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Introduction

In this article we consider the pairs (G,K) of complex groups

(Sp(2n), Sp(2p) × Sp(2q)), n = p+ q,

(SO(2n), GL(n)),
(1)

which are referred to as type C and type D, and the corresponding real forms

GR = Sp(p, q), SO∗(2n). (2)

A method is given to compute associated cycles of discrete series representations

of GR. The method in fact computes the associated cycle of any representation

in a Harish-Chandra cell which contains a discrete series representation. In each

such cell we find a discrete series representation X ′ for which a relatively elemen-

tary argument gives us the associated cycle. We show that the corresponding cell

representation is generated by X ′. Then the general theory of characteristic cycles,

Springer representations and coherent continuation applies to show that the com-

putation of AC(X ′) gives the associated cycle of any irreducible Harish-Chandra

module in the cell of X ′. The computation is in the form of an algorithm, which

will be outlined below. An important part of the algorithm is based on the results

and methods of [4].

Before describing the algorithm we establish a small amount of notation. The

subgroup K is the fixed point group of an involution Θ of G. The (complexified)

Cartan decomposition of the Lie algebra of G (for θ, the differential of Θ) is written

as g = k+ p. We fix a Cartan subalgebra h of g that is contained in k.

The principal geometric objects considered are the flag variety B for G and the

nilpotent cone N of the Lie algebra g. We also consider Nθ := N ∩ p. The moment

map of the cotangent bundle to B is denoted by µ : T ∗B → N . If Q ⊂ B is a

K-orbit, then the restriction of µ to the conormal bundle maps to Nθ. The fibers

of µ play an important role and are referred to as Springer fibers; we often use the

common notation Bf for µ−1(f). A standard fact is that when µ(T ∗
Q
B) = K · f ,

then Bf ∩ T ∗
Q
B is a union of irreducible components of Bf . One easily sees that
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Bf may be identified with the set of Borel subalgebras that contain f , thus may be

identified with a subvariety of B.

LetX be a discrete series representation having the same infinitesimal character as

the trivial representation (infinitesimal character equal to ρ). Then X is associated

to a closed K-orbit Q ⊂ B, its support in the Beilinson-Bernstein description of

irreducible Harish-Chandra modules. There is a coherent family {Xλ}λ∈Λ, Λ the

integral lattice in h∗, so that X = Xρ. The associated cycle of Xλ, λ ∈ Λ+, is

AC(Xλ) = mQ(λ)O

where µ(T ∗
Q
B) = O, O = K · f ⊂ Nθ. The definition of the associated cycle of a

Harish-Chandra module is given in [18]. A theorem of J.-T. Chang ([6]) states that

the multiplicity mQ(λ) of O in AC(Xλ) is given by

mQ(λ) = dim(H0(µ−1(f) ∩ T ∗
Q
B,O(λ+ ρ− 2ρc))), (3)

for some invertible sheaf O(λ + ρ − 2ρc). For the groups U(p, q), Sp(2n,R) and

O(p, q) algorithms are given in [2] and [3] to compute AC(Xλ). The procedure

there is to begin with a closed K-orbit Q in B (which corresponds to a positive

system of roots), then construct a nice ‘generic’ element f ∈ Nθ in terms of root

vectors. It turns out that µ−1(f) ∩ T ∗
Q
B, a component of the Springer fiber (or

several components), has a particularly nice form and the Borel-Weil Theorem can

be applied to compute mQ(λ). For the real forms (2) considered in the present

article, µ−1(f) ∩ T ∗
Q
B does not seem to have a nice form for every closed orbit Q.

Therefore mQ(λ) cannot always be computed directly using (3).

The algorithm presented here to compute AC(Xλ) goes as follows. As for the

other classical groups, begin by finding the (nice) ‘generic’ element f . This is done

in [4]. The next step is to replace Q = support(X) by another closed K-orbit Q′ ⊂ B

for which mQ′(λ) can be computed in an elementary way using (3) and the Borel-

Weil Theorem. The point is that, with Q
′ properly chosen, µ−1(f) ∩ T ∗

Q′B has a

very simple form (often homogeneous). This is carried out in §3.

The final step is to compute mQ(λ), now that mQ′(λ) is known. Suppose that

X ′ is the discrete series representation of trivial infinitesimal character with Q′ =

support(X ′) and {X ′
λ}λ∈Λ is the coherent family with X ′ = X ′

ρ. From the algorithm

to compute Q′ from Q one sees (§3 and [4]) that X and X ′ have the same associated

variety. It follows from a theorem of McGovern ([11]) that X and X ′ are in the

same Harish-Chandra cell C.

In §2 we show that X ′ (indeed any discrete series representation, for our GR)

generates the cell representation VC as Q[W ]-module, that is, VC = Q[W ] · X ′. It
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follows from the W -equivariance of the map sending a representation to its multi-

plicity polynomial, that

mQ(λ) =
∑

w∈W

awmQ′(w−1λ), for some aw ∈ Q. (4)

The W -equivariance is well-known; it is stated carefully, with references, in §1.
There is an algorithm, which has been implemented in the Atlas software, for com-

puting the W -action on VC. Therefore, the coefficients aw appearing in (4), i.e., the

coefficients for which X =
∑

w aw w ·X ′, can be computed explicitly.

We remark that the multiplicity polynomials for all representations in any cell

which contains a discrete series representation are computed by the algorithm.

A byproduct of §3 is that we determine exactly which nilpotent orbits occur as

associated varieties of discrete series representations. It is shown in [9] that for a

general semisimple Lie group the associated variety of a discrete series representation

satisfies a compactness condition; it follows from §3 that the converse not true. This

is discussed in §7.

