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1. Introduction

An interesting class of irreducible unitary representations of semisimple Lie groups consists of the repre-
sentations associated to elliptic coadjoint orbits. An important open problem is to give a construction of
these representations in terms of the geometry of the orbits. For example one may construct some Hilbert
space of sections of a bundle over the orbit; the Hilbert space inner product being a G–invariant L2 inner
product. Consider an elliptic coadjoint orbit G · χ = G/L. As explained in Section 2, G/L has an invari-
ant complex structure and is biholomorphic to an open orbit in a complex flag manifold. Associated to
this orbit is the representation of G naturally occurring on the sheaf cohomology space Hs(G/L,O(Lχ))
(under some negativity condition on the line bundle Lχ). It is a (difficult) known result that this gives a
continuous representation of G on a Frechet space. In fact, Hs(G/L,O(Lχ)) is a maximal globalization
in the sense of [18]. See [25]. It follows that the unitary globalization lies inside the cohomology space.
Thus, it is reasonable to look for “L2” representatives of cohomology classes and define an invariant inner
product. This space of representatives should give a Hilbert space with an invariant inner product on these
representatives. A somewhat simple example occurs when G is a compact group. The orbit then carries a
positive definite hermitian metric (defining a notion of L2 and harmonic) and the Hodge theorem provides
a space of L2–harmonic forms, one from each cohomology class. These L2–harmonic spaces are realizations
of the unitary representations of the compact group.

As we are interested in arbitrary semisimple Lie groups, often the only invariant hermitian metric available
is indefinite. This indefinite metric can be used to define a global invariant hermitian form on Lχ–valued
type (0, s) differential forms. Of course the integral defining this global form must converge. In a very general
setting we show in Theorem 3.4 how to choose representives for each K–finite cohomology class for which the
integral defining the global form converges. In case G/L is an indefinite Kähler symmetric space (ie., L is the
fixed point group of an involution) we get the following stronger result. Following the definition in [14], using
an auxilary metric on G/L which is positive definite but not G–invariant, we define a Hilbert space of square
integrable Lχ–valued type (0, s) differential forms containing representatives for all K–finite cohomology
classes. On this L2–space the integral defining the global invariant form is convergent and semidefinite.
However, we are not able to show it is nonzero in general. If we also assume rankR(G) = rankR(L) then
we show this global invariant form is nonzero. In this case, passing to a quotient, we obtain a continuous
representation of G on a Hilbert space H(0,s)

2 . This Hilbert space representation is infinitesimally equivalent
to the cohomology representation. Furthermore, the global invariant form is positive definite on H

(0,s)
2 .

The main tool for picking out cohomology classes is the intertwining operator studied in [2] and [1]. The
intertwining operator maps a principal series representation into the space of closed forms. It is given by
a very explicit integral formula. A sketch of the construction and some key facts are given in Section 2.
In Section 3 we show that the integral defining the global G–invariant hermitian form converges. This is
acomplished by showing that the global invariant form is a multiple of the standard form on the principal
series defined in terms of intertwining operators. Square integrability in the case when G/L is indefinite
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Kähler symmetric is proved in Section 4. Harish–Chandra type estimates are used. In Section 5 a continuous
Hilbert space representation is constructed.

Other ‘L2 cohomology’ constructions of representations are given in [16], [17] and [14]. Schmid’s work
gives a realization of the discrete series representations. An important difference from our work is that
L is compact, thus the orbit has a positive definite G–invariant metric. Parts of our work (including the
construction of the intertwining map in [1]) depend on Schmid’s results. However, the case for which we get
our strongest results, rankR(G) = rankR(L), can be viewed as the opposite extreme from the case considered
by Schmid (and does not rely on the results in [16] and [17]). Rawnsley, Schmid and Wolf realize certain
singular highest weight representations as L2–harmonic spaces in the setting of an indefinite metric. They
assume G/L is indefinite Kähler symmetric satisfying a holomorphic condition. The framework for indefinite
quantization, in particular the definition of the L2–harmonic space studied here, was formulated in [14].
There is a small overlap of our results with [14], however our methods are very different than theirs. The
results in [26] are related to the results here. In particular the square integrability here is proved in a more
elementary way and in a much more general setting.

2. Preliminaries

As mentioned in the introduction, our main tool is an intertwining operator S from a principal series
representation into the space of forms of type (0, s). We begin this section by recalling some facts about
representations in cohomology. Since we will need detailed information about S, we will also state the main
results of [2] and [1]. We will then prove several lemmas that will be needed in Sections 3, 4 and 5.

Let GC be a complex semisimple Lie group and G a real form of GC. Fix a Cartan involution θ and
let K ⊂ G be the fixed point group of θ, a maximal compact subgroup of G. We denote the Lie algebras
of GC, G,K, etc. by g, g0, k0, etc. The Cartan decomposition of g is written as g = k ⊕ p. For a Cartan
subalgebra h of g we use the common notation of ∆(g, h) for the roots of g with respect to h. Similar
notation is used for the other subalgebras of g containing h. We let Z be an arbitrary complex flag manifold
for GC and D ⊂ Z a measurable open G-orbit. The structure of G-orbits on Z is studied in detail in [23].
In particular, [23] contains the definition of a measurable open orbit as well as the following facts. A base
point z0 ∈ D may be chosen so that:

(a) D = G · z0 and Q = stabGC
(z0) is a θ-stable parabolic subgroup of GC.

(b) Q∩Q = L = stabG(z0) is connected and contains a fundamental Cartan subgroup H. Write h0 = t0+a′0
with t0 ⊂ k0, a

′
0 ⊂ p0.

