
POSITIVITY OF ZETA DISTRIBUTIONS AND SMALL UNITARY
REPRESENTATIONS
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Abstract. This paper studies the positivity of certain zeta distributions associated to simple noneuclidean

Jordan algebras. The distributions are calculated in the cases where they are positive. The main technique
revolves around an explicit form of the corresponding functional equation. Using an identity relating these

zeta distributions to the standard intertwining operators for the associated conformal groups, explicit families

of singular unitary representations are then constructed.

1. Introduction

The purpose of this article is to give a construction of families of singular unitary representations of

certain simple Lie groups. We consider Lie groups which are related to conformal groups of noneuclidean

Jordan algebras. See Table 1 for a precise list of the groups under consideration. A key property of such

groups is that each has a parabolic subgroup P = LN for which the adjoint action of L on n = Lie(N) has

a finite number of orbits. In particular, there is an open orbit which is in fact dense and has complement

defined by a polynomial equation P (X) = ∇2(X) = 0. It is well-known that ∇s defines a family of tempered

distributions (meromorphic in s ∈ C) known as zeta distributions. This family may be regularized to give

a family of distributions which is complex analytic in s. It turns out that this family of distributions is

intimately related to intertwining operators between certain degenerate principal series representations (for

P = LN) and to the unitarity of certain subrepresentations. We show how these distributions play a role in

giving unitary realizations of these representations.

To be slightly more precise, let Rs be the regularized distribution corresponding to ∇−s; see (6.1). Then

our first main theorem is that Rs is a positive distribution if and only if s ∈ (−∞, e + 1) ∪ {mn − qd : q =

0, 1, . . . , n − 1}, where d, e,m and n are certain integers which depend on G. Theorem 5.12 states that for

the discrete points s = m
n − qd, q = 0, 1, . . . , n − 1, Rs is a quasi-invariant measure on an L-orbit Oq in n.

Under our conditions on G there are n+ 1 L-orbits Oq which we may write as {0} = O0 ⊂ O1 ⊂ · · · ⊂ On;
thus each orbit corresponds to a distribution. Next we consider certain smooth degenerate principal series

representations, which we denote by I(s). We will use the realization of I(s) as certain smooth functions on

n in the usual way. By general principles there is a complex analytic family of G-intertwining operators

As : I(s) → I(−s).

We show that for Schwartz functions f on n

(1.1) (Asf)(Y ) = Rs((τY f)̂)
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where τY is translation by Y in n and ̂ denotes Fourier transform. When s ∈ R the intertwining operator

defines a G-invariant hermitian form (often indefinite) on the image of As by

(1.2) 〈Asf1, Asf2〉 =
∫

n

f1(Y )Asf2(Y ) dY

for functions f1 and f2 in I(s). For the following results we exclude G = SO(p, q) (in case 4. on Table 1) as

the results about unitarity are somewhat different in this case. Assume for the moment that s = m
n − qd,

q = 0, 1, . . . , n − 1, so that Rs is a quasi-invariant measure on Oq. In view of (1.1), formula (1.2) for the

hermitian form becomes

〈Asf1, Asf2〉 =
∫
Oq

f̂1f̂2dνq

for Schwartz functions f1 and f2 on n. Lemma 8.10, Theorem 8.11 and Corollary 8.12 state that the

completion Hs of Im(As) with respect to this inner product is an irreducible unitary G-representation. For

this we show that the Fourier transform provides a factoring of As through L2(Oq). We show that this gives

a unitary equivalence between Hs and L2(Oq) as P -representations. Therefore the natural (irreducible)

action of P , via the Fourier transform, on L2(Oq) extends to an irreducible unitary representation of G. A

similar result holds for the continuous parameter s ∈ [0, e+ 1).

Our main technique for studying the zeta distributions is a functional equation. Functional equations

in this type of setting have a long history. See for example [25], [22], [3] and [15]. The version we use is

contained in [15]. The distributions Rs are related to classical Riesz distributions and generalizations. For

instance, when G is the conformal group of a euclidean Jordan algebra (i.e., G is of tube type) then families

of Riesz distributions are associated to the open convex L-orbits in n. Many of the results of this article,

such as positivity of the distributions for certain parameters and the unitary realization, hold in this setting.

See for example [7], [9] and [19]. We remark that the main tool used in the case of convex L-orbits is the

Laplace transform. In the nonconvex setting of this article the functional equation becomes the main tool.

Our method is, to some degree, inspired by the treatment of SL(2,R) in [8] and the treatment of holomor-

phic representations in [19]. The representations considered in this article have been studied previously. Our

Corollary 8.12 is obtained in [6] by different methods. The unitarizability of the representations is contained

in [20]. There is some overlap with techniques in [1] and the recent article [12]. We thank I. Muller for

several conversations and for making part of her manuscript [17] available to us.

2. Preliminaries

Each simple noneuclidean Jordan algebra occurs as the abelian nilradical of a maximal parabolic subalge-

bra of a reductive Lie algebra g. There is a reductive Lie group G, with Lie algebra g, having the following

properties.

2.1. G contains a parabolic subgroup P = LN (a Levi decomposition) such that

(1) P and its opposite parabolic are G-conjugate, and

(2) N is abelian.

(3) The symmetric space corresponding to G is not of tube type.

For a given simple noneuclidean Jordan algebra the g and G as above are not quite unique. The choices

for the groups G which we work with are given in Table 1 in Appendix A.
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Therefore we make the assumption that G is a group listed on Table 1. Then G has a Cartan involution

θ so that θ sends P to the opposite parabolic. We let K be the fixed point group of θ, a maximal compact

subgroup of G. As is customary we write the Lie algebra of G (resp. K) as g (resp. k). The Cartan involution

determines a Cartan decomposition g = k + s.

Following [13] there is an abelian subalgebra b of l ∩ s with the following properties.

(1) There are commuting copies of sl(2,R) in g spanned by {Fj ,Hj , Ej}, a standard basis in the sense

that

θ(Ej) = −Fj and θ(Hj) = −Hj ,

[Ej , Fj ] = Hj , [Hj , Ej ] = 2Ej and [Hj , Fj ] = −2Fj

with Ej ∈ n, Fj ∈ n and b =
∑n
j=1 RHj .

(2) For εk(
∑n
j=1 ajHj) ≡ ak, the b-roots in g, l and n are

Σ(g, b) = {±(εj − εk) : 1 ≤ j < k ≤ n} ∪ {±(εj + εk) : 1 ≤ j, k ≤ n},

Σ(l, b) = {±(εj − εk) : 1 ≤ j < k ≤ n} and

Σ(n, b) = {εj + εk : 1 ≤ j, k ≤ n}.

For each G the roots in n have just two multiplicities, defining integers1 d and e:

each short root has multiplicity 2d and

each long root has multiplicity e+ 1.
(2.2)

Define

(2.3) Σ+(g, b) = {εj − εk : 1 ≤ j < k ≤ n} ∪ Σ(n, b).

Definition 2.4. Taking n = dim(b) as above, we make the following definitions.

(1) The rank of n is n.

(2) Λ0 ≡
∑n
j=1 εj .

(3) χq is the positive character of L with differential 2qdΛ0 for q = 0, 1, 2, . . . n.

We will often denote χ1 by χ. The following lemma is easily proved.

Lemma 2.5. Set m ≡ dim(n) and ρ(n) ≡ 1
2

∑
α∈Σ(n,b)

α. Then

(1) m = n(d(n− 1) + (e+ 1)),

(2) ρ(n) = m
n Λ0,

(3) |det(Ad(`)|n)| = χ(`)
m
dn .

The integers n,m, d and e are listed on Table 1 for each group.

The orbit structure of L acting on n will play an important role. If we set

Xq ≡ E1 + · · ·+ Eq, q = 1, 2, . . . , n and X0 ≡ 0

then by [16] and [11] the L-orbits in n are precisely

(2.6) Oq = L(Xq), q = 0, 1, 2, . . . , n.

1In the case of SO(p, q), Case 4 on Tables 1 and 2, d is a half-integer. When n = 1, d is zero.
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We write Oq = L/Sq, Sq the stabilizer of Xq. As ad(Xn) : l → n is onto, On is open in n; it is also dense.

The orbit On is a semisimple symmetric space. Consider

(2.7) τ = Ad
( n∏
j=1

exp(
π

2
(Ej − Fj))

)
.