Remark. This article depends heavily on [4]. The construction of certain ‘generic’

nilpotent elements is given in §2 of [4]; the details of this construction are used here.

The reader is assumed to be familiar with the notation and content of §2 of [4].

Other than the statement of the main result, other sections of [4] are not used in

this article.

1. Coherent continuation and the multiplicity polynomials

Suppose {Xλ}λ∈Λ is a coherent family with X = Xρ some irreducible Harish-

Chandra module (not necessarily in the discrete series). Then the associated variety

of the representations Xλ, λ ∈ Λ+, coincide. Let us assume that AV (Xλ) = O, the

closure of a single K-orbit in Nθ. This assumption simplifies somewhat our discus-

sion below. It is a fact that for the groups (2) under consideration the associated

varieties of irreducible representations with regular integral infinitesimal character

are in fact the closure of a single orbit in Nθ ([11]), so there is no loss of generality for

our purposes. We therefore have that AC(Xλ) = mX(λ)O. The multiplicity mX(λ)

extends to a W -harmonic polynomial on h∗. We refer to mX(λ) as the multiplicity

polynomial. In the notation mX(λ) we omit reference to O, since the associated

variety has just the one irreducible component (O). Note that X determines the

coherent family. In the introduction and in Sections 4 and 5, where the K-orbit

Q ⊂ B determines a coherent family of discrete series representations, we use the

notation mQ(λ) for the multiplicity polynomial.

Consider a Harish-Chandra cell C. All representations in C have the same associ-

ated variety. The fact we need is that the map defined by sending any X ∈ C to its

multiplicity polynomial mX(λ) (and extended linearly) from the cell representation
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VC to P (h∗) is W -equivariant with W acting by coherent continuation on VC and as

usual on polynomials. This fact is well-known to the experts. We need some details

on how this map arises.

The following is a (very brief) sketch of a proof of this fact. Begin by writing

O = K ·f , f ∈ Nθ. The homology spaceHtop(B
f ) (with rational coefficients) affords

a representation of W ([14]). This is referred to as the Springer representation.

Let d = dimC(B
f ), so the top degree homology is in degree 2d. The inclusion

Bf →֒ B induces a W -homomorphism Htop(B
f ) → H2d(B), as explained in [13,

§3]. Following this map by theW -isomorphism ([5]) ofH2d(B) with theW -harmonic

polynomials homogeneous of degree 2d, we get a W -homomorphism

Htop(B
f ) → P2d(h

∗). (1.1)

A formula for this map is given in ([13, §3, 6]) as follows. The fundamental classes

of the components of Bf form a Q-basis of Htop(B
f ). The map (1.1) is defined by

[C] 7→

∫

C

eωλ

where ωλ is the first Chern class of the homogeneous line bundle for λ ∈ h∗ and [C]

is the fundamental class of an irreducible component C of Bf .

The characteristic cycle of a representation is a formal integral combination of

closures of conormal bundles to K-orbits Q in B. Letting Z(K) be the conormal

variety for the K-action on B, that is, the union of the conormal bundles to K-

orbits in B, the characteristic cycle of a Harish-Chandra module lies in the top

degree Borel-Moore homology Htop(Z(K)). We therefore have a characteristic cycle

map defined on the Grothendieck group of Harish-Chandra modules of infinitesimal

character ρ:

CC : HCρ → Htop(Z(K)). (1.2)

This map is W -equivariant ([16]) for the coherent continuation representation on

HCρ and an appropriate action of W on Htop(Z(K)), as described in [16].

Now consider cells of Harish-Chandra modules (of infinitesimal character ρ). The

cells partition the set of irreducible Harish-Chandra modules into subsets. One

property is that any two representations in the same cell have the same associated

variety. Each cell C defines a W -representation VC as a subquotient of the coherent

continuation representation which is spanned by the irreducibles in C. See for ex-

ample [1] and [2, Appendix] for definitions. On the other hand, Htop(Z(K)) has a

subquotient (as W -representation):

∑

Q,µ(TQ)⊂O

Q · [T ∗
Q
B]/

∑

Q,µ(T ∗

Q
B)(O

Q · [T ∗
Q
B], (1.3)
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where AV (X) = O,X ∈ C. The characteristic cycle map is a well-defined W -

homomorphism

VC →
∑

Q,µ(TQ)⊂O

Q · [T ∗
Q
B]/

∑

Q,µ(T ∗

Q
B)(O

Q · [T ∗
Q
B]. (1.4)

Furthermore, (1.3) is isomorphic to Htop(B
f )AK(f) as W -representation, where

AK(f) is the component group of the centralizer in K of f . The isomorphism

is given as follows. It is a fact that Bf ∩ T ∗
Q
B is the union of the components in an

AK(f)-orbit in the irreducible components of Bf . If Bf ∩ T ∗
Q
B = ∪iCi, then the

isomorphism of (1.3) with Htop(B
f )AK(f) is defined by

[T ∗
Q
B] 7→

∑

i

[Ci]. (1.5)

Combining the maps (1.4) and (1.5) gives a W -homomorphism

ϕ : VC → Htop(B
f ). (1.6)

Finally, following ϕ by the map of (1.1) gives a W -equivariant map VC → P (h∗)

with the following formula:

X 7→
∑

Q,µ(T ∗

Q
B)=O

nQ

∫

Bf∩T ∗

Q
B

eωλ ,

when CC(X) =
∑

Q
nQ[T

∗
Q
B]. The expression on the right is the multiplicity poly-

nomial mX(λ) in the associated cycles for {Xλ} by [7, Cor. 2.5.6].

We conclude from this discussion the following.

