nq∑
1

q2
j + 2

m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K)− 1

= dim l + 2
m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K).

Corollary 5.4. If Y ∈ u− ∩ p is generic, then

dim γ̃−1(Y ) =
m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K).

Proof. On the one hand

dim γ̃−1(Y ) = dim(K/QK) + dim(u− ∩ p)− dim(K · Y )

= dim(u−)− dim(K · Y ). (5.5)

On the other hand the dimension of the nilpotent K-orbit K · Y is half the dimension of
G · Y . Hence,

dim(K · Y ) =
1
2
(dim(g)− dim(zg(Y )))

=
dim(l)

2
− dim(zg(Y ))

2
+ dim(u−). (5.6)

Combining formulas (5.5) and (5.6), we get dim γ̃−1(Y ) = 1
2 dim(zg(Y ))− 1

2 dim(l). Now,
the formula in Proposition 5.3 implies the formula in the corollary.

�

We begin the proof of Proposition 5.3 with two preliminary lemmas.

Lemma 5.7. dim(l) = dim(l ∩ l1) + 2 (p + q)−N.

Proof. By construction, dim(l) =
∑Np

1 p2
i +
∑Nq

1 q2
j − 1, while dim(l∩ l1) =

∑Np

1 (pi− 1)2 +∑Nq

1 (qj − 1)2 − 1. Hence,

dim(l ∩ l1) =
Np∑
1

p2
i +

Nq∑
1

q2
j − 2 (

∑
pi +

∑
qj) + N − 1

= dim(l)− 2 (p + q) + N.

�

Lemma 5.8. For f = f0 + f1 + . . .+ fm−1 and f ′ = f − f0 = f1 + f2 + . . .+ fm−1, we have

dim ZG(f) = dimZG1(f
′) + 2 (p + q)−N.
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Proof. Associate to f the tableau that parameterizes the nilpotent K-orbit through f . Let
ai stand for the number of rows in the tableau having at least i blocks. Then, by [9, Thm
6.1.], we know that dim ZG(f) =

∑
a2

i − 1. Similarly, since the tableau corresponding to
the nilpotent orbit K1(f ′) is obtained from that of f by removing a longest row, we have
dim ZG1(f

′) =
∑

(ai − 1)2 − 1. Thus,

dim ZG(f)− dim ZG1(f
′) =

∑
a2

i −
∑

(ai − 1)2 = 2
N∑
1

ai −N = 2 (p + q)−N.

�

Proof of Proposition 5.3. We proceed by induction on the number of strings produced by
the algorithm.

Assume that the dimension formula holds for f ′ = f1 + f2 + . . . + fm−1 with m ≥ 1. By
Lemma 5.8, we know that

dimZG(f) = dim ZG1(f
′) + 2 (p + q)−N

= dim(l1) + 2
m∑
2

dim(Qi,K/Qi,K ∩Qi−1,K) + 2 (p + q)−N

(by the inductive hypothesis and Proposition 5.3)

= dim(l1 ∩ l) + 2 dim(l1 ∩ u−) + 2
m∑
2

dim(Qi,K/Qi,K ∩Qi−1,K) + 2 (p + q)−N

= dim(l1 ∩ l) + 2
m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K) + 2 (p + q)−N

(since dim(Q1,K/Q1,K ∩QK) = dim(L1/L1 ∩QK) = dim(l1 ∩ u−))

= dim(l) + 2
m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K)

(by Lemma 5.7).

Begin the induction with the case of no strings (so f = 0). Then either p = 0 or q = 0
and L = G, making the formula clearly true. �

In Theorem 5.9 we give a condition for QK to be transitive on the generic elements in
u− ∩ p. Let O = K · f be the K-orbit of a generic element in u− ∩ p.

Theorem 5.9. QK acts transitively on O∩(u−∩p) if and only if QK∩Q1,K acts transitively
on the set of generic elements in u−1 ∩ p.

Proof. Assume that QK acts transitively on O ∩ (u− ∩ p). Let Y ′ ∈ u−1 ∩ p be a generic
element and form Y = f0 + Y ′. By the proof of Proposition 3.14 we know that Y ∈ u− ∩ p

is generic. Since QK is assumed to act transitively on O ∩ (u− ∩ p), we conclude that
QK ·Y = QK ·(f0+Y ′) is open in u−∩p. Hence, the tangent space to the orbit QK ·(f0+Y ′)
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at the base point f0 + Y ′ coincides with u− ∩ p. This implies that

[q ∩ k, f0 + Y ′] = Tf0+Y ′(QK · (f0 + Y ′)) = u− ∩ p. (5.10)

We show that QK ∩Q1,K · Y ′ is open in u−1 ∩ p.