Then τ(l) ⊂ l, τ(n) ⊂ n and τ(n) ⊂ n. Furthermore, τ |l is an involution and sn, the Lie algebra of Sn, is the

subalgebra of l fixed by τ . Therefore, L/Sn is a semisimple symmetric space of rank n. We will describe the

other orbits and stabilizers in some detail in Section 3.

There is a diffeomorphism of n × L × n onto a dense open set in G given by (Y, `,X) → nY `nX , where

nY = exp(Y ) and nX = exp(X). Therefore, on a dense open subset of G, there is a decomposition g =

nY `nX . Furthermore, L = MA where A = exp(a), a ≡
⋂
j<k

ker(εj − εk). In particular, the L part of the

decomposition has a component in A. We define a(g) ∈ A by

(2.8) g ∈ NMa(g)N.

By 2.1 there is a w ∈ K so that Ad(w)n = n. In particular we may define functions on dense open subsets

of n and n by

∇(Y ) ≡ eΛ0(log(a(wnY ))), Y ∈ n and

∇(X) ≡ ∇(θ(X)), X ∈ n.
(2.9)

Lemma 2.10. ∇(Y ) (respectively ∇(X)) extends to a well-defined function on n (respectively n) and the

following hold.

(1) ∇(Y )2 (respectively ∇(X)2) is a homogeneous polynomial on n (respectively n) of degree 2n.

(2) ∇(` · Y ) = |det(Ad(`)|n)| n
m∇(Y ) = χ(`)−

1
d∇(Y ) for ` ∈ L and Y ∈ n, and

∇(` ·X) = |det(Ad(`)|n)| n
m∇(X) = χ(`)

1
d∇(X) for ` ∈ L and X ∈ n.

(3) Both ∇ and ∇ are invariant under L ∩K.

Proof. Consider a Cartan subalgebra h of g containing b. Choose a positive system of h-roots Σ+(g, h) with

the property that the positive h-roots restrict exactly to the roots in Σ+(g, b). Let Λ̃0 be the extension of Λ0

to h (by 0 on b⊥). Then 2Λ̃0 is dominant and analytically integral (since each 2εj is a root). In particular

there is a finite dimensional representation U1 of G with highest weight 2Λ̃0. Fix an inner product 〈 , 〉 so

that 〈gu, v〉 = 〈u, θ(g−1)v〉, for u, v ∈ U1 and g ∈ G. Then for a highest weight vector u+,

e2Λ0(log(a(g)) = 〈gu+, u+〉, g ∈ NLN.

In particular

∇(Y )2 = e2Λ0(log(a(wnY ))) = 〈wnY u+, u+〉

is a polynomial in Y . It follows that ∇(Y ) is defined on all of n.
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As representation of L, Un
1 (the n-invariants in U1) is 1-dimensional and the L-action is by the character

χ
1
d (which has differential 2Λ0 on b). Also, Ad(w)|b = −1 and χ(θ(`)) = χ(`−1). Now

∇(`·Y )2 = 〈w`nY `−1u+, u+〉

= 〈w`w−1wnY `
−1u+, u+〉

= χ(`−1)
1
d 〈wnY u+, θ(w`w−1)−1u+〉

= χ(`)−
2
d 〈wnY u+, u+〉

= χ(`)−
2
d∇(Y )2

=
(
|det(Ad(`)|n)| n

m∇(Y )
)2
.

The corresponding statements for ∇ follow. �

Remark 2.11. The functions ∇ are closely related to the determinant functions associated to the Jordan

algebras; see Table 2 in Appendix A.

3. Integral formulas for the orbits

As in Section 2, write the L-orbits in n as

Oq = L(Xq) ∼= L/Sq, q = 0, 1, 2, . . . , n.

The orbit On is open and dense in n, and is a semisimple symmetric space. In particular On has a unique (up

to scalar multiple) invariant measure, which we denote by νn. The semisimple symmetric space L/Sn has a

decomposition in terms of K ∩ L and B ≡ exp(b). We note that b is a Cartan subspace in l perpendicular

to both l ∩ k and sn. Therefore, the Mostow decomposition is

(3.1) L = (K ∩ L)B+Sn,

with B+ = exp(b+), b+ = {H ∈ b : α(H) ≥ 0, for all α ∈ Σ+(l, b)}. The invariant measure on On is of the

form

(3.2)
∫
On

F (X) dX =
∫
K∩L

∫
b+
F (kb ·Xn)δ(b) dbdk.

Since On is open in n we may express this measure in terms of Lebesgue measure dX on n. The formula is

(3.3)
∫
On

F (X)dνn(X) =
∫

n

F (X)∇(X)−
m
n dX.

This is easily verified since the action of L on n is linear.

The other orbits however do not have invariant measures. Instead, they have quasi-invariant measures νq,

q = 1, 2, . . . , n− 1. This means that for each q there is a character χ̃ : L→ R× so that

(3.4)
∫
Oq

F (` ·X)dνq(X) = χ̃(`)−1

∫
Oq

F (X)dνq(X).

In general a quasi-invariant measure ν on a homogeneous space L/S corresponding to a character χ̃ is

determined by

(3.5)
∫
L/S

Ff (`S)dν(`S) =
∫
L

χ̃(`)f(`)d`

where d` is a left invariant Haar measure on L and

Ff (`S) =
∫
S

f(`s)ds,
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with ds equal to left invariant Haar measure on S. Letting Ξ denote the modular function for a Lie group,

χ̃-quasi-invariant measures exist if and only if χ̃ is an extension of ΞSΞ−1
L |S to a character of L. The modular

function for a Lie group is Ξ(·) = |det(Ad(·))|−1. See [14, Section 33] for details on quasi-invariant measures.

In our situation L is a reductive group, so its modular function is 1. We need to compute the modular function

of Sq.

We first describe the stabilizers Sq = StabL(Xq) in some detail. Let nq be the +2-eigenspace of
∑q
j=1Hj

in n. Then nq and nq ≡ θ(nq) generate a semisimple Lie subalgebra gq for which the corresponding subgroup

Gq satisfies 2.1; we let LqNq be the corresponding parabolic subgroup. Let bq ≡ spanR{H1, . . . ,Hq}. Then

Σ(lq, bq) = {±(εj − εk) : 1 ≤ j < k ≤ q}. For each q there is another subalgebra n′n−q defined as the

+2-eigenspace of
∑n
j=q+1Hj . The corresponding subalgebras are denoted by b′n−q, l

′
n−q and n′n−q. Then

Σ(l′n−q, b
′
n−q) = {±(εj − εk) : q + 1 ≤ j < k ≤ n}. The integers d and e for nq and n′n−q are the same as

for n, unless q = 1 (resp. q = n − 1) in which case d = 0 for nq (resp. n′n−q). We set mq ≡ dim(nq) and

m′
n−q = dim(n′n−q). Note that lq and l′n−q commute. The following is straightforward to check.

Lemma 3.6. Let Sq = StabL(Xq) be the stabilizer in L of Xq. Then the following statements hold.

(1) Qq ≡ {` ∈ L : ` · nq ⊂ nq} is a parabolic subgroup of L.

(2) Sq ⊂ Qq.

(3) Setting Oq(q) ≡ Lq(Xq), the open orbit of Lq in nq, Qq/Sq ∼= Oq(q). The corresponding Mostow

decomposition is Lq = (K ∩ Lq)Bq(Sq ∩ Lq).
(4) Define NL

q ≡ exp(nLq ), where Σ(nLq , bq) = {εi − εj : 1 ≤ i ≤ q < j ≤ n}. Then Qq = LqL
′
n−qN

L
q

(with NL
q the nilradical) and Sq = (Lq ∩ Sq)L′n−qNL

q .

Corollary 3.7. The modular function ΞSq
for Sq has differential 2dq

∑n
j=q+1 εj. Therefore ΞSq

extends to

the character χq on L; this is the character for the quasi-invariant measure on Oq.

For nq (resp. n′n−q) the functions defined in (2.9) are denoted by ∇q,∇q (resp. ∇′
n−q,∇′

n−q).

The standard integration formula in terms of the Mostow decomposition Lq = (K ∩ Lq)Bq(Sq ∩ Lq) (see

(3.2)) is

(3.8)
∫
Oq(q)

F (X)dνqq (X) =
∫
K∩Lq

∫
B+

q

F (kb · Eq)δq(b) dbdk.