Proposition 1.7. For GR = Sp(p, q) or SO∗(2n), if C is a Harish-Chandra cell

with associated variety O, then the homomorphism

VC → P2d(h
∗)

X 7→ mX(λ)

is W -equivariant.

2. Action of AG(f)

In this section we consider the action of AG(f), the component group of the

centralizer of f in G, on the set of irreducible components of Bf . First we give a

general criterion for the class [C] ∈ Htop(B
f ) of a component of Bf to generate

Htop(B
f ) as Q[W ]-module. When (G,K) is one of our pairs (1) we see that this

criterion is satisfied for the components associated to closed K-orbits in B. By

applying several known results we are then able to conclude that for the Harish-

Chandra module Xπ of a discrete series representation, VC = Q[W ] · Xπ, when

Xπ ∈ C.
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For Prop. 2.2 below we let G be any semisimple algebraic group and let f ∈ N ⊂ g.

We consider the Springer representation of W on Htop(B
f ) ([14]). The action of

AG(f) on Htop(B
f ), defined by the action on components of Bf , commutes with

the action of W . There is a decomposition as W -representations:

Htop(B
f ) =

⊕

σ

H(σ), (2.1)

where σ ranges over a subset of the irreducible representations of AG(f) and H(σ)

is the σ-isotypic subspace of Htop(B
f ). It is a fact that each H(σ) is irreducible as

W -representation ([14]).

Define AG(f) to be the quotient of AG(f) by the common stabilizer of the com-

ponents of Bf . Then each σ occurring in (2.1) may be viewed as a representation

of AG(f).

Proposition 2.2. Suppose the stabilizer in AG(f) of a component C of Bf is trivial,

then Q[W ] · [C] = Htop(B
f ).

Proof. Write [C] =
∑

hσ according to the decomposition (2.1). Apply z ∈ AG(f)

to get

[z · C] =
∑

σ

z · hσ. (2.3)

Let σ′ be an irreducible representation of AG(f) and write χσ′ for its character.

Multiple both sides of (2.3) by dim(σ′)

#(AG(f))
χσ′(z) and sum over z ∈ AG(f):

dim(σ′)

#(AG(f))

∑

z

χσ′(z) [z · C] =
∑

σ

( dim(σ′)

#(AG(f))

∑

z

χσ′(z) z · hσ
)

= hσ′ .

The last equality holds because Pσ′ = dim(σ′)

#(AG(f))

∑

z χσ′(z) z is the projection onto

the σ′-isotypic subspace. The left-hand side is nonzero since {[z ·C] : z ∈ AG(f)} is

independent (by the hypothesis) and χσ′(z) 6= 0 for some z ∈ AG(f). We conclude

that in the expression for [C], hσ 6= 0 for all σ ∈ AG(f)
̂.

Therefore,

Q[W ] · [C] ⊃ Q[W ] · Pσ([C]) = H(σ).

The last equality holds because Pσ([C]) = hσ 6= 0 and H(σ) is an irreducible W -

representation, as noted earlier. Therefore, Q[W ]·[C] contains all isotypic subspaces,

so is Htop(B
f ). �

Now return to the pairs of types C and D of (1). Fix a closed orbit Q = K ·b in B

and let µ(T ∗
Q
B) = O, O = K · f , f ∈ Nθ. It follows from [4] that for type C (resp.,

type D) there are at most two rows in the tableau parametrizing K · f having any

given even (resp., odd) length. (See §6 for a discussion of this fact.) To simplify the

discussion of centralizers slightly, for type D we replace G by O(2n). As our goal is

to verify the hypothesis in Prop. 2.2, working in O(2n) suffices.
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In both cases the component group is AG(f) = (Z2)
k, where k is the number

of pairs of rows of even (resp., odd) length in the tableau of f . See [8, Thm.

6.1.3]. In order to compute the AG(f)-action on components we need to determine

representatives for z ∈ AG(f) explicitly.

First consider the cases where the tableau of f has just one pair of rows, which

have even length for type C and odd length for type D. Form an sl(2) triple

spanC{f, h, e} and use the notation Kp,q and In,n as in [4, §1.2 ans 1.3]. Since we

are in the two-row case Cn = V ⊕V ′, a direct sum of two n-dimensional irreducible

sl(2)-representations. As described in [4, §1.3], there is a basis {vi} of V so that

vi = f i−1v1. Similarly there is a basis {v′i} of V ′. The signs of the signed tableau

correspond to the eigenvalues of Kp,q (resp. In,n) of the eigenvectors vi and v′i. One

easily checks that a Levi factor of the centralizer of f in G is given by matrices
(

αIn βIn
γIn δIn

)

, with

(

α β
γ δ

)

∈ O(2),

with respect to the ordered basis v1, . . . , vn, v
′
1, . . . , v

′
n. Note that (because of the

parity of n) the rows of the signed tableau begin with different signs, so vi and v′i
are in in different eigenspaces of Kp,q or In,n. Consider

z =

(

0 In
In 0

)

,

an element of the centralizer representing the nontrivial element ofAG(f) ≃ O(2)/SO(2) ≃
Z2. We have z(vi) = v′i, i = 1, . . . , n.

Lemma 2.4. z /∈ K.

Proof. Note that z(vi) = v′i, i = 1, . . . , n. If z were in K, then z would commute

with Kp,q (resp., In,n), so preserve the eigenspaces of Kp,q (resp., In,n). As noted

above, vi and v′i are in in different eigenspaces. �

Note that if C is the component of Bf corresponding to a closed orbit Q, then

C ⊂ K · b (= Q). We check that z ·C 6= C by checking that z · b /∈ K · b. Otherwise,

z · b = k · b, for some k ∈ K. Therefore, there is b ∈ K ∩B so that b−1k−1z · h = h,

by [12, Lemma 5.3]. But b−1k−1z · b = b, so b−1k−1z represents the identity in the

Weyl group. Therefore, b−1k−1z is in the Cartan subgroup H. Since H ⊂ K, this

says that z ∈ K, contradicting the lemma.