(c) L is the centralizer of some torus in t0, hence there is some λ0 ∈ it∗0 ⊂ ih∗0 ⊂ ig∗0 so that the set of
h-roots of q is ∆(q, h) = {α ∈ ∆(g, h) : 〈λ0, α〉 ≥ 0}. Then q is given by q = l + u with

∆(l, h) = {α ∈ ∆(g, h) : 〈λ0, α〉 = 0}
∆(u, h) = {α ∈ ∆(g, h) : 〈λ0, α〉 > 0}.

(d) D is an open complex submanifold of Z with anti-holomorphic tangent space at z0 identified with u.

It follows that the measurable open G-orbits are elliptic coadjoint orbits. The converse also holds. We
assume that z0, q, L, etc. are chosen as in (a)-(d). A positive system of roots ∆+(g, h) containing ∆(u, h) is
chosen. Half the sum of the positive roots is denoted by ρ.

The parameters for our representations in cohomology are given by λ ∈ t∗0 and ν ∈ ia′0
∗ so that λ+ν ∈ h∗

is the weight of a one–dimensional representation of L, which we denote by Cλ,ν . Let Cχ be the one–
dimensional representation Cλ,ν ⊗ ∧topu of L. The weight of this representation is denoted by χ. Hence,
χ = λ + ν + 2ρ(u) where 2ρ(u) =

∑
α∈∆(u,h) α. The corresponding homogeneous line bundle is denoted by

Lχ → G/L. The sheaf cohomology spaces Hs(G/L,O(Lχ)) can be calculated by the standard C∞–Dolbeault
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complex:

A•(G/L,Lχ) = {C∞(G)⊗Cχ ⊗ ∧•u∗}L.(2.1)

Thus, Ap(G/L,Lχ) = {f : G → Cχ ⊗ ∧pu∗| f is smooth and f(gl) = l−1 · f(g), for all l ∈ L}, the smooth
Lχ–valued (0, p)–forms.

The following theorem is fundamental to the study of the representations in cohomology. Proofs of this
theorem, in various degrees of generality, can be found in [15], [14], [19], [24] and [25]. We state the version
which is proved in [25].

Theorem 2.2. (a) For each p, Hp(G/L,O (Lχ)) is a continuous admissible representation. It is the
maximal globalization of a (g,K)–module cohomologically induced in the sense of [27].

(b) The infinitesimal character of Hp (G/L,O(Lχ)) is χ+ ρ.
(c) If Re(〈χ + ρ, β〉) > 0 for all β ∈ ∆(u, h), then Hp (G/L,O(Lχ)) = 0 unless p = s = dimCK/K ∩ L,

and Hs(G/L,O (Lχ)) is irreducible.

It is the irreducible representation Hs(G/L,O (Lχ)) which is of interest to us.
The intertwining map S of [2] and [1] maps a principal series representation I(W ) into As(G/L,Lχ). The

parameters for the principal series are given carefully in [1], Section 5 and we will only briefly review the
construction here. In [2], Section 2 and [1], Section 2, a maximal abelian subspace a0 of l0 ∩ p0 is given in
terms Cayley transforms with respect to a set of strongly orthogonal roots in ∆(g, h). This set of strongly
orthogonal roots determines a positive system of restricted roots

∑+(g, a) and thus a parabolic subgroup
P = MAN of G. The parabolic subgroup P has the following properties:

(a) A ⊂ L,MA = centralizer of A in G,M ∩ L is compact and
∑

(n, a) =
∑+(g, a).

(b) P is a cuspidal parabolic and

P ∩ L = (M ∩ L)A(N ∩ L) is a minimal parabolic subgroup of L.(2.3)

(c) L = K ∩ L ·N ∩ L ·A is an Iwasawa decomposition of L.

A discrete series representation δM of M is specified in [1], Proposition 4.1. Letting ρG (ρL respectively) be
half the sum of the roots in

∑+(g, a)
(∑+(l, a) respectively

)
, we denote by W the space of the representation

δM ⊗ eρL+ν ⊗ 1(2.4)

of P = MAN . Then we denote by I(W ) the smooth induced representation {C∞(G)⊗W ⊗CρG}P .
The main results of [2] and [1] are contained in the following theorem.

Theorem 2.5. If 〈χ − 2ρ(u ∩ k), α〉 > 0, for α ∈ ∆+(k, t), then there is a G–intertwining operator S :
I(W )→ As(G/L,Lχ) so that:

(a) The image of S consists of closed forms.
(b) The map S, followed by the natural map to cohomology, is nonzero.
(c) If 〈Re(χ + ρ), β〉 > 0, for β ∈ ∆(u, h), then each K–finite cohomology class is represented by a closed

form in the image of S.

We will need the following explicit formula for S:

Sf(x) =
∫
K∩L

π(l)T (f(xl)) dl(2.6)

This requires some explanation. The map T : W → Cχ⊗∧su∗ is an M∩L-homomorphism which decomposes
as T = Φ · ev · t as follows.

The first map t is simply an identification of W , as M–representation, with a space Hs12 (M/M ∩L, Ĉ(µ,χ))
of square integrable harmonic forms on M/M ∩ L. This L2–harmonic space consists of (0, s1)-forms on
M/M ∩ L with s1 = dim(m ∩ u ∩ k). The bundle parameter is Ĉ(µ,χ) and is related to Cχ|M∩L as in
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Proposition 4.1 of [1]. The construction of this L2–harmonic space is essentially given in [17]. See [1],
Appendix 2 for the adaptation to the situation here.

Remark 2.7. Type (0, s1)–forms on M/M ∩L are C∞-functions M → Ĉ(µ,χ)⊗∧s1(m∩u)∗ satisfying a right
translation property with respect to M ∩ L. These forms are square integrable with respect to a positive
metric on M/M ∩ L obtained from the Killing form B on g as follows. Define 〈ξ, η〉pos = −B(ξ, θ(η)) for
ξ, η ∈ m, with θ the Cartan involution. This defines an invariant metric on M/M ∩L since M ∩L is compact.
This metric coincides with the restriction of the metric 〈 , 〉pos on G/L which is defined in (4.3).