The Borel subalgebra b = h + n− ⊂ q is determined by an array of numbered dots.
The first step of our algorithm determines f0 by choosing a first string. Recall that A0

is the set of labels of dots occurring in the first string. In particular, notice that f0 is
a sum of root vectors for roots εi − εj where i and j belong to the set A0. Moreover,
∆(g1, h) = {εi − εj : i, j /∈ A0}. The set A0 determines a decomposition

q ∩ k = q ∩ g1 ∩ k + h̃ + vo + v1

where

∆(q ∩ g1 ∩ k) = {εi − εj : i, j /∈ A0} ∩∆(q ∩ k)

∆(v0) = {εi − εj : i, j ∈ A0} ∩∆(q ∩ k)

∆(v1) = {εi − εj : exactly one of i, j belongs to A0} ∩∆(q ∩ k)

and h̃ is the part of h consisting of matrices with 0 in the ith diagonal entry when i ∈ A0.
Observe that,

[q ∩ g1 ∩ k, f0 + Y ′] ⊂ [q ∩ g1 ∩ k, Y ′]

[h̃, f0 + Y ′] = [h̃, f0] ⊂ v0

[v0, f0 + Y ′] ⊂ [v0, f0] ⊂ v0

[v1, f0 + Y ′] ⊂ v0 + v1.

(5.11)

We claim that TY ′
(
(Q1,K∩Q1)·Y ′) = u−1 ∩p. This is equivalent to [q∩q1∩k, Y ′] = u−1 ∩p.

Since Y ′ ∈ u1 ∩ p the inclusion ‘⊂’ is clear. For the other inclusion, let Xβ ∈ u−1 ∩ p. Then

Xβ ∈ [q ∩ k, f0 + Y ′] ∩ g1, by (5.10),

=
(
[q1 ∩ q ∩ k + h̃ + v0 + v1, f0 + Y ′]

)
∩ g1

⊂ [q1 ∩ q ∩ k, Y ′], by (5.11),.

The claim is now proved. Therefore (Q1,K ∩QK) · Y ′ is open in u−1 ∩ p.

Since Y ′ is an arbitrary generic element in u−1 ∩ p, we conclude that Q1,K ∩ QK acts
transitively on the set of generic elements in u−1 ∩ p.

For the converse, let Y be generic in u−∩p and let f = f0+f ′, f ′ =
∑m−1

i=1 fi as in Section
3. By Proposition 3.14 there exist q ∈ QK and qi ∈ Qi,K so that Y = qq1 · · · qm−1 · (f0 +f ′).
Since each qi commutes with f0, q−1Y = f0 + Y ′, where Y ′ = q1 · · · qm−1 · f ′, a generic
element of u−1 ∩ p. Now assume QK ∩Q1,K is transitive on the generic elements of u−1 ∩ p.
Then,

dim(Q1,K · Y ′) = dim((QK ∩Q1,K) · Y ′) = dim(u−1 ∩ p). (5.12)

Therefore it suffices to show that QK · Y = QK · (f + Y ′) has codimension zero in u− ∩ p.
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By Formula 5.2 and Corollary 5.4 applied to Y ′ ∈ u−1 ∩ p, along with (5.12),

0 = codimu−1 ∩p(Q1,K(Y ′))

=
m∑

i=2

dim(Qi,K/Qi,K ∩Qi−1,K)−
(

dim ZK1(Y
′)− dim ZQ1,K

(Y ′)
)
.

(5.13)

Also, by (5.12),

dim(Q1,K/Q1,K ∩QK) = dim Q1,K − dim Q1,K ∩QK

= dim ZQ1,K
(Y ′)− dim ZQK∩Q1,K

(Y ′).
(5.14)

Applying formula 5.2 and Corollary 5.4 for the first equality and (5.13) and (5.14) for the
second, we have

codimu−∩p

(
QK(f + Y ′)

)
=

m∑
1

dim(Qi,K/Qi,K ∩Qi−1,K)−
(

dim ZK(Y )− dim ZQK
(Y )
)

=
(
ZK1(Y

′)− dim ZQ1,K∩QK
(Y ′)

)
−
(

dim ZK(Y )− dim ZQK
(Y )
)
.

(5.15)

Since

ZK1(Y
′)/ZQ1,K∩QK

(Y ′) → ZK(f0 + Y ′)/ZQK
(f0 + Y ′)

is injective, we may conclude that the right hand side of (5.15) is less than or equal to zero.
Therefore, codimu−∩p(QK(f + Y ′)) = 0, and the proof is complete.

�

Corollary 5.16. QK has an open orbit in u− ∩ p if and only if Q1,K ∩ QK has an open
orbit in u−1 ∩ p.

We conclude this section with an example of how Corollary 5.16 identifies a situation
where QK does not have an open orbit in u− ∩ p.

Example 5.17. Let GR = SU(7, 7). Consider the positive root system ∆+ = ∆+(g, h)
determined by the following numbered array. The first string formed by the algorithm is
shown.

s1HH
HH

s2 s
8
����s

9

s3
@

@s
10
����s

11

s4HH
HH

s5 s
12
�

�
s6HH

HH

s7 s
13

s
14

Equivalently, ∆+ is the system of positive roots having positive inner product with

(14, 13, 10, 7, 6, 4, 3 | 12, 11, 9, 8, 5, 2, 1).