Now suppose O = K · f is dense in the associated variety of a discrete series

representation, i.e., µ(T ∗
Q
B) = O, with Q closed in B. Then AG(f) ≃ (Z2)

k,

and each nontrivial element z is represented by a product of commuting order two

elements described above. In particular z /∈ K. The argument that z · C 6= C, for

the component C corresponding to Q is identical to the argument given for the two

row case.
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We conclude that the stabilizer in AG(f) of any component C corresponding to

a closed K-orbit Q ⊂ B is trivial. Applying the criterion in Prop. 2.2 we get the

following.

Proposition 2.5. Suppose Q ⊂ B is a closed K-orbit, µ(T ∗
Q
B) = K · f and C =

Bf ∩ T ∗
Q
B. Then Q[W ] · [C] = Htop(B

f ).

Corollary 2.6. Suppose Xπ is a discrete series representation of GR = Sp(p, q) or

SO∗(2n). Let C be the Harish-Chandra cell containing Xπ. Then under the coherent

continuation action we have Q[W ] ·Xπ = VC.

Proof. Consider the W -homomorphism ϕ : VC → Htop(B
f ) as given in (1.6). We

first show that ϕ is an isomorphism. Since it is shown in [11] that VC and Htop(B
f )

are isomorphic, it suffices to show that ϕ is surjective. The characteristic cycle map

(1.2) is surjective ([16, Remark 3]). Since no other cell has associated variety O,

the map (1.4) is surjective. But as noted in §1, the quotient (1.3) is isomorphic

to Htop(B
f )AK(f). Since AK(f) is trivial (as follows easily from the discussion

preceding Lemma 2.4), we conclude that ϕ is surjective.

Since Q has smooth closure, CC(Xπ) = 1 · [T ∗
Q
B]. Therefore, ϕ(Xπ) = [C], and

the proposition follows. �

Remark 2.7. It is not the case that any irreducible representation in a cell generates

the VC as Q[W ]-module. An example occurs in Sp(1, 1).

3. Certain components

The coherent families of discrete series representations of GR are in one-to-one

correspondence with the set of positive systems ∆+ ⊂ ∆(h, g) which contain a fixed

positive system of compact roots, that is the set of closed K-orbits in B. The

closed orbit is Q = K · b, b = h + n−, n− =
∑

α∈∆+ g(−α). We need to use a

construction that is given in [4, §2]. The positive system ∆+ (equivalently, the

closed orbit Q) determines what is called an array consisting of two rows of dots,

each row separated into blocks. By a simple combinatorial procedure, one obtains

a nilpotent f ∈ n−∩ p, which is represented in the array by connecting certain dots,

which we refer to as forming ‘strings through the array’. We refer to [4, §2] for the
details of this procedure. The strings tell us explicitly which root vectors occur in

f . The nilpotent element f that is obtained is generic in n− ∩ p in the sense that

K · f meets n− ∩ p in a dense set. It follows that the discrete series representations

in the coherent family corresponding to ∆+ has associated variety equal to K · f ,
where f is obtained from the array corresponding to ∆+.

Consider one of the pairs (G,K) of type C or D as in (1) and the corresponding

real forms GR. We prove that each discrete series representation of GR (of infini-

tesimal character ρ) is in a cell that contains a discrete series representation with
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corresponding array having a particularly nice form (see (P1) and (P2) below). As

mentioned in §1, for the real forms under consideration distinct cells have distinct

associated varieties. Therefore, each cell containing a discrete series representation

contains a discrete series representation having a nice array. When the array is nice,

as we shall see in §5, the multiplicity polynomial can be computed.

An array will be called nice if the following two properties hold.

(P1) The block sizes increase then decrease from left to right.

(P2) At each stage the longest string has length 2(ℓ+ 1)− δ, with δ = 1 or 2 for

type C and δ = 0 or 1 for type D (where ℓ + 1 is the number of blocks in

the array).

The following observation will be useful. If N is the length of the first string (i.e.,

the number of boxes in the first row of the signed tableau), then N ≤ 2(ℓ+ 1)− δ,

where

δ =











2, if N is even and(G,K) is of type C,

1, if N is odd,

0, if N is even and (G,K) is of type D.

(3.1)

Therefore, if (P2) holds, then the array is minimal in the sense that there is no array

with fewer blocks having the same first string length.

Proposition 3.2. Given a discrete series representation π of GR, there is another

discrete series representation that (a) has the same associated variety as π and (b)

corresponds to a nice array.

Proof. We use induction on n, the rank of G, to prove that for any array there is

a nice array with the same associated variety. (Here we are using a slight abuse of

notation by referring to the associated variety of the discrete series representation

as the associated variety of the array.)

Case 1. The first string already has length N = 2(ℓ + 1) − δ (with δ as in (3.1)).

It follows that the first string not only passes through each block at least once, it

passes through each block twice except for the first and last when δ = 2 in type C,

the last if δ = 1 in type C, and the first if δ = 1 in type D. Delete the first string

from the array to obtain a smaller array. By induction this smaller array has the

same associated variety as an array satisfying (P1) and (P2); we refer to this as the

nice smaller array. Our goal is to fit this nice smaller array into the part of the

array passed through by the first string so as to form a new array for which (P1)

and (P2) hold and the associated variety is unchanged.