The next map in the decomposition of T is evaluation at the identity e. This gives some element of
Ĉ(µ,χ) ⊗ ∧s1(m ∩ u)∗. Then Φ is the natural map Ĉ(µ,χ) ⊗ ∧s1(m ∩ u)∗ → Cχ ⊗ ∧su given as follows. The
Cayley transform c : h→ b⊕a is the product of the Cayley transforms with respect to a set {αj} of strongly
orthogonal roots in ∆(g, h). It is shown in [1], Proposition 6.1 that {γ ∈ ∆(u, h) : c(γ)|a < 0} has precisely
s− s1 elements. Enumerating this set as {γ1, · · · , γs−s1} and letting ωγ be the element of u∗ dual to a root
vector for c(γ) define

ωs−s1 = ωγ1 ∧ · · · ∧ ωγs−s1 .(2.8)

Then there is an isomorphism (as L ∩M representations)

Ĉ(µ,χ) ' Cχ ⊗ ωs−s1 .

The map Φ is the corresponding map

Ĉ(µ,χ) ⊗ ∧s1(u ∩m)∗ → Cχ ⊗ ∧su∗,
1⊗ v 7→ 1⊗ (v ∧ ωs−s1).

(2.9)

A very important property of T is that there is an L-subrepresentation (π, Vπ) of Cχ ⊗ ∧su∗ so that

the image of T lies in V n∩l
π ,(2.10)

the highest restricted weight space of Vπ. Furthermore, a acts on V n∩l
π by the weight ρG − ρL + ν.

The following lemma will be crucial.

Lemma 2.11. Assume ρL is dominant regular for Σ+(g, a). Then there is a Weyl group element wo ∈
W (L,A) with the property that woΣ+(g, a) = −Σ+(g, a). Letting p ∈ L ∩ K be any representative of wo,
Ad(p)ωs−s1 = Cθ(ωs−s1), for some constant C.

Proof. Since a0 is maximal abelian in p0 ∩ l0 (by 2.3), there is a Weyl group element wo sending Σ+(l, a)
to −Σ+(l, a). Since ρL is regular dominant and woρL = −ρL, wo has the required property. Thus
Ad(p) and θ both preserve ∆(u, h) and send Σ+(g, a) to −Σ+(g, a), therefore Ad(p){c(γ1), . . . , c(γs−s1)} =
θ({c(γ1), . . . , c(γs−s1)}). The lemma now follows.

We end this section by setting some more notation and recalling several standard integration formulas.
There is a decomposition of G given by

G = K exp(m0 ∩ p0)NA(2.12)

g = κ(g)µ(g)n(g)eH(g).(2.13)

The expression for g is unique. See [5], Lemma 11 for this decomposition and [5], Lemma 14 the following
integration formula. For ϕ ∈ C0(G/A) the invariant measure on G/A satisfies∫

G/A

ϕ(g) dg =
∫
K

∫
M0

∫
N

ϕ(kmn) du dm dk(2.14)

for some normalization of Haar measures.
By (2.3), (2.13) is the Iwasawa decomposition. of g ∈ L. Thus, by [8], Lemma 44 we have the following

integration formula.
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∫
K∩L

ψ(l) dl =
∫
N∩L

e−2ρL(H(nL))ψ (κ(nL)) dnL,(2.15)

for ψ any continuous function on K ∩ L which is right invariant under M ∩ L.

3. The Invariant form

The Killing form defines a G–invariant possibly indefinite hermitian metric on G/L. This in turn defines
a global G–invariant hermitian form on a space of (0, s)–forms. In this section we will determine a space of
(0, s)–forms for which the integral defining this global hermitian form converges.

Let B be the Killing form of g and set 〈X,Y 〉inv ≡ −B (X, τ(Y )), where τ is conjugation of g over g0. As
〈 , 〉inv is invariant, a G–invariant hermitian metric on G/L is defined in the usual way. We are interested
in the cases for which G/L noncompact, therefore the metric is indefinite. Let #η be the Hodge-Kodaira
orthocomplementation followed by contraction in Lχ. Then the global hermitian form, also denoted by
〈 , 〉inv, is defined by

〈ω, η〉inv =
∫
G/L

ω ∧#η, ω, η ∈ A(0,s)(G/L,Lχ),(3.1)

provided this integral is finite. Since G/L has an invariant measure, (3.1) may be expressed as

〈ω, η〉inv =
∫
G/L

〈ω(g), η(g)〉inv dg(3.2)

where 〈 , 〉inv has been extended to a hermitian form on Cχ ⊗ ∧su∗.
Theorem 3.4 below will give a formula for 〈Sf1,Sf2〉inv in terms of standard intertwining operators for

principal series representations. In particular, the integral defining the global invariant form is finite in
K–finite vectors.

We use the notation of (2.3) and (2.4) for parabolics and principal series parameters. The standard
intertwining operator for the Weyl group element wo in (2.11), is denoted by

D(wo)AP (δM ⊗ ν) : IndGP (δM , ν)→ IndGP (δM ⊗ wo · ν).

For details on these intertwining operators see [11], [10] and [22]. The key properties we need are:

(a) AP (δM ⊗ ν)f(x) =
∫
N

f(xpn) dn with integral converging for f K-finite and Re(ν) dominant regular,

(b) In the case that Re(ν) is regular dominant, the unique maximal subrepresentation of IndGP (δM , ν)K–finite

is the kernel of AP (δM ⊗ ν).