After deleting the first string the resulting array is
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s2 s
9

s
11

s5 s7 s
14

Thus, g1 = sl(6) and Q1,K∩QK = B1 is a Borel subgroup of K1. Moreover, dim(k∩b1) =
11, while dim(u−1 ∩ p) = 9. An arbitrary element X in u−1 ∩ p is of the form

X = aX9,2 + bX11,2 + cX14,2 + dX14,7 + eX5,11 + fX14,5 + gX5,9 + hX7,9 + iX7,11.

We claim that B1 · X is not dense in u−1 ∩ p for any X ∈ u−1 ∩ p. Indeed, when a 6= 0
zb1(X) contains

aX5,2 + fX14,9, aX7,2 + dX14,9, and aX14,11 − bX14,9.

We then conclude that dim(B1 ·X) ≤ 8 < dim(u−1 ∩ p) = 9. When a = 0, the argument is
slightly different: X9,2 /∈ [b1, X] (as is easily checked). But, [b1, X] is the tangent space to
B1 ·X at X, so dim(B1 ·X) < dim(u−1 ∩ p). This proves the claim. Now, Proposition 5.9,
implies that QK has no open orbit in u− ∩ p.

The orbit structure of QK on the generic elements in u− ∩ p may be described as fol-
lows. Assume that Y ∈ u− ∩ p is generic. By Corollary 5.4, we know that dim γ̃−1(Y ) =
dim L1/(L1∩QK) = 2. Hence, by Lemma 5.2, the only possible dimensions of the QK-orbits
in K(Y ) ∩ p are 47, 48 and 49. We have just argued that no orbit has dimension 49.

Observe that L1 = L1
1 ×L2

1 is the product of two commuting copies of GL(2) (generated
by the roots ±{ε7 − ε5, ε11 − ε9}). By using the Bruhat decompositions of the subgroups
Li

1, i = 1, 2 one sees that the QK-orbits in the generic elements of u− ∩ p are as follows.
Orbits of dimension 47:

QK · f, QK(exp(X9,11) · f), QK(σ5,7 exp(X9,11 · f),

and orbits of dimension 48:

QK(σ5,7 · f), QK(σ9,11 · f),

QK(σ5,7σ9,11 · f), QK(exp(X5,7) · f), QK(exp(X5,7)σ9,11 · f),

QK(exp(X5,7 exp(sX9,11), s ∈ C (an infinite family).

We have the following orbit decomposition

K(Y ) ∩ p = QK · f ∪QK(exp (X9,11)f) ∪QK(s9,11f) ∪QK(s9,11exp (X5,7)f)

∪QK(s5,7f) ∪QK(exp (X9,11)f) ∪QK(s9,11s5,7f)

∪
⋃
s∈C

QK(exp (X5,7) exp (sX9,11) · f)

with s9,11 and s5,7 the non-trivial Weyl group elements of the respective copies of GL(2).
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6. multiplicity polynomials for discrete series representations

An important invariant of a Harish-Chandra module V is its associated variety. In
general, the associated variety, denoted by AV (V ), is the union of the closures of several
K-orbits in Nθ. The associated cycle is a formal integer combination of the orbit closures O

occurring in AV (V ). The integer attached to O is referred to as the multiplicity of O in the
associated cycle of V . In this section we will use Theorem 4.8 to give a simple algorithm
for computing the multiplicities for discrete series representations of GR = SU(p, q). Our
starting point is a formula of J.T. Chang that gives a formula for the multiplicities in
terms of a sheaf cohomology space on γ−1(f). For generalities on the associated cycle and
multiplicities see, for example, [7] and [25]. See [19] for the proof of a conjecture of D.
Barbasch and D. Vogan that relates the associated cycle of a Harish-Chandra module to its
global character.

We begin by giving a parameterization of the discrete series. For each closed K-orbit
in the flag variety X there is a family of discrete series representations. So let us fix such
a closed orbit Z in X. Then, as in earlier parts of this article, there is a positive system
∆+ ⊂ ∆(h, g) containing ∆+

c so that Z = K · b, with b = h + n−, ∆(n−) = −∆+. The
discrete series representations corresponding to Z are parameterized by λ ∈ h∗ satisfying

(i) λ is ∆+-dominant regular and

(ii) τ = λ + ρ− 2ρc is analytically integral.
(6.1)

Here we are using the standard notation ρ (resp., ρc) for one half the sum of the roots in
∆+ (resp. ∆+

c ). The discrete series representation corresponding to λ will be denoted by
Vλ; it has infinitesimal character λ and has lowest K-type of highest weight τ .