The exact form of δq, which is not needed here, is given in [23, Section 8.1]. An invariant measure νqq on

Oq(q) may also be given in terms of Lebesgue measure on nq (as in (3.3)) by∫
Oq(q)

F (X)dνqq (X) =
∫
Oq(q)

F (X)∇q(X)−
mq
q dX.

In the decomposition Qq = LqL
′
n−qN

L
q we may write Lq = MqAq and L′n−q = M ′

n−qA
′
n−q so that the

Langlands decomposition of Qq is MqM
′
n−qAqA

′
n−qN

L
q .

Lemma 3.9. For q = 1, 2, . . . , n− 1 the following formula gives a χq-quasi invariant measure on Oq.∫
Oq

F (X) dνq(X) =
∫
K∩L

∫
B+

q

F (kb · Eq)χn(b)δq(b) dbdk.
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Proof. The standard integration formula for a group in terms of a parabolic subgroup gives us∫
L

χq(`)f(`) d`

=
∫
K∩L

∫
MqM ′

n−qAqA′n−q

∫
NL

q

χq(aa′)f(kmm′aa′)e2ρ(nL
q )(aa′) dndada′dmdm′dk

Since 2ρ(nLq ) = 2d((n− q)
∑q

1 εj − q
∑n
q+1 εj) we have χq(aa′) e2ρ(n

L
q )(aa′) = e2dnΛ0,q (a), for Λ0,q =

∑q
j=1 εj .

Thus, ∫
L

χq(`)f(`) d`

=
∫
K∩L

∫
MqAq

∫
M ′

n−qA
′
n−q

∫
NL

q

f(kmam′a′n)e2dnΛ0,q (a)dndada′dmdm′dk

=
∫
K∩L

∫
M ′

n−qA
′
n−q

∫
MqAq/MqAq∩Sq

∫
MqAq∩Sq

∫
NL

q

f(kmam′a′n)e2dnΛ0,q (a) dndada′dmdm′dk

=
∫
L∩K

∫
M ′

n−qA
′
n−q

∫
Sq

f(kmas)e2dnΛ0,qdsdmdadk

=
∫
K∩L

∫
K∩Lq

∫
B+

q

∫
Sq

f(kk1bs)e2dnΛ0,q (b)δq(b) dsdbdk1dk

=
∫
K∩L

∫
B+

q

Ff (kb)χq(b)
n
q δq(b) dbdk.

The lemma follows from (3.5). �

Inserting the integration formula (3.8) for the dense orbit Oq(q) ⊂ nq we obtain the following useful

formula. We remark that normalizations of the Lebesgue measures on n, n and subspaces, and on Oq have

not yet been given. We give normalizations of the Lebesgue measures just before Prop. 3.13 and the

normalization of νq will be given in (5.3).

Corollary 3.10. For q = 1, 2, . . . , n− 1∫
Oq

F (X) dνq(X) =
∫
K∩L

∫
nq

F (k · Y )∇q(Y )dn−
mq
q dY dk.

Proof. Note that χn(kb) = ∇q(kb ·Xq)dn. We therefore have∫
Oq

F (X)dνq(X)

=
∫
K∩L

∫
B+

q

F (kb ·Xq)χn(b)δq(b)dbdk

=
∫
K∩L

∫
Oq(q)

F (k · Y )∇q(Y )nd∇q(Y )−
mq
q dY dk

Since Oq(q) is dense in nq we may integrate over nq. �

Corollary 3.11. Let nLq = θ(nLq ). Then∫
Oq

F (X) dνq(X) = C

∫
nL

q

∫
nq

F (exp(u) ·X)∇q(X)nd−
mq
q dXdu.

Proof. We convert the integral over K ∩ L in the preceding corollary into an integral over nLq using [10,

Eq. 5.25]. We write the ‘Iwasawa’ decomposition of exp(u), u ∈ nLq with respect to the parabolic Qq as
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exp(u) = κ(exp(u))mu exp(H(exp(u))nu ∈ KMqAqNq. Then∫
Oq

F (X) dνq(X)

=
∫

nL
q

∫
nq

F (κ(exp(u) ·X)∇q(X)nd−
mq
q e−2ρ(nL

q )(H(exp(u)))dXdu

=
∫

nL
q

∫
nq

F (exp(u) exp(H(exp(u)))−1m−1
u n−1

u ·X)∇q(X)nd−
mq
q e−2ρ(nL

q )(H(exp(u)))dXdu

Note that exp(H(exp(u)))−1m−1
u n−1

u stabilizes nq. Therefore, by Lemma 2.10 the result of the change of

variables X 7→ exp(H(exp(u)))−1m−1
u n−1

u ·X on nq is∫
nL

q

∫
nq

F (exp(u) ·X)∇q(X)nd−
mq
q

(
det(Ad(eH(exp(u))|nq

)
q

mq
)nd−mq

q

e−2ρ(nL
q )(H(exp(u))) det(Ad(eH(exp(u))|nq

)dXdu.

Claim: The terms involving H(exp(u)) cancel out. This follows from(
det(Ad(eH(exp(u))|nq

)
q

mq
)nd−mq

q e−2ρ(nL
q )(H(exp(u))) det(Ad(eH(exp(u))|nq

)

= e2qdΛ0(H(exp(u))) = χq(exp(H(exp(u)))) = 1,

since H(exp(u)) is in the semisimple part of l (as exp(u) is).

�

We will need another integration formula. This one relates Lebesgue measure on n to Lebesgue measures

on nLq , nq and n′n−q. We take care in normalizing these measures as we wish to obtain exact formulas later.

Let Bg, or simply B, denote the Killing form of g. Then B gives a nondegenerate pairing between n and

n. Recall that m is the dimension of n. Set

〈 , 〉g ≡
n

4m
Bg,

giving a nondegenerate pairing between n and n.

Fact : The restriction of 〈 , 〉g to gq × gq is 〈 , 〉gq
. To see this note that, since gq is simple and 〈 , 〉g is

gq-invariant, there is a nonzero constant c so that 〈 , 〉g = c 〈 , 〉gq on gq × gq. To see that c = 1 compute

〈H1,H1〉g = trace(ad(H1)2) =
n

4m
8(d(n− 1) + (e+ 1)) = 2,

(since m = n(d(n− 1) + (e+ 1))) and

〈H1,H1〉gq
= trace(ad(H1)2|gq

) =
q

4mq
8(d(q − 1) + (e+ 1)) = 2.

We will use 〈 , 〉 to denote 〈 , 〉g for any g. The significance of the above fact is that when we pass from n

to nq in the induction arguments below the pairing 〈 , 〉 is unchanged.

As the form −B( · , θ( · )) is positive definite on g, 〈 , 〉 defines a inner products on n. Denote this inner

product by 〈X1, X2〉θ = −〈X1, θ(X2)〉. The corresponding norms

||X||2 = 〈X,X〉θ = −〈X, θ(X)〉, X ∈ n, and ||Y ||2 = 〈Y, Y 〉θ = −〈Y, θ(Y )〉, Y ∈ n.

determine Lebesgue measures dX on n and dY on n in a standard way.

Define

ñ =
∑

gεj+εk , 1 ≤ j ≤ q < k ≤ n, and

ñ =
∑

g−(εj+εk), 1 ≤ j ≤ q < k ≤ n.
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The inner product 〈 , 〉θ is nondegenerate on each of ñ, ñ and nLq . Give ñ, ñ and nLq the Lebesgue measures

determined by the restriction of 〈 , 〉θ to each subspace.

Lemma 3.12. For X ∈ nq (resp. Y ′ ∈ n′n−q) with ∇q(X) 6= 0 (resp. ∇n−q(Y ′) 6= 0) ad(X) : nLq → ñ (resp.

ad(Y ′) : nLq → ñ is invertible. For ∇q(X) 6= 0 and H ∈ L1(ñ)

∇q(X)2d(n−q)
∫

ñ

H(z)dz =
∫

nL
q

H(ad(X)u)du

and for ∇n−q(Y ′) 6= 0 and F ∈ L1(ñ)

∇n−q(Y ′)2dq
∫

ñ

F (z′)dz′ =
∫

nL
q

F (ad(Y ′)u)du

Proof. Suppose X ∈ nq and ∇q(X) 6= 0. We may write X = ` ·Xq, Xq =
∑q
j=1Ej . Fix orthonormal bases of

ñ and nLq . We compute the determinant of T ≡ ad(X) : nLq → ñ with respect to these bases. First we check

that T ≡ ad(Xq) : nLq → ñ preserves inner products (so has determinant 1).