We will now specify D(ωo) explicitly. Recall from (2.11) that wo is represented by p ∈ K ∩ L. The
operator D(wo) is an intertwining operator from δpM to δM , where δM (m) = δM (pmp−1). Recall that the
representation δM is in the discrete series and acts on the harmonic space Hs12 (M/M ∩ L, Ĉ(µ,χ)). Define

(D(w0)(ω))(m) = p−1 · ω(pmp−1), for any (0, s1)–form ω on M/M ∩ L.(3.3)

Note that since p ∈ K ∩ L and p normalizes A, p preserves m ∩ u and ∧s1(m ∩ u) ⊂ ∧su. The action of p on
M/M ∩ L defined by p ·mM ∩ L = pmp−1M ∩ L is a well defined holomorphic diffeomorphism preserving
the metric. Thus the Laplacian is preserved by the action of p and the corresponding harmonic space is
preserved by D(wo). Now it is easy to check that D(wo) intertwines δpM and δM .

Theorem 3.4. Suppose ρL is regular. Let f1 and f2 be K–finite vectors in I(W ). Then the integral (3.2)
defining 〈Sf1,Sf2〉inv converges and

〈Sf1,Sf2〉inv = C

∫
K

〈f1(k), D(wo)AP (δM ⊗ ρL + ν)f2(k)〉M dk,(3.5)

for some constant C.
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Proof. Let f1 and f2 be K–finite vectors in I(W ) = IndGP (δM , ρL+ν). The definition of Sf1 gives

〈Sf1,Sf2〉inv =
∫
G/L

∫
L∩K
〈π(l)T (f(gl)) ,Sf(g)〉inv dl dg

=
∫
G/L

∫
L∩K
〈T (f(gl)) ,Sf(gl)〉inv dl dg.

Make the change of variables l 7→ lp, use the definition of Sf2 and apply the integration formula (2.15) to
obtain:

〈Sf1,Sf2〉inv =
∫
G/L

∫
L∩K
〈Tf1(glp),Sf2(glp)〉inv dl dg

=
∫
G/L

∫
L∩K
〈π(p)Tf1(glp),Sf2(gl)〉inv dl dg

=
∫
G/L

∫
L∩K

∫
L∩K
〈π(p)Tf1(glp), π(l′) (Tf2(gll′))〉inv dl

′dl dg

=
∫
G/L

∫
L∩K

∫
L∩N

e−2ρ(H(nL))〈π(p)T (f1(glp)) , π (κ(nL))T (f2 (glκ(nL)))〉inv dn dl dg.

(3.6)

Using the invariance property of f2 and (2.10) we get

π(nL)T (f2(glnL)) = e−2ρL(H(nL))π (κ(nL))T (f2(glκ(nL))) .(3.7)

The first equality below now follows from (3.6).

〈Sf1,Sf2〉inv =
∫
G/L

∫
L∩K

∫
L∩N
〈π(p)T (f1(glp)) , π(nL)T (f2(glnL))〉inv dnL dl dg

=
∫
G/L

∫
L∩K

∫
L∩N
〈π(p)π(p−1n−1

L p)T (f1(glp)) , T (f2(glnL))〉inv dnL dl dg

by right N–invariance of f1

=
∫
G/L

∫
L∩K

∫
L∩N
〈π(p)T (f1(glnLp)) , T (f2(glnL))〉inv dnL dl dg

by (2.10)

=
∫
G/L

∫
L/A

〈π(p)T (f1(glp)) , T (f2(gl))〉inv dl dg

by right N–invariance of f1 and (2.14)

=
∫
G/A

〈π(p)T (f1(gp)) , T (f2(g))〉inv dg

=
∫
K

∫
M0

∫
N

〈π(p)T (f1(kmnp)) , T (f2(kmn))〉inv dnL dm dk

by integration formula (2.14)

=
∫
K

∫
M0

∫
N

〈π(p)T
(
f1(kpp−1mp)

)
, T (f2(kmn))〉inv dn dm dk

since p−1np ∈ N ,

=
∫
K

∫
M0

∫
N

〈π(p)T
(
f1(kp−1mp)

)
, T
(
f2(kp−1nm)

)
〉inv dn dm dk(3.8)

by changes of variables k 7→ kp−1 and n 7→ m−1nm.

We prove the following lemma before concluding the proof of (3.4). Recall that T = Φ ◦ ev ◦ t as in the
paragraph containing (2.6).
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Lemma 3.9. There is a nonzero constant C ′ such that 〈π(p)T
(
f1(kp−1mp)

)
, T
(
f2(kp−1nm)

)
〉inv

= C ′〈p · t (f1(k)) (p−1mp), t
(
f2(kp−1n)

)
(m)〉inv,M .

Proof. By (2.10), T
(
f1(kp−1mp)

)
= u1 ⊗ ωs−s1 and T

(
f2(kp−1nm)

)
= u2 ⊗ ωs−s1 where u1 =

t(f1(k)(p−1mp) and u2 = t(f2(k)(p−1mp) ∈ Cχ ⊗ ∧s1(m ∩ u)∗ and ωs−s1 as in (2.8). By Lemma 2.11,
p · ωs−s1 = θ(ωs−s1). Thus

〈π(p)u1 ⊗ ωs−s1 , u2 ⊗ ωs−s1〉inv = 〈p · u1 ⊗ θ(ωs−s1), u2 ⊗ ωs−s1〉inv

= 〈p · u1, u2〉inv,M 〈θ(ωs−s1), ωs−s1〉inv

= 〈p · t (f1(k)) (p−1mp), t
(
f2(kp−1n)

)
(m)〉inv,M 〈θ(ωs−s1), ωs−s1〉inv.

Now we continue with the proof of (3.4) by applying Lemma 3.9 to the last expression in (3.8). We let
〈, 〉pos,M (〈 , 〉inv,M , respectively) denote the positive (invariant, respectively) form restricted to M/M ∩ L.