It is well-known that AV (Vλ) is the image of γ : T ∗
ZX → Nθ. Therefore AV (Vλ) = K · f ,

where f is the generic element constructed in Section 3. It is also known that the multiplicity
of K · f in the associated cycle of Vλ is a polynomial in λ. (Note that we have fixed an
arbitrary closed K-orbit in X; there is one multiplicity polynomial for each such K-orbit
Z.)

Let OZ (resp., Oγ−1(f)) be the structure sheaf of Z (resp., γ−1(f)). Extend τ ∈ h∗ to a
representation of b by requiring that τ |n−∩k = 0. By (ii) of (6.1) τ lifts to a character χτ of
B∩K. This defines a homogeneous line bundle Lτ → Z. The sheaf of local regular sections
O(τ) is described as follows. Let p : K → K · b be the natural quotient map. Then for an
open set U ⊂ Z a section on U is a regular function ϕ on p−1(U) so that

ϕ(kb) = χτ (b−1)ϕ(k), for k ∈ K, b ∈ B ∩K.

Let
Oγ−1(f)(τ) = O(τ) ⊗

OZ

Oγ−1(f).

We now may state J.T. Chang’s theorem ([6]).

Theorem 6.2. If Vλ is the Harish-Chandra module of a discrete series representation pa-
rameterized by a closed K-orbit Z in X and λ ∈ h∗, as described above, then the multiplicity
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of K · f in the associated cycle of Vλ is

dim
(
H0(γ−1(f),Oγ−1(f)(τ))

)
.

This cohomology space may be described by the Borel-Weil Theorem as follows. Let W−τ

be the irreducible finite dimensional K-representation of lowest weight −τ and let w−τ be a
lowest weight vector. The Borel-Weil Theorem states that W ∗

−τ ' H0(Z,O(τ)). Note that
τ satisfies (ii) of (6.1), so is ∆+

c dominant. This isomorphism is implemented by

v 7→ ϕv, v ∈ W ∗
−τ

ϕv(k) = 〈v, kw−τ 〉.

As stated (and attributed to J. Bernstein) in [13, §6.1-6.3], for λ sufficiently dominant

dim
(
H0(γ−1(f),Oγ−1(f)(τ))

)
= dim

(
spanC{k−1w−τ : k ∈ N(f, n− ∩ k)}

)
. (6.3)

This, along with our description of γ−1(f) given in Theorem 4.8, implies the following
proposition.

Proposition 6.4. The multiplicity of K · f in the associated cycle of Vλ is

dim
(
spanC{k · w−τ : k ∈ Lm . . . L2L1L}

)
,

provided λ is sufficiently dominant.

For any λ ∈ h∗ satisfying (6.1), and τ = λ + ρ− 2ρc, we define

qZ(λ) = dim
(
spanC{k · w−τ : k ∈ Lm . . . L2L1L}

)
. (6.5)

We show that qZ(λ) extends to a polynomial on all of h∗. Since the multiplicity (for the part
of the discrete series corresponding to Z) is also a polynomial in λ, we may then conclude
that qZ(λ) equals the multiplicity polynomial.

Theorem 6.6. For all λ ∈ h∗ satisfying (6.1) the multiplicity of K · f in the associated
cycle of Vλ is qZ(λ).

Proof. The notation will be slightly less burdensome if we define p(τ) to be the right-hand
side of (6.5) for any dominant integral τ . By the relation τ = λ + ρ− 2ρc it will be enough
to show that p(τ) extends to a polynomial in τ . We will do this by induction on m, the
number of strings making up f .

If m = 0 the group GR is compact (p = 0 or q = 0). Then L = K = G and f = 0,
and the Springer fiber is Z = X and p(τ) is given by the Weyl dimension formula (for g).
Therefore, p(τ) extends to a polynomial.

Now consider m > 1. Write U−τ for spanC{Lw−τ}, the irreducible representation of
L having lowest weight −τ . Decompose U−τ as a representation of L1 ∩ L. Write this
decomposition as

∑
E−τi and write the lowest weight vectors as w−τi .

Claim: Each w−τi
is annihilated by n− ∩ g1 ∩ k.
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To verify the claim, note that since L normalizes u−∩ k and w−τ is annihilated by u−∩ k,
each w−τi (in fact all of U−τ ) is annihilated by u− ∩ k. Now each w−τi is annihilated by
n− ∩ l1 ∩ l. But, n− ∩ g1 ∩ k ⊂ u− ∩ k + n− ∩ l1 ∩ l.

The claim tells us that F−τi
≡ spanC{K1w−τi

} is the irreducible K1-representation of
lowest weight −τi. Therefore,

p(τ) =
∑

i

dim
(
spanC{Lm · · ·L1w−τi

}
)
. (6.7)

By induction on m, each p1(τi) ≡ dim
(
spanC{Lm · · ·L1w−τi

}
)

extends to a polynomial in
τi.