Observe that

ad(θXq)ad(Xq)u = [θXq, [Xq, u]] = [u, [θXq, Xq]] =
q∑
j=1

[Hj , u] = −u,

therefore, −ad(θXq)ad(Xq) is the identity on nLq . Now

〈ad(Xq)u, ad(Xq)v〉θ = 〈ad(Xq)u, θ(ad(Xq)v)〉

= 〈−ad(θ(Xq))ad(Xq)u, θ(v)〉

= 〈u, v〉θ

We can now calculate the determinant of T with respect to the orthonormal bases of nLq and ñ.

det(T ) = det(Ad(`)|ñ) det(ad(X) : nLq → ñ) det(Ad(`−1))|nL
q

= χ(`)n−q · 1 · χ(`−1)−(n−q)

= χ(`)2(n−q)

= ∇q(X)2d(n−q).

Similarly, for∇n−q(Y ′) 6= 0, ad(Y ′) : nLq → ñ is an isometry and det(ad(Y ′) : nLq → ñ) = ∇n−q(Y ′)2dq. �

Proposition 3.13. Let f ∈ L1(n) and h ∈ L1(n). Then∫
n

f(X)dX =
∫

nL
q

∫
nq

∫
n′n−q

f(exp(u) · (X +X ′))∇q(X)2d(n−q)dXdX ′du∫
n

h(Y )dY =
∫

nL
q

∫
nq

∫
n′n−q

h(exp(u) · (Y + Y ′))∇n−q(Y ′)2dqdY dY ′du.

Proof. We prove only the first formula, the second is proved by essentially the same argument. Since

QqSq = N
L

qQq is dense in L and the complement is of measure zero,

N
L

q LqL
′
n−q(Xq +X ′

n−q) ⊂ N
L

q · (nq + n′n−q)

have full measure in n. We compute the Jacobian of the transformation

φ : nq × nLq × n′n−q → n

(X,u,X ′) 7→ exp(u) · (X +X ′)
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and see that φ is a diffeomorphism on the open subset of (X,u,X ′) ∈ nq × nLq × n′n−q where ∇q(X) 6= 0.

Note that n = nq + ñ+n′n−q. The matrix of the differential of φ at (X,u,X ′) with respect to orthonormal

bases of nq, n
L
q , n

′
n−q and nq, ñ, n

′
n−q has the formI 0 0

∗ T 0
∗ ∗ I


where T = ad(X) : nLq → ñ. Therefore the Jacobian is det(T ) = ∇q(X)2d(n−q) as computed in Lemma

3.12. �

The following lemma, which is essentially only a restatement of the of what is proved above, will be used

in Sections 4 and 5 Let πq : n → nq be the orthogonal projection (with respect to 〈 , 〉θ). Set Uq = {X ∈ n :

∇q(X) 6= 0}, an open set in n.

Lemma 3.14. For X ∈ nq with ∇q(X) 6= 0, ad(X) : nLq → ñ is invertible. The change of coordinates

φ : (X,u,X ′) 7→ exp(u)(X +X ′) is a smooth one-to-one map nq × nLq × n′n−q → n and is a diffeomorphism

from Oq(q)× nLq × n′n−q onto Uq. The Jacobian is ∇q(X)2d(n−q).

Proof. The Jacobian is computed in the proof of Lemma 3.13. To see that φ is a bijection Oq(q)×nLq ×n′n−q →
Uq write exp(u)(X +X ′) = X + ad(u)X + (X ′ + 1

2ad(u)2(X)) ∈ nq + ñ + n′n−q and use the fact that ad(X)

is invertible when ∇q(X) 6= 0. �

We end this section with two facts we will need later.

Lemma 3.15. For α ∈ C ∫
n

e−αΛ0(H(nY ))dY

is finite for Re(α) > m
n + d(n− 1).

Proof. This is a standard argument. See [10, Cor. 7.7]. �

We are also interested in the local integrability of powers of ∇(X) and ∇(Y ). For this we apply the

standard integration formula for a semisimple symmetric space (as in equation (3.2)). The invariant measure

in the polar coordinates (K ∩ L)B+ is of the form δ(b)dbdk. It follows from [23, page 149] that |δ(b)| ≤
e2ρ(l)(b).

Lemma 3.16. For Re(α) > −(e+1) the function ∇(X)α (resp. ∇(Y )α) is a locally L1 function on n (resp.

n) and defines a tempered distribution.

Proof. We use the polar coordinates (K ∩ L)B+ and formulas (3.2) and (3.3) to check that∫
b+

c

∇(bt ·Xn)Re(α)+ m
n δ(bt) dt <∞,

where

b+
c = {t ∈ Rn : c > t1 > t2 · · · }

and

bt = exp(
n∑
j=1

tjHj).
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By Lemma 2.10 (b)

∇(bt ·Xn) =
n∏
j=1

e2tj .

Now ∫
b+

c

∇(bt ·Xn)Re(α)+ m
n e2ρ(l) dt =

∫
c>t1>···>tn

∏
j

e(Re(α)+ m
n )2tj+2d(n−2j+1)tjdt1 . . . dtn <∞

for Re(α) + m
n + d(n− 2j + 1) > 0 for j = 0, 1, . . . , n, i.e., Re(α) > −m

n + d(n− 1) = −(e+ 1). �

4. Functional equation

The functions ∇(X)s and ∇(Y )s are locally L1 functions for Re(s) > −(e+1) by Lemma 3.16. Therefore

tempered distributions are defined by the integrals

(4.1) Z(h, s) =
∫

n

h(X)∇(X)s dX, for h ∈ S(n) and Z(f, s) =
∫

n

f(X)∇(X)s dX, for f ∈ S(n).

Here S(n) (resp. S(n)) denotes the space of Schwartz functions on n (resp. n). Note that in the range

Re(s) > −(e+1) both expressions are complex analytic functions of s. We will see that there is a meromorphic

continuation to all of C and a functional equation relating the two distributions via the Fourier transform.

The fact that there is a meromorphic continuation is well-know ([21], [25] and [22]). The explicit functional

equation (Theorem 4.4) below has been studied in various forms. See [15] and [4]. Theorem 4.4 below

computes the coefficients which occur in the functional equation and is a special case of Proposition 3 in

[15]. When G is a complex group it is contained in [3, Theorem 3.16]. Most of the statements in this section

are contained in [15]; we include the details of the proofs since we will need much of the setup and many of

the formulas which arise.

By Lemma 2.10 P (X) ≡ ∇(X)2 and P (Y ) ≡ ∇(Y )2 are polynomials. They define constant coefficient

differential operators characterized by

P (∂X)e〈X,Y 〉 = P (Y )e〈X,Y 〉 and P (∂Y )e〈X,Y 〉 = P (X)e〈X,Y 〉.

There is a polynomial b(s) ([2]) so that

P (∂X)∇(X)s = b(s)∇(X)s−2 and P (∂Y )∇(Y )s = b(s)∇(Y )s−2.

In particular, for bk(s) ≡ b(s)b(s− 2)b(s− 4) · · · b(s− 2(k − 1)),

P (∂X)k∇(X)s = bk(s)∇(X)s−2k and P (∂Y )k∇(Y )s = bk(s)∇(y)s−2k.

It follows that

Z(P (∂X)kh, s) = bk(s)Z(h, s− 2k)(4.2)

and

Z(P (∂Y )kf, s) = bk(s)Z(f, s− 2k)

for Re(s) � 0. Since the left hand side is analytic for Re(s) > −(e + 1), Z(h, s) and Z(f, s) continue to

meromorphic functions on Re(s) > −(e + 1) − 2k for any k. Let {αj} be the set of roots of b(s) and set

S = {αj − 2l : l ∈ Z+}. We may conclude the following lemma.

Lemma 4.3. For h ∈ S(n) (resp. f ∈ S(n)) Z(h, s) (resp. Z(f, s)) has a meromorphic continuation with S

the set of potential poles.
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We now turn to the Fourier transform and functional equation. Recall the definition of the pairing 〈 , 〉
given in Section 3. Define the Fourier transforms by

ĥ(Y ) =
∫
h(X)e−2πi〈Y,X〉 dX, for h ∈ S(n)

and

f̂(X) =
∫
f(Y )e−2πi〈Y,X〉 dY, for f ∈ S(n).