The part of the original array (i.e., the set of dots) passed through by the first

string looks like



10 L. BARCHINI AND R. ZIERAU

r ( r)

r r

r r

r r

. . .

r r

r ( r)

(3.3)

where the (•)’s may or may not occur (and the array may begin/end either up or

down). Suppose the second string starts in the i th0 block of the original array (where

we number the blocks from left to right in the array as in [4]). Since the nice smaller

array has no more blocks than the smaller array, we may fit the nice smaller array

into (3.3) by combining its ith block with the (i+ i0 − 1)th block of (3.3). This new

array clearly satisfies (P1) and (P2); it has the same associated variety because the

first two rows of the signed tableau are the same and, on omitting the first string in

each, the smaller arrays have the same associated variety.

Case 2. The first string has length N < 2(ℓ+1)− δ. We show that there is an array

with the same associated variety that has fewer blocks. Therefore we can eventually

arrive at an array for which N = 2(ℓ + 1) − δ, so that Case 1 applies. This will

complete the proof.

Claim A. If the last two blocks are singletons and we are in type C or the last

block is a singleton in type D, then there is an array with the same associated

variety that has one less block. This is easy to see in each case as follows.

For type C the array ends with

. . .

. . . r

a

J
J
JJ

�
�

r

b








r

c
"

"
""

.

Moving the dot labelled by c to the second to the last block in the upper row gives

. . .

. . . r

a
Z

Z
Z
Z

�
�

r

b

e
e
ee

r

c
�

��

In type D the array ends with

. . .

. . . r

a
b

b
b
b
b. . . r

b








r

cPPPPPP��
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Moving the dot labelled with c to the last block in the lower row gives

. . .

. . . r

a
HHHHHH. . . r

b

aaaa
r

-c

In each case the new array has one less block and has the same associated variety

(since it has the same first row of the signed tableau and has the same smaller array).

Claim B. The array has the same associated variety as one for which the last

two blocks are singletons in type C and the last block is a singleton in type D.

Observe that at least one block other than the last (resp., the first) in type C

(resp., type D) is a singleton, otherwise N = 2(ℓ + 1) − δ, Let Bj be the singleton

block farthest to the right, with j 6= ℓ+ 1 for type C.

Let’s consider type C first. If j = ℓ and the Bℓ+1 is a singleton, then we are done.

If j = ℓ and Bℓ+1 is not a singleton, then form a new array by moving all dots except

one from Bℓ+1 to Bℓ−1. This new array has the same associated variety and satisfies

the condition of Claim B. If j < ℓ, then Bj+1 is not a singleton. Again move all dots

except one from Bj+1 to Bj−1 to obtain an array with the same associated variety

and the singleton one block farther to the right. After repeating a finite number of

times we get to the case j = ℓ.

For type D, if j = ℓ + 1 we are done by Claim A. Otherwise, all dots but one

can be moved from Bj+1 to Bj−1 as above without changing the associated variety.

Repeating we eventually get to the case for which j = ℓ+ 1.

The proof is now complete. �

Note that the proof given above gives an algorithm for finding a nice array having

the same associated variety as a given array.

4. The structure of the Springer fibers

We now consider only discrete series representations corresponding to nice arrays

(as defined by (P1) and (P2)). The associated cycles of these discrete series rep-

resentations will be calculated. A theorem of J.-T. Chang ([6]) states that the if

{Xλ} is the coherent family of discrete series representations associated to a closed

K-orbit K · b, b = h+ n, and f is generic in n ∩ p, then

AC(Xλ) = mQ(λ) ·K · f .

The multiplicity is given by mQ(λ) = dim(H0(Bf ∩ T ∗
Q
B,O(λ+ ρ− 2ρc))). Propo-

sition 4.12 describes the structure of Bf ∩ T ∗
Q
B in a convenient way. This, along
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with the Borel-Weil Theorem, will allow us to compute the multiplicity polynomials

mQ(λ).

The content of much of this section is contained in [4]. However, in [4] the results

are for arbitrary closed K-orbit Q ⊂ B, which is considerably more involved. We

consider it worthwhile to present here the much simpler direct arguments for the

case of nice arrays.

Consider type D first. Suppose that the discrete series corresponds to a nice array

and let bj be the number of dots in the jth block, for j = 1, 2, . . . , ℓ + 1. Let L be

the Levi subgroup of K corresponding to the simple compact roots for the positive

system from which the array is constructed. Then ([4, formula 2.10])

L ≃ GL(b1)×GL(b2)× · · · ×GL(bℓ+1),

and L · b is an irreducible closed subvariety of Bf ∩ T ∗
Q
B. Since the component

group AK(f) is trivial, we may conclude L · b = Bf ∩ T ∗
Q
B once we show

dim(L · b) = dim(Bf ). (4.1)

This will be accomplished by induction on the number of rows in the signed tableau.

If there are just two rows, then

L ≃

{

GL(1) ×GL(2)ℓ, if δ = 1 (i.e., if n is odd)

GL(2)ℓ+1, if δ = 0 (i.e., if n is even)

Therefore dim(L · b) = ℓ+ 1− δ.

dim(Bf ) =
1

2
(dim(ZG(f)− rank(G)), by, e.g., [10, Section 6.7],

=
1

4
(
∑

ci −#(odd rows)− 2n), by, e.g., [8, Section 6.1]

(4.2)

where ci is the number of boxes in the ith column of the signed tableau for f (so

ci = 2 in the present case). Therefore,

dim(Bf ) =
1

4
(4n− 2δ − 2n)

=
1

4
(4(ℓ+ 1)− 4δ)

= ℓ+ 1− δ.