There are two observations to make. First, L is a product of a number of groups iso-
morphic to a GL(r) for various r. Furthermore, L1 ∩ L is a product of various groups
isomorphic to GL(r′), where r′ is r or r−1. The standard branching law for the restrictions
of representations of GL(r) to GL(r − 1) is as follows. Let V−a be the irreducible GL(r)-
representation of lowest weight −a = −(a1, . . . , ar), a1 ≥ a2 ≥ · · · ≥ ar. Similarly, let U−b

be the irreducible GL(r− 1) representation of lowest weight −b = −(b1, . . . , br−1). The the
restriction of V−a to GL(r − 1) is

∑
U−b, with the sum being over all b ∈ Zr−1 so that

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ br−1 ≥ ar. Each occurs with multiplicity one.

The second observation is stated as an elementary Lemma.

Lemma 6.8. If P1(b), b ∈ Cr−1 is a polynomial, then for a ∈ Zr

P (a) ≡
∑

a1≥b1≥a2≥b2≥···≥br−1≥ar,bj∈Z

P1(b1, . . . , br−1)

extends to a polynomial on Cr.

Proof of lemma. For a ∈ Zr,

P (a) =
a1∑

b1=a2

· · ·
ar−1∑

bn−1=ar

P1(b1, . . . , br).

It follows easily, from the fact that
∑N

n=1 nk is polynomial in N , that P (a) extends to a
polynomial in a ∈ Cr. �

We now conclude the proof of the theorem by noting that the τi’s occurring in (6.7) come
from the branching rule mentioned above (for the various factors of L), and the Lemma
along with (6.7) says that p(τ) extends to a polynomial in τ . �

The proof of the theorem contains an algorithm for computing the multiplicity of K · f
in Vλ. We describe an algorithm for computing pZ(τ) for any τ that is a ∆+

c -dominant
integral weight. Given a closed K-orbit and corresponding positive system ∆+ containing
∆+

c , form the sequence as in (2.5) and the corresponding array. Form the first string and
f0 as in (3.1), also form G1 and Q1,K (as at the end of Section 3).



SPRINGER FIBERS 27

(1) Decompose the L-representation U−τ = spanC{L(w−τ )} under L ∩ L1 using the
branching law for restricting GL(r)-representations to GL(r − 1). Call the con-
stituents E−τi

.
(2) As shown in the proof of the theorem (see the ‘Claim’), each τi is dominant for

∆+
c ∩∆(l1) and

p(τ) =
∑

i

p1(τi).

(3) Now repeat the procedure to find the p1(τi).

The procedure ends after m (the number of strings) iterations.

We now give several examples of computations of the multiplicities of discrete series
representations using the algorithm described above. The result of the first example is now
well known ([15] and [6]), and the second follows from [6].

Example 6.9. (Holomorphic Discrete Series) This is the case where there is a unique simple
noncompact root. The array is therefore one of the following:

s1 · · · sp s
p+1

· · · s
p+q

or s1 · · · sps
p+1

· · · s
p+q

and (assuming p ≤ q) f = ±
∑p

i=1(εi − εp+i). Therefore, L = K, so Lm · · ·L1L = K and
the multiplicity of Vλ is the dimension of the lowest K-type of Vλ.

Example 6.10. (Quaternionic Discrete series of SU(p, 2)) Consider the positive system de-
termined by the following diagram:

s
p+1
�

�
s1XXXXXXXX

s2 · · · sp s
p+2

The reductive part of QK is L = S(GL(p) × GL(1) × GL(1)) and L1 ⊂ L. Therefore, the
multiplicity is dim(L · w−τ ), i.e., the dimension of the irreducible representation of L with
lowest weight −τ = −(λ + ρ− 2ρc).

Example 6.11. Consider the group G = SU(p, p) with the positive system given by a Dynkin
diagram with the maximum number of simple noncompact roots. The array is

s1
@

@s
p+1
�

�
s2
@

@s
p+2
��

· · ·
sp
@

@
�� s

2p
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Here L = L1 = the torus and the multiplicity is one.

Example 6.12. We consider G = SU(7, 7) and the positive system determined by the fol-
lowing array

s1 s2 s
8

s
9

s3 s
10

s
11

s4 s5 s
12

s6 s7 s
13

s
14

(See also Example 5.17.) Then spanC{L ·w−τ} is the irreducible L-representation of lowest
weight −τ , call it U−τ . Then L is a product of six copies of SL(2) (and a torus) and U−τ

is the tensor product of representations of these SL(2)’s. Since L1 ∩ L is contained in the
torus, the decomposition of U−τ |L1∩L is given by the weights

−τ + a(ε1 − ε2) + a(ε4 − ε5) + c(ε6 − ε7) + d(ε8 − ε9) + +e(ε10 − ε11) + f(ε13 − ε14),

with a = 0, . . . , τ1−τ2, b = 0, . . . , τ4−τ5, c = 0, . . . , τ6−τ7, d = 0, . . . , τ8−τ9, e = 0, . . . , τ10−
τ11 and f = 0, . . . , τ13 − τ14. L1 is the product of two copies of SL(2) (and a torus). The

roots in l1 are ±{ε5 − ε7, ε9 − ε11}. Using the formula
N∑

n=0

n =
N(N + 1)

2
, the dimension of

spanC{L1L · w−τ} is therefore∑
a,...,f

(τ5 − τ7 + b− c + 1)(τ9 − τ11 + d− e + 1)

= (τ1 − τ2 + 1)(τ4 − τ5 + 1)(τ6 − τ7 + 1)(τ5 − τ7 + 1 +
τ4 − τ5 − τ6 + τ7

2
)

(τ8 − τ9 + 1)(τ10 − τ11 + 1)(τ9 − τ11 + 1 +
τ8 − τ9 − τ10 + τ11

2
)(τ13 − τ14 + 1).