The normalization of Lebesgue measure is so that Fourier inversion iŝ̂
h(X) = h(−X) and ̂̂

f(Y ) = f(−Y ).

The main result of this section is the following theorem. We let Γ denote the gamma function on C.

Theorem 4.4. ([15]) Let s ∈ C and f ∈ S(n). As meromorphic functions

(4.5)
π

ns
2

Γn(s)
Z(f̂ , s− m

n
) =

π
n
2 (−s+ m

n )

Γn(−s+ m
n )

Z(f,−s)

where

Γn(s) ≡
n−1∏
j=0

Γ(
s− jd

2
).

We begin the proof with a few preliminary propositions. The first step is Weil’s integration formula ([27]).

Recall the subalgebras of g defined in Section 3:

nq =
∑

gεi+εj , for 1 ≤ i, j ≤ q

n′n−q =
∑

gεi+εj , for q < i, j ≤ n

nq =
∑

g−εi−εj for 1 ≤ i, j ≤ q

n′n−q =
∑

g−εi−εj for q < i, j ≤

nLq =
∑

g−εi+εj , for 1 ≤ i ≤ q < j ≤ n

ñ =
∑

gεi+εj , for 1 ≤ i ≤ q < j ≤ n

ñ =
∑

g−εi−εj for 1 ≤ i ≤ q < j ≤ n.

(4.6)

Observe that for u ∈ nLq

ad(u) : nq → ñ,

ad(u) : ñ → n′n−q,

ad(u) : n′n−q → 0.

(4.7)

Therefore,

(4.8) Ad(exp((u)) = I + ad(u) +
1
2
(ad(u))2

on nq and

ad(u)2 : nq → n′n−q.

Define the Fourier transform on nLq by

φ̂(v) =
∫

nL
q

φ(u)e−2πi〈u,v〉θdu

for φ ∈ S(nL). The normalize Lebesgue measure du on nLq given in Section 3 guarantees that ̂̂
φ(u) = φ(−u).
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Proposition 4.9. ([27], [17]) Suppose that X ∈ nq with ∇q(X) 6= 0 and Y ′ ∈ n′n−q with ∇n−q(Y ′) 6= 0.

Then for each φ ∈ S(nLq )∫
nL

q

∫
nL

q

φ(v − u)eπi〈Y
′,ad(u)2X〉 dudv = ∇q(X)−d(n−q)∇n−q(Y ′)−qd

∫
nL

q

φ(u) du.

Proof. We follow Sections 13 and 14 in [27]. The first step is to see that

q(u) ≡ qX,Y ′(u) ≡ e
1
2 i〈Y

′,(ad(u))2(X)〉

is a nondegenerate character of the second degree2, that is q satisfies

(4.10) q(u+ v)q(u)−1q(v)−1 = ei〈u,ρX,Y ′ (v)〉

for some linear isomorphism ρX,Y ′ : nLq → θ(nLq ).

Since [u, v] = 0, ad(u)ad(v) = ad(v)ad(u). Therefore

〈Y ′,
1
2
(ad(u)ad(v) + ad(v)ad(u))(X)〉 = 〈Y ′, ad(u)ad(v)X〉 = −〈ad(u)Y ′, ad(v)X〉

= −〈ad(Y ′)u, ad(X)v〉 = 〈u, ad(Y ′)ad(X)v〉.

Therefore, taking ρX,Y ′ = ad(Y ′)ad(X) we see that (4.10) holds. We also need to check that ρX,Y ′ is a linear

isomorphism. By Lemma 3.12 ad(X) : nLq → ñ has determinant ∇q(X)2d(n−1). Similarly the determinant of

ad(Y ′) : ñ → θ(nLq ) is ∇n−q(Y ′)2dn. Therefore, q is nondegenerate for X and Y ′ satisfying ∇q(X) 6= 0 and

∇n−q(Y ′) 6= 0. It also follows that the Jacobian term appearing in [27, Cor. 2] is ∇q(X)−d(n−q)∇n−q(Y ′)−dq.

To complete the proof we compute the ‘γ term’ in [27, Cor. 2]. A formula for γ is given in [18, Prop. 1-6]

in terms of the signature of 〈 · , ρX,Y ′( · )〉 = 〈 · , θρX,Y ′( · )〉θ. The signature of ρX,Y ′ is independent of X,Y ′

(with ∇q(X)∇n−q(Y ′) 6= 0), so we will assume that

X =
q∑
j=1

Ej and Y ′ =
n∑

j=q+1

θ(Ej).

Let ρ = ρX,Y ′ . Then we claim that the eigenvalues of θρ = θρX,Y ′ restricted to nLq are ±1, each occurring

with the same multiplicity. It follows from this that γ(ρ) = 1.

To see that the claim holds we show that θρ = θτ (with τ as in (2.7)), then note that the root multiplicities

in the 1 and −1 eigenspaces of θτ are all equal (to d), as observed in [6, Section 1.2].

Both θρ and θτ preserve a-root spaces so it is enough to check that ρθ = τθ on root spaces for −εi + εk,

i ≤ q < k. Let Z be in such a root space, then

ρ(Z) = [Ek, θ[Ei, Z]].

On the other hand,

τθ(Z) = Ad
(
exp(

π

2
(Ei + θ(Ei)) exp(

π

2
(Ek + θ(Ek))

)
θ(Z).

Now,

Ad
(π
2

(Ek + θ(Ek))
)
θ(Z) = cos(

π

2
)θ(Z) + sin(

π

2
)[Ek, θ(Z)] = [Ek, Z],

2See [27, pages 145-146] for the definition of a nondegenerate character of the second degree.
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so

τθ(Z) = Ad
(
exp(

π

2
(Ei + θ(Ei))

)
([Ek, θ(Z)])

= cos(
π

2
)[Ek, θ(Z)] + sin(

π

2
)[θ(Ei), [Ek, θ(Z)]]

= [θ(Ei), [Ek, θ(Z)]]

= ρ(Z).

This completes the proof. �

For f ∈ S(n) define T f ∈ C∞(nq × n′n−q) by

T f (Y, Y ′) =
∫

nL
q

f(exp(u)(Y + Y ′))du

and for h ∈ S(n) define Th ∈ C∞(nq × n′n−q) by

Th(X,X ′) =
∫

nL
q

h(exp(u)(X +X ′))du.

The functions Th and T f are not defined everywhere, for example the integral defining Th(0, 0) is not

convergent (when h(0, 0) 6= 0). The following lemma shows, among other things, that Th and T f (for

Schwartz functions h and f) are defined almost everywhere. Before stating the lemma we make several

observations.

As noted in Lemma 3.12 ad(X) : nLq → ñ is invertible when X ∈ nq and ∇q(X) 6= 0, i.e., when X ∈ Oq(q).
This immediately provides us with an estimate in terms of the operator norm of ad(X):

1
||ad(X)−1||op

||u|| ≤ ||ad(X)(u)|| ≤ ||ad(X)||op||u||.

Since ||ad(X)||op and ||ad(X)−1||op are continuous on Oq(q) we may conclude that for every compact set

Ω ⊂ Oq(q) there are constants C ′, C ′′ > 0 such that

(4.11) C ′||u|| ≤ ||ad(X)(u)|| ≤ C ′′||u||, for each X ∈ Ω.

It follows that for each N ∈ N there exists a constant C so that

(4.12) (1 + ||ad(X)(u)||)−N ≤ C(1 + ||u||)−N , for each X ∈ Ω.

Similarly for Y ′ ∈ n′n−q with ∇′
n−q(Y

′) 6= 0, ad(Y ′) : nLq → ñ is invertible and given a compact set

Ω′ ⊂ {Y ′ ∈ n′n−q : ∇′
n−q(Y

′) 6= 0} and an N ∈ N there is a constant C so that

(4.13) (1 + ||ad(Y ′)(u)||)−N ≤ C(1 + ||u||)−N , for each Y ′ ∈ Ω′.

Lemma 4.14. Let h ∈ S(n) and f ∈ S(n). Then the following statements hold.

(a) The integral defining Th(X,X ′) (respectively, T f (Y, Y ′)) is finite when ∇q(X) (respectively, ∇′
n−q(Y

′))

is nonzero. In particular, Th and T f are defined almost everywhere.