〈Sf1,Sf2〉inv = C ′
∫
K

∫
M0

∫
N

〈p · t (f1(k)) (p−1mp), t
(
f2(kp−1n)

)
(m)〉inv,M dn dm dk

= C ′
∫
K

∫
M0

∫
N

〈p · t (f1(k)) (m), t
(
f2(kp−1n)

)
(pmp−1)〉inv,M dn dm dk

by change of variables m→ pmp−1,

= C ′
∫
K

∫
M0
〈t (f1(k)) (m),

∫
N

p ·−1 t
(
f2(kp−1n)

)
(pmp−1)dn〉inv,M dm dk

= C ′
∫
K

∫
M0
〈t (f1(k)) (m), D(wo)

∫
N

t
(
f2(kp−1n)

)
(m)〉inv,M dm dk

by change of variables m→ pmp−1,

= C

∫
K

〈f1(k), D(wo)AP (δM ⊗ ρL + ν)f2(k)〉pos,M dk.(3.10)

By Lemma 5.2 below the integral defining the global invariant form on the L2–harmonic space (defining the
discrete series ) converges. Therefore the global invariant form is a multiple of the global positive form. This
justifies (3.10).

Corollary 3.11. If rankR(G) = rankR(L) then 〈 , 〉inv is not identically zero on the image of S.

Proof. The metric defining 〈 , 〉inv,M is the metric on ∧s1(u ∩ m)∗ induced by the Killing form of g. This
coincides with 〈 , 〉pos,M since u∩m ⊂ u∩ k. It follows that the constant C in (3.10) is nonzero. The corollary
now follows from [12], Section 3.

4. The positive definite form

We have seen that G/L has a G-invariant indefinite hermitian metric which defines a global G-invariant
hermitian form on the K–finite image of S. In this section we define a Hilbert space of closed forms; the inner
product being in terms of a (non G–invariant) positive definite metric on G/L. The important properties
of this L2–harmonic space, which is denoted by H

(0,s)
2 , are that (a) it is G–invariant, (b) it contains the

K–finite vectors in the image of S and (c) the G–invariant form is defined on H
(0,s)
2 .

The 1 metric on G/L we use was introduced in [14]. To define this metric we use the following decompo-
sition of G:

G = K exp(l⊥ ∩ p0) exp(l ∩ p0).(4.1)
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Here l⊥ is the orthogonal complement of l in g with respect to the Killing form. Under this decomposition
we can write an element of the group uniquely as

g = k(g) exp (X(g)) exp (Y (g)) , with k(g) ∈ K,X(g) ∈ l⊥ ∩ p0 and Y (g) ∈ l ∩ p0.(4.2)

See [13] for this decomposition. Define 〈X,Y 〉pos = 〈X, θ(Y )〉inv. It is clear that this is a positive definite
K–invariant Hermitian form on g. Define 〈X,Y 〉pos,eL = 〈X,Y 〉pos for X,Y ∈ l⊥ ∼= TeL(G/L). Now use the
decomposition (4.2) to translate to the other tangent spaces as follows. Let `x denote the differential of left
translation by x ∈ G on G/L. Write arbitrary tangent vectors at gL ∈ G/L as ξg = `k(g) exp(X(g))(ξ) and
ηg = `k(g) exp(X(g))(η) with ξ, η ∈ l⊥ ∼= TeL(G/L). Define

〈ξg, ηg〉pos,gL = 〈ξ, η〉pos.(4.3)

Lemma 4.4. The expression in (4.3) is independent of the coset representative g of gL and defines a K–
invariant metric on G/L.

Proof. An easy calculation shows that for any l ∈ L, k(gl) exp (X(gl)) = k(g) exp (X(g)) l1 for some l1 ∈
L ∩K. So `k(gl) exp(X(gl))(ξ) = `k(g) exp(X(g)) (Ad(l1)ξ) and the first part follows from the L ∩K–invariance
of 〈 , 〉pos on l⊥. For the K–invariance, note that if g ∈ K then X(g) = 0.

As in (3.1) a global inner product is defined on a subspace of As(G/L,Lχ) by

〈ω1, ω2〉pos =
∫
G/L

ω1 ∧#pω2.(4.5)

Here #p denotes the Hodge-Kodaira orthocomplementation with respect to the positive metric on G/L,
followed by the hermitian pairing on Lχ. Letting 〈 , 〉pos also denote the corresponding inner product on
∧su⊗Cχ we have

〈ω1, ω2〉pos =
∫
G/L

〈ω1 (k(g) exp(X(g))), ω2 (k(g) exp(X(g)))〉pos dg.(4.6)

Definition 4.7. L(0,s)
2 (G/L,Lχ) is the space of measurable Lχ–valued (0, s)-forms satisfying ||ω||2pos =

〈ω, ω〉pos <∞.

Definition 4.8. Define H(0,s)
2 to be

{
ω ∈ L(0,s)

2 (G/L,Lχ) : ∂ω = 0 as distributions
}

.

In Section 5 we will see that both L
(0,s)
2 (G/L,Lχ) and H

(0,s)
2 are invariant under left translation by G.

The remainder of this section is devoted to the proof of Theorem 4.9 which establishes the fact that H(0,s)
2

is not zero.

Theorem 4.9. Suppose L is the fixed point group of an involution σ. For χ satisfying the negativity condition
of (2.5) and for ρL nonsingular, S(I(W )K–finite) ⊂ H(0,s)

2 (G/L,Lχ).

Note that the assumption on the base point z0 of Section 2 along with the condition that L is the fixed
point group of an involution guarantees that the involution commutes with the Cartan involution θ. Thus,
by properly choosing the base point we may assume that the involution commutes with θ. We begin with
several lemmas.

Lemma 4.10. Let f ∈ I(W ), then

||Sf(x)||2pos =
∫
K∩L

∫
N∩L
〈T (f(xk)), T (f(xknL))〉pos dnL dk,

for any x ∈ K exp(l⊥ ∩ p0).
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Proof. By the definition of Sf ,

||Sf(x)||2pos =
∫
K∩L
〈π(k)T (f(xk)),Sf(x)〉pos dk.