Writing this in terms of λ (using τ = λ + ρ− 2ρc) the formula for multiplicity is
1
4
(λ1−λ2)(λ4−λ5)(λ6−λ7)(λ8−λ9)(λ10−λ11)(λ13−λ14)(λ4+λ5−λ6−λ7)(λ8+λ9−λ10−λ11).

We end with two remarks.

Remark 6.13. As a consequence of Proposition 5.1 and the above discussion we have an
alternative formula for the multiplicity.

Proposition 6.14. If there exists Y ∈ u−∩p so that QK ·Y is dense in the generic elements,
then

qZ(λ) = dim{ZK(Y )L · w−τ}.

Proof. This follows from (6.3), since ZK(Y )L · b is dense in γ−1(f). �

Remark 6.15. In [27] H. Yamashita constructs a ZK(f)-representation which is contained in
the isotropy representation ([25]). The description of H0(γ−1(f),Oγ−1(f)) given here shows
that Yamashita’s ZK(f)-representation is equal to spanC{Lm . . . L1L(w−τ )}.
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Appendix A. integrals over components of the springer fiber for sl(n,C)
by Peter E. Trapa

A consequence of the main result of this paper is an algorithm, presented in Section 6, to
compute the cohomology of a certain class of irreducible components of the Springer fiber for
sl(n,C). As explained, for instance, in [13, Corollary 6.7], this is related to the computation
of the integrals over such components of exponentiated Chern classes of homogeneous line
bundles on the flag variety. In turn, [7, Section 2] implies results about multiplicities in
associated cycles of irreducible discrete series representations of SU(p, q). The algorithm
relies crucially on the geometric description of the relevant class of components given in
Section 4 of the present paper. The most computationally intensive portion of the algorithm
involves a classical branching problem from GL(n,C) to GL(n− 1,C).

The purpose of the appendix is to describe an algorithm to compute the relevant integrals
over any component of the Springer fiber for sl(n,C). We do this in two steps. First we
present an algorithm to compute the multiplicity in the associated cycle of an arbitrary
irreducible Harish-Chandra module for SU(p, q) with regular integral infinitesimal character
in the block of a finite-dimensional representation1. (The argument applies with superficial
changes to SL(n,C).) This algorithm has been known to a handful of experts for some
time, and relies on combining results of many people, most notably Barbasch, Joseph, King,
and Vogan. The next step is to use an observation about characteristic cycles for SU(p, q)
to translate effectively this calculation into a calculation of the relevant integrals. The main
subtlety is nailing down certain rational scale factors precisely. To do so (as we indicate in
various places below), we must use very special features of SU(p, q) (or SL(n,C)).

In contrast to the methods of Barchini-Zierau, the algorithm given here depends on the
Kazhdan-Lusztig algorithm for sl(n,C) and SU(p, q), and thus is computationally much
more intensive. In particular, I know of no way to recover the simpler algorithm of Section
6 (which, recall applies only to certain components of the Springer fiber) from the general,
more complicated one given here.

We begin in the general setting of a connected reductive group GR and use standard
notation consistent with that used throughout this paper, with one exception: the flag
variety for g will now be denoted B, not X. We need to define the multiplicity polynomial
for an arbitrary irreducible Harish-Chandra module X. Fix a fundamental Cartan HR in
GR, write η ∈ h∗ for a representative of the infinitesimal character of X. Assume that η is
regular and integral. (Some parts of the discussion below require nontrivial modification for
nonintegral infinitesimal character.) Choose a system of positive roots for h in g such that
η is dominant. Let Λ ⊂ ĤR denote the set of weights of finite-dimensional representations
of GR (e.g. [29, Section 0.4]). Since HR is fundamental, it is connected, and hence we may

1If p 6= q, there is a unique block of representations with regular infinitesimal character, and so the

hypothesis of being contained in the block of a finite-dimensional representation is empty. If p = q, however,

there is another such block (as can already be seen for SU(1, 1)). This block does not exist for U(p, p), and
the extra hypothesis about the block of a finite-dimensional is also empty in this setting.



30 L. BARCHINI AND R. ZIERAU

naturally view Λ ⊂ h∗. Let Φ denote a coherent family for GR such that Φ(η) = X as in
[29, Lemma 7.2.6] and [29, Corollary 7.3.23], for instance. Write X(λ) = Φ(λ), λ ∈ η + Λ.
Thus X(λ) is an irreducible Harish-Chandra module if λ is dominant and regular.