Now assume there are more than two rows in the tableau of f and (4.1) holds

whenever the tableau has fewer rows. In the construction of f , f0 is constructed

from the first string, then a generic element f ′ for a smaller rank pair (G2,K2) of

the same type is constructed, and f = f0 + f ′. The tableau of f begins with two

rows of length N (= 2(ℓ+1)− δ), which are followed by the rows of the tableau for

f ′. The inductive hypothesis gives

dim(Bf ′

2 ) = dim(GL(b1 − 2 + δ)× · · · ×GL(bℓ+1 − 2) · b),



SPRINGER FIBERS 13

equivalently

1

4

(

∑

(ci − 2)2 −#(odd rows− 2δ)− 2(n −N)
)

=

ℓ+1
∑

j=1

(bj − 2)(bj − 3)

2
− δ.

(Note that if δ = 1, then b1 = 1, explaining the occurrence of δ in the above formula.)

We compute:

dim(Bf ) =
1

4

(

∑

c2i −#(odd rows)− 2n
)

=
1

4

(

∑

(ci − 2)2 + 8n− 4N − (#(odd rows)− 2δ)− 2δ − 2(n−N)− 2N
)

=
∑

j

(bj − 2)(bj − 3)

2
− δ +

1

4

(

8n− 6N − 2δ
)

=
∑

j

bj(bj − 1)

2
− 2

∑

j

bj +
∑

j

3− δ +
1

4

(

8n − 12(ℓ + 1) + 4δ
)

= dim(L · b)− 2n + 3(ℓ+ 1)− δ +
1

4

(

8n− 12(ℓ + 1) + 4δ
)

= dim(L · b).

This proves (4.1).

We now turn to type C. Consider the parabolic subgroups Q2i = L2iU2i of K2i

defined by the simple compact groups in the array for (G2i,K2i); see [4, §2.4]. Then

L0 ≃ GL(b1)× · · · ×GL(bℓ+1),

and similarly for L2, . . . , L2m. We note that an easy induction ([4, Rem. 2.11]) gives

L2m · · ·L2L0 · b ⊂ Bf ∩ T ∗
QB. (4.3)

We show that L2m · · ·L2L0 · b is closed and has the same dimension as Bf ∩ T ∗
Q
B.

Let

dj := #
(

∆(n ∩ l2j) \∆(n ∩ l2j+2)
)

. (4.4)

Since ∆(n∩ l2j)\∆(n∩ l2j+2) are pairwise disjoint, we may conclude from [15, 8.2.1]

that
m
∑

j=0

dj ≤ dim(L2m · · ·L2L0 · b). (4.5)

We show that
m
∑

0

dj = dim(Bf ) (4.6)

by induction on the number of rows in the signed tableau of f . It suffices to show

that

d0 = dim(Bf )− dim(Bf ′

2 ), (4.7)



14 L. BARCHINI AND R. ZIERAU

where f = f0 + f ′ as above and B2 is the flag variety for G2 = Sp(2(n−N)).

dim(Bf )− dim(Bf ′

2 )

=
1

4

(

∑

c2i +#(odd rows)− 2n
)

−
1

4

(

∑

(ci − 2)2 + (#(odd rows)− 2(2− δ)− 2(n −N)
)

=
1

4

(

8n− 6N + (4− 2δ)
)

= 2n− 3(ℓ+ 1) + δ + 1.

Now we compute d0. Note first that

L0 ≃ GL(b1)×GL(b2)× · · ·GL(bℓ)× Sp(2bℓ+1)

L0 ∩ L2 ≃ GL(b1 − 3 + δ)×GL(b2 − 2)× · · · ×GL(bℓ − 2)× Sp(2(bℓ+1 − 1)).
(4.8)

Therefore,

d0 =
1

2
dim(L0/L0 ∩ L2)

= (3− δ)
(2b1 + δ − 4

2

)

+

ℓ
∑

j=2

2(2bj − 3)

2
+ 2bℓ+1 − 1

=

ℓ+1
∑

j=0

(2bj − 3) + δ + 1 +
(1− δ)(2b1 + δ − 4)

2

= 2n − 3(ℓ+ 1) + δ + 1,

the last equality holding since δ = 2 implies b1 = 1, so (1− δ)(2b1 + δ − 4) = 0. We

conclude that (4.6) holds.

Now we check that L2m · · ·L2L0 · b is closed. Note that since U2j+2 ⊂ U2j , we

have

Q2j+2L2j ⊂ L2j+2Q2j (4.9)

An easy induction argument (on j) shows that

Q2j · · ·Q2Q0 · b = L2j · L2L0 · b, (4.10)

for each j = 0, 1, . . . ,m. Now L2j+2 ∩Q2j is a parabolic subalgebra of L2j+2 which

stabilizes L2j · · ·L2L0 · b. It follows that if L2j · · ·L2L0 · b is closed, then so is

L2j+2 · · ·L2L0 · b (e.g., [10, Section 0.15]). We conclude that (4.3) is closed, so

L2j · · ·L2L0 · b = Bf ∩ T ∗
Q
B. (4.11)

Each L2j is a product of GL(k)’s and a symplectic group (4.8); we let Sj denote

this symplectic group. One easily sees that the GL(k)’s are contained in L0 and

L2m · · ·L2L0 · b = Sm · · ·S1L · b.
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Summarizing the above calculations we have the following.

Proposition 4.12. For any nice array and corresponding generic element f

Bf ∩ T ∗
QB =

{

Sm · · ·S1L · b, in type C

L · b, in type D.