(b) For X ∈ Oq(q), h(X + ad(u)(X) +X ′) is a Schwartz function in the variables u ∈ nLq and X ′ ∈ n′n−q.

(c) Let Ω ⊂ Oq(q) be compact and let N ∈ N. Then there is a constant C so that

(4.15) Th(X,X ′) ≤ C(1 + ||X ′||)−N , for all X ∈ Ω.

Furthermore, Th(X, · ) ∈ S(n′n−q) for ∇q(X) 6= 0.
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Proof. (a) Let ∇q(X) 6= 0. Then, for any N ∈ N there are constants C1 and C so that

|h(exp(u)(X +X ′))| = |h(X + ad(u)X + (X ′ +
1
2
ad(u)2(X)))|

≤ C1(1 + ||ad(u)X||)−N , since h is Schwartz in each variable,

≤ C(1 + ||u||)−N , by (4.11).

Choosing N large enough, this is an L1 function on nLq . The corresponding statement for T f follows from

(4.13).

(b) The linear change of coordinates ad(X) : nLq → ñ sends Schwartz functions to Schwartz functions.

(c) Since h is Schwartz in each of the ñ, nq and n′n−q variables, for each M,N ∈ N there is a constant C1 so

that

|h(exp(u)(X +X ′)| ≤ C1(1 + ||ad(u)(X)||)−M (1 + ||X ′ +
1
2
ad(u)2(X)||)−N .

Therefore,

|Th(X,X ′)| ≤ C1(1 + ||X ′||)−N
∫

nL
q

( 1 + ||X ′||
1 + ||X ′ + 1

2ad(u)2(X)||

)N
(1 + ||ad(u)X||)−M du.

To bound the integrand we use the triangle inequality:

1 + ||X ′|| ≤ 1 + ||X ′ +
1
2
ad(u)2(X)||+ ||1

2
ad(u)2(X)||

≤ (1 + ||X ′ +
1
2
ad(u)2(X)||)(1 + ||1

2
ad(u)2(X)||).

Therefore,

1 + ||X ′||
1 + ||X ′ + 1

2ad(u)2(X)||
≤ 1 +

1
2
||ad(u)||op||ad(u)X||

≤ (1 +
1
2
||ad(u)||op)(1 + ||ad(u)X||)

≤ C2(1 + ||u||)(1 + ||ad(u)X||), by continuity of ad

≤ C3(1 + ||u||)2, by (4.11).

Now choose M = 3N , then

Th(X,X ′) ≤ C3(1 + ||X ′||)−N
∫

nL
n−q

(1 + ||u||)2N (1 + ||u||)−M du

≤ C(1 + ||X ′||)−N .

That Th(X, · ) is Schwartz follows from the same estimate applied to n′n−q-derivatives of h.

�

Let Fq (respectively, F ′
n−q) denote the Fourier transform in the nq-variable (respectively, the n′n−q-

variable).

Proposition 4.16. ([15], [17]) For h ∈ S(n), Y ∈ nq and Y ′ ∈ n′n−q with ∇n−q(Y ′) 6= 0

T ĥ(Y, Y
′) = ∇n−q(Y ′)−qdFq

(
∇q( · )d(n−q)Fn−q(Th)

)
(Y, Y ′).
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Proof. Let h ∈ S(n) and ∇′
n−q(Y

′) 6= 0. Then the following integrals converge by part (a) of Lemma 4.14.

T ĥ(Y,Y
′) =

∫
nL

q

ĥ(exp(u)(Y + Y ′))du

=
∫

nL
q

( ∫
n

h(X)e−2πi〈X,exp(u)(Y+Y ′)〉dX
)
du

=
∫

nL
q

( ∫
nq

∫
nL

q

∫
n′n−q

h(exp(v)(X +X ′))e−2πi〈exp(v)(X+X′),exp(u)(Y+Y ′)〉∇q(X)2d(n−q)dX ′dvdX
)
du.

(4.17)

We would like to switch the order of integration of the X and u variables. The orthogonality relations

ñ ⊥ (nq + n′n−q), ñ ⊥ (nq + n′n−q), n′n−q ⊥ nq and n′n−q ⊥ nq in (4.7) and (4.8) give

〈exp(v)(X +X ′), exp(u)(Y + Y ′)〉 = 〈X ′ +
1
2
ad(v)2(X), Y ′〉+ 〈Y,X〉+

1
2
〈X, ad(u)2(Y ′)〉+ 〈ad(u)(Y ′), ad(v)(X)〉.

Moreover, observe that∣∣ ∫
nL

q

∫
n′n−q

h(exp(v)(X +X ′))e−2πi〈exp(v)(X+X′),exp(u)(Y+Y ′)〉∇q(X)2d(n−q)dX ′dv
∣∣

= ∇q(X)2d(n−q)
∣∣ ∫

nL
q

∫
n′n−q

h(X + ad(v)X +X ′)e−2πi〈X′,Y ′〉e−2πi〈ad(u)Y ′,ad(v)X〉dX ′dv
∣∣

=
∣∣ ∫

ñ

∫
n′n−q

h(X + z +X ′))e−2πi〈Y ′,X′〉e−2πi〈ad(u)Y ′,z〉dX ′∣∣dz,
by applying the change of variables z = −ad(X)(v) and Lemma 3.14,

=
∣∣ ∫

ñ

Fn−q(h(X + z + ·))(Y ′)e−2πi〈ad(u)Y ′,z〉dz
∣∣

= |(FzFn−qh(X + · + · )(ad(u)Y ′, Y ′)|.

Where Fz is the Fourier transform in the ñ variable. Since h is Schwartz in each of the three variables so

are the Fourier transforms. Therefore we may bound the above expression by

C ′(1 + ||X||)−N (1 + ||ad(u)Y ′||)−N ,

which is bounded by

C(1 + ||X||)−N (1 + ||u||)−N

for some C (depending on Y ′) by (4.12). Now Fubini’s Theorem allows us rewrite the expression (4.17):

T ĥ(Y, Y
′) =

=
∫

nq

∇q(X)2d(n−q)
( ∫

nL
q

∫
nL

q

{
∫

n′n−q

h(exp(v − u)(X +X ′))e2πi〈X+X′,exp(u)(Y+Y ′)〉dX ′}dvdu
)
dX =

=
∫

nq

∇q(X)2d(n−q)e2πi〈Y,X〉
( ∫

nL
q

∫
nL

q

{
∫

n′n−q

h(exp(v − u)(X +X ′))e2πi〈X′,Y ′〉e2πi〈X, 12ad(u)2Y ′〉dX ′}dvdu
)
dX =

=
∫

nq

∇q(X)2d(n−q)e2πi〈Y,X〉
( ∫

nL
q

∫
nL

q

φX,Y ′(v − u)e2πi〈X, 12ad(u)2Y ′〉dvdu
)
dX,

where

φX,Y ′(u) =
∫

n′n−q

h(exp(u)(X +X ′)e2πi〈Y ′,X′〉dX ′.
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In order to apply Weil’s formula (Prop. (4.9)) we need to know that for X ∈ Oq(q), φX,Y ′ ∈ S(nLq ). To

check this we apply (4.11):

|φX,Y ′(u)| =
∣∣ ∫

n′n−q

h(X + ad(u)X + (X ′ +
1
2
ad(u)2(X)))e2πi〈Y ′,X′〉dX ′∣∣

=
∣∣ ∫

n′n−q

h(X + ad(u)X +X ′)e2πi〈Y ′,X′− 1
2 ad(u)2(X)〉dX ′∣∣

≤
∫

n′n−q

|h(X + ad(u)X +X ′)|dX ′

≤ C ′
∫

n′n−q

(1 + ||X ′||)−M (1 + ||ad(u)X||)−NdX ′

≤ C(1 + ||u||)−N , by (4.12).

Derivatives in the nLq directions also satisfy this type of estimate since these derivatives are just derivatives

of h times polynomials in X and u.

Now we may apply Prop. 4.9. Suppose ∇′
n−q(Y

′) 6= 0.