It follows easily from the definitions that AV(X) = AV(X(λ)) for any dominant regular
element λ ∈ η + Λ (e.g. [4, Lemma 4.1]). Fix an irreducible component of AV(X) and
consider the function that assigns to each dominant λ the multiplicity, say pX(λ), of this
component in the associated cycle of X. Then pX extends to a harmonic polynomial on
h∗ (by the general criterion of [28, Lemma 4.3], for instance). Although pX depends on a
choice of an irreducible component of AV(X), we suppress this choice from the notation.

Let q′Ann(X) ∈ S(h∗) denote the Goldie rank polynomial of the annihilator of X [11]. The
arguments in [7, Section 1] (for instance) prove that pX = c′Xq′Ann(X) for a constant c′X .
Meanwhile [12, Theorem 5.1] defines a polynomial qAnn(X) (which is explicitly computable
using the Kazhdan-Lusztig algorithm for g at infinitesimal character η) so that qAnn(X) is
proportional to q′Ann(X). Write pX = cXqAnn(X). The scale factor cX is rational, and there
is no known algorithm to compute it, except in favorable instances.

We next recall (e.g. [3]) the definition of cells of Harish-Chandra modules. Suppose X ′ and
X ′′ are irreducible Harish-Chandra modules with the same infinitesimal character. Write
X ′ > X ′′ if X ′′ is a subquotient of X ′ ⊗ F where F is a finite-dimensional representation
appearing in the tensor algebra of g. Write X ′ ∼ X ′′ if X ′ > X ′′ and X ′′ > X. Then ∼ is
an equivalence relation and its equivalence classes are called cells.

Let C denote the cell containing our fixed Harish-Chandra module X. The elements of C
index a basis of a subquotient of the full coherent continuation representation of the Weyl
group W = W (h, g). We write Coh(C) for this subquotient, and [Y ] ∈ Coh(C) for the basis
element indexed by Y ∈ C. Meanwhile, we can consider the span, say GR(C) of the various
Goldie rank polynomials qAnn(Y ) for Y ∈ C. Then GR(C), with the natural action extending
the W action h∗, is an irreducible (special) representation of W [12].

If Y ∈ C, then AV(Y ) = AV(X) (once again by [4, Lemma 4.1], for instance). Recall that
we have fixed an irreducible component of AV(X). So we can consider the corresponding
multiplicity polynomial pY for Y .

Theorem A.1. Retain the setting above for a connected reductive real group GR. The map

Coh(C) −→ GR(C)∑
Y ∈C

nY [Y ] −→
∑
Y ∈C

nY pY

is a W -equivariant surjection.

Sketch. The only account that appears in print is roundabout: the statement of the
theorem is the main result of [16] combined with [2] and the Barbasch-Vogan conjecture
[19]. (A direct proof can perhaps be deduced from the equivariance results of [14] and [20],
together with the interpretation of multiplicities given in [7, Section 2].)
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�

Since the representation Coh(C) is explicitly computable using the Kazhdan-Lusztig-
Vogan algorithm for GR, and since (as we remarked above) GR(C) is computable using
the Kazhdan-Lusztig algorithm for g, Theorem A.1 provides explicitly computable restric-
tions on multiplicity polynomials. To get started, we need to be able to compute some
multiplicities independently. Here is a special case where such a computation is easy (and
well-known).

Proposition A.2. Let GR be an arbitrary reductive group, and let Aq be a derived functor
module of the form considered in [30] for a θ-stable parabolic q = l⊕ u. Then

AV(Aq) = K · (u ∩ p),

and hence is the closure of a single nilpotent K orbit OK on p. (Here we are using the
convention that associated varieties are subvarieties of the nilpotent cone in g, rather than
in g∗.) If we further assume that

G ·AV(Aq) = G · u, (A.3)

then the multiplicity of OK in the associated cycle of Aq(λ) is exactly one.

Sketch. Temporarily set X = Aq. Let D denote the sheaf of algebraic differential operators
on B, and X = D ⊗U(g) X. Let Z = supp(X) denote the dense K orbit in the support
of X. Consider the characteristic cycle of X (e.g. [5, Section 2] which states results in the
setting of complex groups, but whose proofs carry over without change to the real case).
The closure of T ∗

ZB always appears in the characteristic cycle of X with multiplicity one
(e.g. [5, Proposition 2.8(a)]). Since X is a derived functor module, its characteristic variety
is irreducible, so there are no components other than T ∗

ZB. Unwinding the definitions and
identifications shows

µ
(
T ∗

ZB
)

= K · (u ∩ p).