Since the positive form is invariant under K and Sf satisfies a transformation property under L, we obtain
the first equality below:

||Sf(x)||2pos =
∫
K∩L
〈T (f(xk)),Sf(xk)〉pos dk

=
∫
K∩L

∫
K∩L
〈T (f(xk)), π(k′)T (f(xkk′))〉pos dk

′ dk

by (2.6)

=
∫
K∩L

∫
N∩L

e−2ρL(H(nL))〈T (f(xk)), π (κ(nL))T (f(xkκ(nL))〉pos dnL dk

by the change of variables (2.15).

By (3.7) the integrand is equal to

〈T (f(xk)), π(nL)T (f(xknL))〉pos

= 〈π
(
θ(nL)−1

)
T (f(xk)), T (f(xknL))〉pos

= 〈T (f(xk)), T (f(xknL))〉pos.

The last equality holds since θ(nL) ∈ N ∩ L and T takes values in V nLπ . The lemma follows.

Recall that a0 ⊂ p0 ∩ l0 is a maximal abelian subspace. The decomposition G = K exp(m0 ∩ p0)NA is
therefore stable under σ. In addition to this decomposition we have G = K exp(m0 ∩ p0)NA, also stable
under σ. The decomposition of g ∈ G with respect to this decomposition will be written as

g = κ(g)µ(g)n(g)eH(g).(4.11)

An important relationship between the two decompositions is given in the following lemma.

Lemma 4.12. If σθ(g) = g then H(g) = −H(g), µ(g) = µ(g) and κ(g) = σ (κ(g)).

Proof. Since M0 is preserved by both θ and σ we may write m0 ∩ p0 = m0 ∩ p0 ∩ l⊥ + m0 ∩ p0 ∩ l0. But a0 is
maximal abelian in l0 ∩ p0, so m0 ∩ p0 ∩ l0 = 0, i.e., m0 ∩ p0 = m0 ∩ p0 ∩ l⊥. Therefore σ (θ (µ(g))) = µ(g).
So g = σθ(g) = σθ (κ(g))σθ (µ(g))σθ (n(g)) eσθH(g) ∈ K exp(m0 ∩ p0)NA and the lemma follows.

We now begin the proof of Theorem 4.9. Let x = k exp(X) ∈ K exp(l⊥∩p0). Let {ωis} be an orthonormal
basis of V nLπ with respect to 〈 , 〉pos. Using Lemma 4.10 and the definition of T we write

||Sf(x)||2pos =
m∑
i=1

∫
K∩L

∫
N∩L
〈Φ (t (f(xl)) (e)), ωis〉pos

〈Φ (t (f(xlnL)) (e)), ωsi〉pos dnL dl.

(4.13)

The transformation properties of f ∈ I(W ) along with the M -invariance of t give

t (f(xl)) (e) = e−(ρG+ρL+ν)H(xl)t(f (κ(xl))) (µ(xl)) and

t (f(xlnL)) (e) = e−(ρG+ρL+ν)H(xlnL)t(f (κ(xlnL))) (µ(xlnL))

substituting into (4.13) given

||Sf(x)||2pos =
m∑
i=1

∫
K∩L

∫
N∩L

e−(ρG+ρL+ν)(H(xl)+H(xlnL))〈t (f (κ(xl))(µ(xl)) ,Φ∗ωis〉 ·

〈t (f (κ(xlnL))) (µ(xlnL)) ,Φ∗ωis〉 dnL dl
(4.14)
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We now let f ∈ I(W ) be a K-finite function. We may choose a basis {fl} of the finite dimensional space

span {k · f : k ∈ K} and write k−1 · f =
d∑
l=1

Cl(k)fl or equivalently f(k) =
d∑
l=1

Cl(k)fl(e). Note that the

coefficient Cl are continuous functions on K hence are bounded. Now choose an orthonormal basis {ϕj} of
W consisting of M ∩K-finite vectors. Since f is K–finite, f(k) is M ∩K–finite (by page 141 of [22]). Then
for each l we may express

fl(e) =
∑
j

〈fl(e), ϕj〉Wϕj

with only a finite number of terms being nonzero. For any g ∈ G it follows that

µ(g)−1t (f (κ(g))) =
M∑
l=1

Cl (κ(g))µ(g)−1t (fl(e)) .(4.15)

Now,

〈t (f (κ(g))) (µ(g)),Φ∗ωis〉pos

=
m∑
l=1

Cl (κ(g)) 〈µ(g)−1t (fl(e)) (e),Φ∗ωis〉pos

by (4.15)

=
m∑
l=1

∑
j

Cl (κ(g)) 〈µ(g)−1t(ϕj)(e),Φ∗ωis〉pos〈fl(e), ϕj〉W

=
m∑
l=1

∑
j

Cl (κ(g)) 〈t(ϕj)(µ(g)),Φ∗ωis〉pos〈fl(e), ϕj〉W .(4.16)

The matrix coefficients in (4.16) are compared with the functions ΞM0 defined in [6]. We claim that for
every r > 0 there exist a constant Cr so that

〈t(ϕj) (µ(g)),Φ∗ωis〉pos ≤ Cr
ΞM0 (µ(g))(

1 + ||µ(g)||2pos

)r .(4.17)

By [7], Lemma 65 it is enough to show that F (m) = 〈t(ϕj)(m),Φ∗ωis〉pos defines a function F on M so that
F ∈ L2(M), F is M ∩K–finite, and F is Z(m)–finite. By Schmid’s Theorem t(ϕj) is an L2–harmonic form
on M/M ∩ L. The square integrability of F follows from |〈t(ϕj)(m),Φ∗ωis〉pos| ≤ C||t(ϕj)(m)||2pos (and the
compactness of M ∩L). The K ∩M–finiteness and Z(m)–finiteness of F follow from the same properties of
t(ϕj).