5. Associated cycles

We have seen that each cell containing a discrete series representation of GR con-

tains a discrete series representation corresponding to a closed K-orbit Q having a

nice array. To compute the multiplicity polynomials for all discrete series representa-

tions (in fact all representations in a cell containing a discrete series representation)

it therefore suffices to compute the multiplicity polynomials for those discrete se-

ries representations corresponding to nice arrays (cf. §1). We therefore fix a closed

K-orbit Q in B having a nice array, and compute the multiplicity polynomial mQ(λ).

By (3),

mQ(λ) = dim(H0(Bf ∩ T ∗
Q
B,O(τ))),

with τ = λ+ ρ− 2ρc. In type D this is easy to compute by the Borel-Weil Theorem

and the Weyl Dimension Formula.

mQ(λ) = dim(H0(BL,O(τ))) =
∏

α∈∆(l)

〈τ + ρl, α〉

〈ρl, α〉
.

Since l is the Levi subalgebra of parabolic subalgebras of both g and k defined be a

set of simple roots,

ρ− 2ρc + ρl = (ρ− ρl)− 2(ρc − ρl)

is orthogonal to ∆(l). Therefore,

mQ(λ) =
∏

α∈∆(l)

〈λ, α〉

〈ρl, α〉
.

The type C case is more involved because Bf ∩ T ∗
Q
B is not homogeneous. For

the computation of mQ(λ) we follow [2, §6]. In particular, let

W−τ = H0(Q,O(τ)),

the irreducible finite dimensional representation with lowest weight −τ . Fix a lowest

weight vector w−τ . Then for τ sufficiently dominant,

mQ(λ) = dim(spanC{L2m · · ·L2L · w−τ}).

Set U−τ = spanC{L · w−τ}, an irreducible L-representation of lowest weight −τ .

Therefore,

mQ(λ) = dim(spanC{L2m · · ·L2 · U−τ}). (5.1)
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This is computed inductively as follows. Suppose 1 ≤ j ≤ m − 1 and we have

already computed the decomposition

spanC{L2(j−1) · · ·L2L · U−τ} =
∑

i

E−τi ,

into irreducible L2(j−1)-representations, with E−τi = spanC{L2(j−1) · e−τi} and e−τi

a lowest weight vector. Then,

spanC{L2j · · ·L2L · U−τ} =
∑

i

spanC{L2j · E−τi},

Each spanC{L2j · E−τi} can be computed. First decompose

E−τi |L2j∩L2(j−1)
=

∑

k

F−τik . (5.2)

Then,

spanC{L2j ·E−τi} =
∑

k

spanC{L2j · F−τik} =
∑

k

spanC{L2j · f−τik},

where f−τik is a lowest weight vector for the L2j ∩ L2(j−1)-representation F−τik .

Lemma 5.3. spanC{L2j · f−τik} is an irreducible representation with lowest weight

−τik.

Proof. It suffices to show that f−τik is a lowest weight vector for L2j , i.e., is anni-

hilated by n− ∩ l2j . Since L2(j−1) normalizes u2(j−1), E−τi is annihilated by u2(j−1).

Since u2j ⊂ u2(j−1), E−τi is also annihilated by u2j . As f−τik is a lowest weight

vector it is annihilated by n− ∩ l2j ∩ l2(j−1). Therefore, f−τik is annihilated by

n− ∩ l2j ⊂ n− ∩ l2j ∩ l2(j−1) + u2(j−1).
�

To complete the computation of mQ(λ) we need to explicitly carry out the de-

composition (5.2). For this one uses well-known branching rules for restricting finite

dimensional representations from GL(k + 2) to GL(k) and Sp(2k) to Sp(2(k − 1)).

6. Associated varieties

In this section we determine exactly which K-orbits in Nθ are dense in the as-

sociated varieties of discrete series representations for GR = Sp(p, q) and SO∗(2n).

Recall that the K-orbits in Nθ are in one-to-one correspondence with signed tableau

having 2n boxes containing signs that alternate along each row, and for type C (resp.,

type D)

(a) have 2p (resp., n) + signs and 2q (resp., n) − signs;

(b) have the number of rows of a given even (resp., odd) length beginning with

a + sign coinciding with the number beginning with a − sign;
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(c) have an even number of rows of a given odd (resp., even) length that begin

with a + sign and also an even number beginning with a − sign.

By Prop. 3.2 any K-orbit that occurs as the associated variety of a discrete series

representation occurs as the the associated variety of a discrete series representation

corresponding to a nice array. One easily concludes that these tableau in types C

(resp., type D) satisfy:

(i) all rows of a given odd (resp., even) length begin with the same sign;

(ii) only one pair of rows of a given even (resp., odd) length can occur.

It is a fact that the K-orbits described by (i)-(ii) are precisely the K-orbits K · f
in Nθ so that the reductive part of the stabilizer in g is contained in k (i.e., a Levi

subgroup of ZK(f) is open in a Levi subgroup of ZG(f)). It has recently been

proved by B. Harris ([9]) that it is a general fact that the associated variety of any

tempered representation (any semisimple Lie group) satisfies this condition. We

show the converse fails by showing that there are K-orbits in Nθ satisfying (i)-(ii)

that are not dense in the associated variety of a discrete series representation. The

following examples illustrate the way this can happen.

For type C consider the following signed tableau:

+ − · · · + − +
+ − · · · + − +
+ − · · · + −
− + · · · − +
+ − · · · +
+ − · · · +

and

− + · · · − + −
− + · · · − + −
+ − · · · + −
− + · · · − +
− + · · · −
− + · · · −

(6.1)

(The lengths of the rows are N,N − 1 and N − 2, and N is necessarily odd.) These

tableau are not dense in the associated variety of a discrete series representation

since a corresponding nice array would need to have five dots in the first block. But

this would imply that the first four rows in the tableau would start with + signs.