T ĥ(Y, Y
′) = ∇n−q(Y ′)−dq

∫
nq

∇q(X)d(n−q)e2πi〈Y,X〉
( ∫

nL
q

∫
n′n−q

h(exp(u)(X +X ′))e2πi〈Y ′,X′〉dX ′du
)
dX

= ∇n−q(Y ′)−dq
∫

nq

∇q(X)d(n−q)e2πi〈Y,X〉
( ∫

n′n−q

∫
nL

q

h(exp(u)(X +X ′))e2πi〈Y ′,X′〉dudX ′
)
dX,

by Fubini’s Theorem (using part (b) of Lemma 4.14),

= ∇n−q(Y ′)−qdFq(∇q(·)d(n−q)Fn−q(Th))(Y, Y ′)

�

Now fix some q satisfying 1 ≤ q ≤ n − 1 and recall that Uq = {X ∈ n : ∇q(πq(X)) 6= 0}, an open set

in n. Let C∞
c (n) be the space of smooth functions on n having compact support. Suppose h ∈ C∞

c and

supp(h) ⊂ Uq. Then h(exp(u)(X +X ′) = h(X + ad(u)X + (X ′ + 1
2ad(u)2X)) is smooth and has compact

support contained in Oq(q)× nLq × n′n−q, by Lemma 3.14. This implies the following lemma.

Lemma 4.18. If h ∈ C∞
c and supp(h) ⊂ Uq then Th ∈ C∞

c (nq × n′n−q). The support of Th is contained in

Oq(q)× n′n−q.

Recall that On = {X ∈ n : ∇(X) 6= 0}.

Lemma 4.19. Let 1 ≤ q ≤ n − 1 and suppose that the support of h is compact and contained in Uq ∩ On.
Then the following hold.

(1) Zn−q(Th(X, · ), s) is a smooth function of compact support in the X-variable.

(2) Zn(h, s) = Zq(∇2d(n−q)
q Zn−q(Th, s), s), as meromorphic functions of s.

Proof. (1) Note that if exp(u)(X +X ′) ∈ Uq ∩ On then ∇n−q(X ′) 6= 0. Therefore

Zn−q(Th(X, ·), s) =
∫

n′n−q

Th(X,X ′)∇n−q(X ′)s dX ′

for all X ∈ nq and all s ∈ C. By differentiating inside the integral we see that Zn−q(Th(X, ·), s) is smooth.

By Lemma (4.18), Zn−q(Th(X, ·), s) is of compact support.
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(2) All integrals below converge for all s ∈ C.

Zn(h,s) =
∫

n

h(X)∇(X)sdX

=
∫

nq

∫
n′n−q

∫
nL

q

h(exp(u)(X +X ′))∇(exp(u)(X +X ′))s∇(X)2d(n−q)dudX ′dX,

by Lemma 3.13,

=
∫

nq

∫
n′n−q

Th(X,X ′)∇q(X)s+2d(n−q)∇n−q(X ′)sdXdX ′

=
∫

nq

Zn−q(Th(X, ·), s)∇q(X)s+2d(n−q)dX

= Zq(∇(·)2d(n−q)Zn−q(Th, s), s).

(4.20)

The last line makes sense by (1). �

Remark 4.21. The following refinement of the above lemma holds and will be used in Section 5. Suppose

that the hypothesis of the lemma is weakened to supp(h) ⊂ Uq. Then for Re(s) � 0

(4.22) Zn(h, s) =
∫

nq

Zn−q(Th(X, ·), s)∇q(X)s+2d(n−q)dX

as in (4.20). By formula (B.1) and meromorphic continuation Zn−q(Th(X, ·), s) has compact support for

s /∈ S (= set of potential poles). Furthermore, formula (B.1) shows that Zn−q(Th(X, ·), s) is defined by an

integral and is smooth in X. Therefore, the integrand in (4.22) is smooth with compact support away from

∇q = 0. Thus, the right hand side of (4.22) is

Zq(∇(·)2d(n−q)Zn−q(Th, s), s)

for all s. Therefore, by meromorphic continuation statement (2) of the lemma holds as meromorphic func-

tions.

We now give the proof of Theorem 4.4. By [22][Thm. 1] there is a functional equation of the form

Z(ĥ, s− m

n
) = βn(s)Z(h,−s), h ∈ S(n)

for some meromorphic function βn. Therefore, to prove the explicit functional equation stated in Prop. 4.4

we need to show

(4.23) βn(s) = π−ns+
m
2

Γn(s)
Γn(−s+ m

n )
.

We proceed by induction on the rank of n. For rank(n) = 1 the the formula (4.23) is contained in Prop.

C.2.

Assume (4.23) holds for all n of rank less than n. It suffices to assume that h ∈ C∞
c (n) and supp(h) ⊂

Uq ∩ On. We may take q = 1. Assume that Re(s) � 0, the integrals below converge.
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Z(ĥ, s−m
n

) =
∫

n

ĥ(Y )∇(Y )s−
m
n dY

=
∫

n1

∫
n′n−1

∫
nL
1

ĥ(exp(u)(Y + Y ′))∇(exp(u)(Y + Y ′))s−
m
n ∇n−1(Y ′)2ddudY ′dY

by Lemma 3.13,

=
∫

n1

∫
n′n−1

T ĥ(Y + Y ′)∇1(Y )s−
m
n ∇n−1(Y ′)s−

m
n +2ddY ′dY

=
∫

n1

∫
n′n−1

F1(∇(·)d(n−1)Fn−1(Th))∇(Y )s−
m
n

1 ∇n−1(Y ′)s−
m
n +ddY ′dY,

by Prop. 4.16,

= Z1

(
F1(∇(·)d(n−1)Zn−1(Fn−1(Th), s−

mn−1

n− 1
), s− m

n

)
,

since the order of integration over n′n−1 and the integral defining F1

may be interchanged by Lemma 4.18,

= β1(s)βn−1(s− (n− 1)d)Z1

(
∇1(·)d(n−1)Zn−1(Th,−s),−(s− m

n
+ e+ 1)

)
= π−ns+

m
2

Γn(s)
Γn(−s+ m

n )
Z1

(
Zn−1(Th,−s),−s+ 2d(n− 1)

)
, by induction and (4.24)

= π−ns+
m
2

Γn(s)
Γn(−s+ m

n )
Zn(h,−s), by Lemma 4.19 (with q = 1).

We have used the following fact, which is an easy calculation.

(4.24)
π

1
2 (−s+(e+1))Γ1(s)

π
s
2 Γ1(−s+ (e+ 1))

π
n−1

2 (−(s−d)+ mn−1
n−1 )Γn−1(s− d)

π
n−1

2 (s−d)Γn−1(−(s− d) + mn−1
n−1 )

=
π

n
2 (−s+ m

n )Γn(s)
π

ns
2 Γn(−s+ m

n )
.

The formula for βn(s) now follows by meromorphic continuation and Theorem 4.4 is proved.

A few important consequences of the Theorem (and proof) follow.

Corollary 4.25. b(s) =
n−1∏
j=0

(s+ jd)(s+ (e− 1) + jd). Therefore the set of potential poles of Z(h, s) is S =

S′ ∪ S′′ = {−jd+ 2l : l ∈ Z+} ∪ {jd− m
n + 2l : l ∈ Z+}.

Proof. Use P (∂Y )f in place of f and −s in place of s in the functional equation. The

Z(P̂ (∂Y )f,− s− m

n
) = Z((2πi)2nP (X)f̂ ,−s− m

n
)

= (−1)n(2π)2nZ(f̂ ,−s+ 2− m

n
)

= (−1)n22nπ
m
2 +n(s) Γn(−s+ 2)

Γn(s− 2 + m
n )

Z(f, s− 2).

Also,

Z(P̂ (∂Y )f,− s− m

n
) = π

m
2 +ns Γn(−s)

Γn(s+ m
n )

Z(P (∂Y )f, s)

= π
m
2 +ns Γn(−s)

Γn(s+ m
n )
b(s)Z(f, s− 2).

Therefore,

b(s) = 22nΓn(s+ m
n )Γn(−s+ 2)

Γn(s− 2 + m
n )Γn(−s)

.
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Now the corollary follows from the formula

Γn(u+ 2)
Γn(u)

=
n−1∏
j=0

u− dj

2
.

�

Corollary 4.26.
1

Γn(s+ m
n )
Z(h, s) is an analytic function of s on the complement of [−(n−1)d,−(e+1)]∩S.

Proof. If Re(s) > −(e + 1) then Z(h, s) is defined by an integral and is therefore analytic in this range.