By (4.14) and (4.17) applied to g = xl and g = xlnL, and the finiteness of the sums in (4.16), we have a
bound for ||Sf(x)||2pos: for each r > 0 there is a constant Cr > 0 so that

||Sf(x)||2pos ≤ Cr
∫
K∩L

∫
N∩L

e−(ρG+ρL+ν)(H(xl)+H(xlnL))

ΞM0 (µ(xl))(
1 + ||µ(xl)||2pos

)r ΞM0 (µ(xlnL))(
1 + ||µ(xlnL)||2pos

)r dnL dl(4.18)

for x ∈ K exp(l⊥ ∩ p0).
The remainder of the proof follows somewhat standard arguments involving the Iwasawa H–function and

changes of variables. However, the assumption that G/L is symmetric is used in a crucial way (in the form
of Lemma 4.12) in the equalities of (4.19) and (4.21). Comparing the Iwasawa decomposition for N and N

one easily sees that

H(xlnL) = H(xl) +H (µ(xl)n(xlnL)) .
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Thus, the exponential term in the integrand of (4.18) becomes

e−(ρG+ρL+ν)(H(xl)+H(xlnL)) = e−(ρG+ρL+ν)(H(xl)+H(xl))e−(ρG+ρL+ν)H(µ(xl)n(xlnL))

= e−(ρG+ρL+ν)H(µ(xl)n(xlnL)).
(4.19)

The last equality follows from Lemma 4.12 since x = k exp(X) with X ∈ l⊥ ∩ p0 and H(xl) = H (exp(X)l)
and exp(X)l = σθ (exp(X)l). Thus, (4.18) becomes

||Sf(x)||2pos ≤ Cr
∫
K∩L

∫
N∩L

e−(ρG+ρL+ν)H(µ(xl)n(xlnL))

ΞM0 (µ(xl))(
1 + ||µ(xl)||2pos

)r ΞM0 (µ(xlnL))(
1 + ||µ(xlnL)||2pos

)r dnL dl,(4.20)

for x ∈ K exp(l⊥ ∩ p0).
We now consider the convergence of the integral (given in (4.6)) over G/L. Replacing x in (4.20) by

k(g) exp (X(g)) and using

µ (k(g) exp (X(g)) l) = µ (exp (X(g)) lnL) ,

n (k(g) exp (X(g)) lnL) = n (exp (X(g)) lnL) and,

µ (exp (X(g)) l) = µ (exp (X(g)) l) , by Lemma 4.12

= µ (exp (X(g)) lnL) ,

(4.21)

we obtain

||Sf ||2pos ≤ Cr
∫
G/L

∫
K∩L

∫
N∩L

e−(ρG+ρL+ν)H(µ(exp(X(g))lnL))n(exp(X(g))lnL)

ΞM0 (µ (exp (X(g)) lnL))(
1 + ||µ (exp (X(g)) lnL) ||2pos

)r ΞM0 (µ (exp (X(g)) lnL))(
1 + ||µ (exp (X(g)) lnL) ||2pos

)r dnL dl dg
= Cr

∫
G/L

∫
L/A

e−(ρG+ρL+ν)H(µ(exp(X(g))l)nL(exp(X(g))l))(4.22)

ΞM0 (µ (exp (X(g)) l))(
1 + ||µ (exp (X(g)) l) ||2pos

)r ΞM0 (µ (exp (X(g)) l))(
1 + ||µ (exp (X(g)) l) ||2pos

)r dl dg
by integration formula (2.14).

Now use the left L-invariance of dl to replace l by exp (Y (g)) l in (4.22). Also observe that

µ (exp (X(g)) exp (Y (g)) l) = µ(gl),

µ (exp (X(g)) exp (Y (g)) l) = µ(gl), and

n (exp (X(g)) exp (Y (g)) l) = n(gl).

Thus,

||Sf ||2pos ≤ Cr
∫
G/L

∫
L/A

e−(ρG+ρL+ν)H(µ(gl)n(gl)) ΞM0 (µ(gl))(
1 + ||µ(gl)||2pos

)r ΞM0 (µ(gl))(
1 + ||µ(gl)||2pos

)r dl dg
= Cr

∫
G/A

e−(ρG+ρL+ν)H(µ(g)n(g)) ΞM0 (µ(g))(
1 + ||µ(g)||2pos

)r ΞM0 (µ(g))(
1 + ||µ(g)||2pos

)r dg
= Cr

∫
K

∫
M0

∫
N

e−(ρG+ρL+ν)H(m0n) ΞM0 (m0)(
1 + ||m0||2pos

)r ΞM0 (µ(m0n))(
1 + ||m0n||2pos

)r dn dm0 dk

≤ Cr
∫
M0

(∫
N

e−(ρG+ρL+ν)H(m0n) · ΞM0 (µ(m0n)) dn
)

ΞM0 (m0)(
1 + ||m0||2pos

)r dm0.

(4.23)

The following lemma provides the final step in the proof of Theorem 4.9.

Lemma 4.24. For ν′ ∈ a∗ with ν′ dominant regular
∫
N

e−(ν′+ρG)H(m0n)ΞM0 (µ(m0n)) dn = CΞM0 (m0).
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Proof. We use standard methods (as on page 197 of [10], for example) to show that∫
N

e−(ν′+ρG)H(m0n)ΞM0 (µ(m0n)) dn = ΞM0 (m0)
∫
N

e−(ν′+ρP )HP (n) dn

where G = KAPNP is an Iwasawa decomposition of G with A ⊂ AP and N ⊂ NP , and HP and ρP are the
corresponding H–function and ρ–function. The last integral converges by [3] or [9], Corollary 32.1.