This argument also says that any tableau that contains (6.1) as a subtableau is not

dense in the associated variety of a discrete series representation. (By subtableau we

mean obtained from the tableau by deleting certain rows.)
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Similarly, in type D the patterns

+ − · · · + − +
− + · · · − + −
+ − · · · + −
+ − · · · + −
+ − · · · +
− + · · · −

and

+ − · · · + − +
− + · · · − + −
− + · · · − +
− + · · · − +
+ − · · · +
− + · · · −

(6.2)

cannot occur as a subtableau of an orbit dense in the associated variety of a discrete

series representation.

Proposition 6.3. A K-orbit in Nθ is dense in the associated variety of a discrete

series representation if and only if its signed tableau satisfies (i)-(ii) and the patterns

of (6.1) (resp., (6.2)) do not occur as a subtableau for type C (resp., type D).

Proof. We have already established one direction; a K-orbit dense in the associated

variety of a discrete series representation must have signed tableau satisfying (i)-(ii)

and the specified patterns not occurring. We now assume that the pair (G,K) is

of type C. We proceed by induction on rank(G) = n. Suppose a signed tableau

satisfies (i)-(ii) and contains no subtableau as in (6.1). Our goal is to find an array

(corresponding to a closed K orbit Q ⊂ B) for which the algorithm computing the

generic f results in the signed tableau. The proof roughly begins by writing down

part of an array (the first string) which gives the first pair of rows of the array. Then

the rest of the signed tableau gives a corresponding smaller array. This smaller array

must be fit into the first string in the sense that the resulting array gives (by the

algorithm to find the generic element) the signed tableau we want to produce.

There are three possibilities for the first row of the tableau.

1) The row length N is even. The the first pair of rows is therefore

+ − · · · −
− + · · · +

.

Consider the smaller tableau obtained by removing the first pair of rows. By induc-

tion, this smaller tableau is the associated variety of a nice array (for a rank n−N

group). This nice array fits into one of

r

r r

r r

r r

. . . or
r

r r

r r

r r

. . .
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Since the longest row of the smaller tableau has length strictly less than N − 1 (by

condition (ii)), this is easy to see.

2) The row length N is odd and the first two rows are

+ − · · · +
+ − · · · +

.

This case is a little trickier. Again we omit the first pair of rows to obtain a smaller

tableau, which is the associated variety of a nice array. There are several subcases

to consider. The first is when this smaller tableau has longest row length equal to

N ; it is immediate that the corresponding nice array fits into

r r

r r

r r

r r

. . . (6.4)

to form an array with our tableau as associated variety. When the smaller tableau

has length ≤ N − 2, then it is easy to see that the corresponding nice array fits into

(6.4).

Now consider the subcase where the smaller tableau has longest pair of rows of

length N − 1 (an even integer). It is not clear how to fit the nice array into (6.4).

For example, the nice array might look like

r

r r

r r

r r

. . .

which does not fit in. However, it turns out that there is another nice array with

the same associated variety which does fit in. There are several possibilities. First

suppose that the third pair of rows has length ≤ N−3. Then there are (at least) two

nice arrays having the smaller tableau as associated variety. This is the statement

that if the second pair of rows has at least two fewer boxes than the first, then the

smaller array fits into both

r

r r

r r

r r

. . . and
r

r r

r r

r r

. . .

The first of these fits into (6.4). Second, suppose that the third pair of rows have

length N − 2. If the rows begin with ++,+−,−−, then the smaller nice array fits

into (6.4) with no problem, as this smaller nice array is
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r

r r . . .

r r . . .

. . .

with the same number of blocks. The rows of the tableau cannot cannot begin with

the signs ++,+−,++, since we are assuming that our tableau does not contain the

pattern (6.1). The third possibility is that there is no third pair of rows. Then the

smaller tableau is

+ − · · · −
− + · · · +

,

with row length N − 1, and we may choose the corresponding nice array to be

r

r r

r r

r r

. . .

,

which fits into (6.4).

3) The case of odd row length with the first two rows

− + · · · −
− + · · · −

is essentially the same as 2) above.

The proof for type D is very similar to the proof for type C. �
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de Lie compactes, Ann. Math. 57 (1953), 115–207.

[6] J.-T. Chang, Characteristic cycles of holomorphic discrete series, Trans. A.M.S. 334 (1992),
no. 1, 213–227.

[7] , Asymptotics and characteristic cycles for representations of complex groups, Compo-
sitio Math. 88 (1993), no. 2, 265–283.



SPRINGER FIBERS 21

[8] D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand
Reinhold Co., New York, 1993.

[9] B. Harris, Tempered representations and nilpotent orbits, preprint.

[10] J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys
and Monographs, vol. 43, AMS, Providence, RI, 1995.

[11] W. McGovern, Cells of Harish-Chandra modules for real classical groups, American Journal of
Math. 120 (1998), 211–228.

[12] D. Milicic, Algebraic D-modules and representation theory of semisimple Lie groups, The Pen-
rose Transform and Analytic Cohomology in Representation Theory (Providence, RI) (M. East-
wood, J. A. Wolf, and R. Zierau, eds.), Contemporary Mathematics, no. 154, Amer.Math. Soc.,
1993, pp. 133–168.

[13] W. Rossmann, Invariant eigendistributions on a semisimple Lie algebra and homology classes

on the conormal variety. II. Representations of Weyl groups, Journal of Functional Analysis
96 (1991), 155–193.

[14] T. A. Springer, A construction of representations of Weyl groups., Invent. Math. 44 (1978),
279–293.

[15] T. A Springer, Linear algebraic groups, 2nd ed., Birkhäuser, Boston, 1998.
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