Since the moment map image of the characteristic variety of X is the associated variety
of X (e.g. [5, Theorem 1.9(c)]), AV(X) = K · (u ∩ p), as claimed. Meanwhile if f denotes
a generic point of the moment map image, as in Section 2 above, then (A.3) implies that
the intersection of the µ−1(f) with T ∗

ZB identifies with the flag variety for l. Given the
characteristic cycle computation, the results of [7, Section 2] (recalled in more detail in
(A.4) below) show that the multiplicity in the associated cycle is the dimension of the space
of holomorphic functions on the flag variety for l. Hence it is one. �

Next we recall the relationship between integrals over the Springer fiber and multiplicities
in associated cycles. Let eλ denote the exponential of the first Chern class of the homoge-
neous line bundle on B parameterized by λ ∈ h∗ (and our fixed choice of positive roots). Let
C be an irreducible component of the Springer fiber. The discussion around [19, Equation
5.6], for instance, carefully explains how to define the integral

∫
C

eλ over C of the term of
appropriate degree in eλ.
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Now suppose X is an irreducible Harish-Chandra module with regular integral infinites-
imal character. Write the characteristic cycle of its localization, e.g. [5, Section 2], as∑

j

mj [T ∗
Zj

B].

Recall the fixed component OK of AV(X), and choose f ∈ OK . Let S = S(X, OK) denote
the subset of indices j such that

µ
(
T ∗

Zj
B
)

= OK .

Then [7, Proposition 2.5.6] shows that

pX(λ) =
∑
j∈S

(
mj

∫
Cj

eλ

)
, (A.4)

where
Cj = T ∗

Zj
B ∩ µ−1(f);

see also the exposition around [19, Equation 7.23].

We specialize to the setting of SU(p, q) and trivial infinitesimal character η = ρ. By [3],
each cell representation Coh(C) is irreducible. (Such cells are reducible for general groups.)
Hence the map in Theorem A.1 is an isomorphism, and the scale factors cY , Y ∈ C, are
determined by any one of them. Thus we are reduced to computing the associated cycle
of one representation in each cell at trivial infinitesimal character. But [3] shows that
each cell C of representations in the block of the trivial representation contains a derived
functor module of the form Aq satisfying the condition (A.3), and thus Proposition A.2
computes its associated cycle. This specifies all scale factors for representations in the block
of a finite-dimensional representation, and implies the existence of an effective algorithm to
compute associated cycles of such irreducible Harish-Chandra modules for SU(p, q)2. Note,
in particular, that associated varieties of such modules are irreducible.

(If one considers GR = SL(n,C) and left cells C, the results of the previous paragraph
carry over with only superficial modifications. The relevant cell calculations in this context
are due to Joseph.)

To conclude, we also give an effective means to compute
∫

C
eλ for any component of

the Springer fiber for sl(n,C). This relies on a key geometric fact for SU(p, q). (Again,
the results of this paragraph carry over with superficial modifications for SL(n,C).) Let
X be an irreducible Harish-Chandra module with infinitesimal character λ in the block of
a finite-dimensional representation. As we remarked above, AV(X) is irreducible, so write
AV(X) = OK and fix f ∈ OK . Write the characteristic variety of its appropriate localization
X as

T ∗
Z1

B ∪ · · · ∪ T ∗
Zk

B

for K orbits Zi on B. There may be multiple terms here. But we claim that the set
S = S(X, OK) entering (A.4) consists of a single element in our setting. (This certainly

2I do not know how to compute the scale factors for the other block of SU(p, p). Cells in this block do

not contain derived functor modules.
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fails in general.) First we locate one element of S, and then indicate that there can be
no others. Let supp(X) denote the dense K orbit in the support of X. As in the proof of
Proposition A.2, the closure of T ∗

supp(X)B always appears as an irreducible component of the
characteristic variety of X; moreover it appears with multiplicity one in the characteristic
cycle (e.g. [5, Proposition 2.8(a)]). In [23, Theorem 5.6(a)], it is proved that

µ
(
T ∗

supp(X)B
)

= AV(X);

so indeed T ∗
supp(X)B belongs to S. Set

C(X) = T ∗
supp(X)B ∩ µ−1(f).

We remark that the map X 7→ (AV(X), C(X)) is explicitly computed in [23, Theorem
5.6(a)]; in particular, each C(X) is a single irreducible component of the Springer fiber
µ−1(f), and every such component arises in this way for some X. We now argue that S can
contain no other elements besides the conormal bundle to supp(X). This can be deduced
from the characteristic cycle computation for derived functor modules recalled in the proof
of Proposition A.2, the fact that each cell contains such a derived functor module, and the
equivariance results of [14] and [20]. (Alternatively, the introduction of [24] explains how
the assertion is equivalent to the main result of [17].) We conclude that (A.4) reduces to

pX(λ) = 1 ·
∫

C(X)

eλ. (A.5)

Since pX is know by the algorithm given above, since X 7→ C(X) is explicitly computable,
and since every component of the Springer fiber for sl(n,C) arises as some C(X), (A.5)
gives an algorithm to compute the integral over any such component.
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