Since ρG + ρL + ν is dominant regular the lemma, along with (4.23) gives

||Sf ||2pos ≤ C
∫
M0

‖ΞM0 (m)‖2(
1 + ||m||2pos

)r dm.
This integral is finite for r large enough by Theorem 9.3 in [8].

5. The Hilbert Space representation

Recall from Definition 4.8 that our Hilbert space H(0,s)
2 is the space of square integrable forms of type (0, s)

which are closed in the sense of distributions. The sheaf cohomology Hs(G/L,O(Lχ)) can be calculated by
using the Dolbeault complex with either smooth or distribution forms. As a result, there is a natural map

q : H(0,s)
2 → Hs(G/L,O(Lχ)), q(η) = [η].(5.1)

We assume for the rest of this section that L is the fixed point set of an involution σ. We also assume that
the negativity conditions of (2.2) and (2.5) hold. By (2.2) and (4.9) the image of q is dense and contains the
K–finite vectors of Hs(G/L,O(Lχ)).

Lemma 5.2. For ω1, ω2 ∈ L(0,s)
2 (G/L,Lχ), 〈ω1, ω2〉inv ≤ ||ω1||2pos||ω2||2pos. It follows that 〈 , 〉inv is defined

on L
(0,s)
2 (G/L,Lχ) and is continuous.

Proof. It is enough to show that on u, |〈X1,X2〉inv| ≤ ||X1||2pos||X2||2pos. This follows from: |〈X1,X2〉inv| =
|〈X1, θX2〉pos| ≤ ||X1||2pos||θX2||2pos = ||X1||2pos||X2||2pos.

The following proposition, which is stated in [14], shows that H(0,s)
2 is invariant under left translation and

this action of G is continuous. We will only outline the proof.

Proposition 5.3. Left translation by x ∈ G in L
(0,s)
2 (G/L,Lχ) is a bounded operator and defines a contin-

uous representation of G on L
(0,s)
2 (G/L,Lχ).

Proof. The crucial fact is given in Lemma 7.3 of [14] which states the following. For the moment let ‖ · ‖
denote the operator norm of a linear operator on Cχ ⊗∧su with respect to the positive metric. Then there
is a continuous function B on G so that

‖Ad (exp(Y (xk exp(X))) ‖ ≤ B(x)(5.4)

for all k ∈ K and X ∈ l⊥ ∩ p0. Here Y is as in (4.2).
First we check that `x ( = left translation by x ∈ G) is a bounded operator on L

(0,s)
2 (G/L,Lχ).
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||`xω||2pos =
∫
G/L

||ω
(
x−1k(g) exp(X(g))

)
||2pos dg

=
∫
G/L

||ω(x−1k(g) exp(X(g)) exp(Y (g)) exp(−Y (g))||2pos dg

=
∫
G/L

||Ad (exp(Y (g)))ω(x−1g)||2pos dg

=
∫
G/L

||Ad (exp(Y (xg)))ω(g)||2pos dg

by the G–invariance of dg

=
∫
G/L

||Ad (exp(Y (xk(g) exp(X(g)) exp(Y (g)))ω(g)||2pos dg

=
∫
G/L

||Ad (exp(Y (xk(g) exp(X(g)))))ω (k(g) exp(X(g))) ||2pos dg

by K–invariance of the positive norm

≤ B(x)
∫
G/L

||ω (k(g) exp(X(g))) ||2pos dg

= B(x)||ω||2pos.

For continuity it suffices to show that x 7→ ||`xω||2pos is continuous and ‖`x‖ is bounded in some neighbor-
hood of e. The second condition follows from the continuity of B and the above calculation that ‖`x‖ ≤ B(x).
The first follows from the dominant convergence theorem as follows. In the above calculation of ‖`xω‖ we
see that

||`xω||2pos =
∫
G/L

||Ad (exp(Y (xk(g))))ω (k(g) exp(X(g))) ||2pos dg

and the integrand is bounded by

B(x)||ω (k(g) exp (X(g))) ||2pos.

As B is continuous and ||ω (k(g) exp (X(g))) ||2pos is L1, the dominated convergence theorem applies.

Corollary 5.5. H(0,s)
2 is a Hilbert space and G acts continuously .

Let Im(S) denote the closure of S (I(W )K–finite) in the Hilbert space H(0,s)
2 .

Lemma 5.6. If η ∈ Im(S) and η represents the zero cohomology class then 〈ω, η〉inv = 0, for every ω ∈
Im(S).

Proof. If η is K–finite then η = S(f) for some f ∈ I(W )K–finite. Since η is in the image of ∂, f lies in the
the maximal submodule of I(W )K–finite, which is the kernel of AP (by [12], Section 3). Thus, by Theorem
3.4, the lemma holds at the K-finite level. By Corollary 5.5, Im(S) is an admissible representation of G. It
follows that the K–finite vectors in ker(q)∩ Im(S) are dense in the null space. Now the continuity of 〈 , 〉inv

gives the lemma.

Definition 5.7. Hs2 ≡ Im(S)/ker{q : Im(S)→ Hs(G/L,O(Lχ))}.

Theorem 5.8. If G/L is indefinite Kähler symmetric space and rankR(G) = rankR(L), then Hs2 is a Hilbert
space, the action of G is continuous and 〈 , 〉inv defines a positive definite G–invariant inner product on Hs2.
The representations Hs2 and Hs(G/L,O(Lχ)) are infinitesimally equivalent.

Proof. It follows from (3.11) that 〈 , 〉inv is not identically zero. It is well defined on Hs2 by Lemma 5.4 and
positive definite by [20], [21] and the choice of parameter χ.
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In the setting of this theorem H
(0,s)
2 consists of square integrable strongly harmonic forms (in the sense

that ∂ω = 0 and ∂
∗
ω = 0 as distributions). The square integrability is shown here and the harmonic property

is Theorem 9.4 in [2].
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