Applying the functional equation we get analyticity for Re(s) < −(n− 1)d. �

5. Special values of the zeta distributions

In this section we prove Theorem 5.12 which states that the normalized zeta distribution (5.13) is an

entire function of s and at certain special values of s is a quasi-invariant measure on an L-orbit in n.

Recall from (3.7) that a quasi-invariant measure on the L-orbit Oq satisfies∫
Oq

(` · h)(X)dνq(X) = χ(`)q
∫
Oq

h(X)dνq(X)

where (` · h)(X) = h(`−1 ·X). Zeta distributions satisfy the similar homogeneity property

(5.1) Z(` · h, s) = χ(`)
1
d (s+ m

n )Z(h, s).

Lemma 5.2. For h ∈ S(n) the following hold.

(1)
1

Γn(s+ m
n )
Z(h, s)

∣∣∣
s=−m

n

=
π

m
2

Γn(mn )
h(0).

(2) Let x1, . . . , xk be a-root vectors in n. Write H =
∑
Hi (with Hi as in Section 2) and at = exp(tH).

Then

(x1 · · ·xk · δ0)(at · h) = χ(at)−
k

dn (x1 · · ·xk·)δ0(h)

Proof. (1) This follows immediately from the functional equation (4.5), Fourier inversion and the fact that

Z(ĥ, s) is defined at s = 0 by an integral.

1
Γn(s+ m

n )
Z(h,s)

∣∣
s=−m

n

=
π

m
2

Γn(mn )
Z(ĥ, 0)

=
π

m
2

Γn(mn )

∫
n

ĥ(Y ) dY

=
π

m
2

Γn(mn )
h(0).

(2) Observe that ad(H)(xj) = 2xj for each root vector xj . Also note that for any tempered distribution T ,

(xj · T )(` · h) =
(
(Ad(`−1)xj) · T

)
(h), for any ` ∈ L. Thus,

(x1 · · ·xk · δ0)(at · h) = (Ad(a−1
t )x1 · · ·Ad(a−1

t )xk · δ0)(h)

= e−2kt(x1 · · ·xk · δ0)(h)

= χ(at)−
k

dn (x1 · · ·xk · δ0)(h).

�
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At this point we normalize the quasi invariant measures on Oq ⊂ n. Recall that the Lebesgue measures

on n and n, and subspaces nq, n
L
q , etc., are normalized in Section 3 in terms of the inner product 〈 , 〉θ. Let

Cnq =
π

mn−q
2

Γq(dq)Γn−q(
mn−q

n−q )
.

We take νq to be normalized so that

ν0 = Cn0 δ0(5.3) ∫
Oq

F (X) dνq(X) = Cnq

∫
nL

q

∫
nq

F (exp(u) ·X)∇q(X)nd−
mq
q dXdu, for q = 1, 2, . . . , n− 1.(5.4)

.

Proposition 5.5. Let νq be the quasi-invariant measure on Oq, for q = 0, 1, . . . , n − 1. For h a smooth

function of compact support
1

Γn(s+ m
n )
Z(h, s)

∣∣∣
s=−m

n +qd
=

∫
Oq

fdνq.

Proof. Our proof is based on Remark 4.21 and the formula for the quasi-invariant measure given in Cor.

3.11. We proceed by induction on n, the rank of n. If n = 1 the statement is well-known (and follows from

Prop. C.2 or Lemma 5.2 (2)).

Suppose first that h ∈ S(n) and has compact support in

U1 = {X ∈ n : ∇1(π1(X)) 6= 0}

where π1 : n → n1 is the orthogonal projection (with respect to 〈 , 〉θ). Then Remark (4.21) applies (with

q = 1) to give
1

Γn(s+ m
n )
Z(h,s)

∣∣∣
−m

n +qd
=

1
Γ1(s+ m

n )

∫
n1

1
Γn−1(s+ mn−1

n−1 )
Zn−1(Th(X, ·), s)∇1(X)2d(n−1)+s dX

∣∣∣
−m

n +qd

=
1

Γ1(dq)

∫
n1

∫
Oq−1(n−1)

Th(X,X ′) dνn−1
q−1 (X ′)∇1(X)2d(n−1)−m

n +qddX.(5.6)

The last equality follows from the inductive hypothesis (since −m
n +qd = −mn−1

n−1 +(q−1)d). Here, Oq−1(n−1)

is the orbit of Ln−1 in n′n−1 through E2 + · · ·Eq and νn−1
q−1 is the quasi-invariant measure on this orbit.

In order to apply Cor. 3.13 we will use the following temporary notation. (This notation is consistent

with (4.6) with n replaced by nq or nn−1.)

n′n−1,q−1 = n′q,q−1 =
∑

g(εi+εj), 2 ≤ i, j ≤ q

n′Ln−1,q−1 =
∑

g−(εi−εj), 2 ≤ i ≤ q < j ≤ n

nLq,1 =
∑

g−(ε1−εj), 2 ≤ j ≤ q.

Note that

nL1 = (nL1 ∩ nLq )⊕ nLq,1(5.7)

nLq = (nL1 ∩ nLq )⊕ n′Ln−1,q−1.(5.8)

The integration formula of Cor. 3.13 applied to nq is

(5.9)
∫

nq

g(X) dX =
∫

n1

∫
nL

q,1

∫
n′q,q−1

g(exp(u1)(X1 +X2))∇1(X1)2d(q−1) dX1du1dX2.

One more bit of notation used below is that ∇n−1,q−1 is the ∇ function for n′n−1,q−1 = n′q,q−1.



22 L. BARCHINI, M. SEPANSKI, AND R. ZIERAU

Continuing with (5.6) we have

1
Γn(s+ m

n )
Z(h, s)

∣∣∣
−m

n +qd

=
1

Γ1(qd)

∫
n1

Cn−1
q−1

∫
n′Ln−1,q−1

∫
n′n−1,q−1

Th(X, exp(v)X ′)∇n−1,q−1(X ′)d(n−1)−
mq−1
q−1

∇1(X)2d(n−1)−m
n +qd dX ′dvdX by Cor. 3.11

= Cnq

∫
nL
1 ∩nL

q

∫
n′Ln−1,q−1

( ∫
nL

q,1

∫
n1

∫
n′q,q−1

h(exp(u1 + u2)(X + exp(v)X ′))

∇1(X)2d(q−1)∇q(X +X ′)nd−
mq
q dX ′dXdu1

)
dvdu2, by (5.8)

= Cnq

∫
nL

q

∫
nq

h(exp(u)X)∇q(X)nd−
mq
q dXdu, see below for verification(5.10)

=
∫
Oq

h dνq.

To verify (5.10) note that for u1 ∈ nLq,1, u2 ∈ nL1 ∩ nLq , v ∈ n′Ln−1,q−1 and X ∈ n1

(i) Ad(exp(v)−1)u1 = u1 − [v, u1], and [v, u1] ∈ nL1 ∩ nLq ,

(ii) u1 and [v, u1] commute,

(iii) u1 and u2 commute,

(iv) u2, [v, u1] and v mutually commute and

(v) v commutes with X.

Therefore,

exp(u1 + u2)(X + exp(v)X ′) = exp(u2) exp(v) exp(Ad(exp(v)−1)u1)(X +X ′)

= exp(v) exp(u2) exp(u1 − [v, u1])(X +X ′)

= exp(v) exp(u2 − [v, u1]) exp(u1)(X +X ′).

By translation invariance of du2 the line before (5.10) has integrand h(exp(v + u2) exp(u1)(X +X ′)). Now,

line (5.10) follows from (5.8) and (5.9).

We have proved that

(5.11)
1

Γn(s+ m
n )
Z(h, s)

∣∣∣
s=−m

n +qd
=

∫
Oq

h(X)dνq(X)

for smooth functions h having compact support in U1. Now let h have compact support in n \ {0}. Since

each positive dimensional L-orbit in n meets U1, n \ {0} = ∪`∈L` · U1. Therefore, by compactness of the

support of h we may find `1, . . . , `k ∈ L so that supp(h) ⊂ ∪kj=1`j · U1.
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Choose a smooth partition of unity {φj} subordinate to {`j · U1}j=1,...,k. Thus, h =
∑k
j=1 φjh and

supp(`−1
j · (φjh)) ⊂ U1. By (5.1)

1
Γn(s+ m

n )
Z(h, s)

∣∣∣
s=−m

n +qd
=

k∑
j=1

1
Γn(s+ m

n )
Z(φjh, s)

∣∣∣
s=−m

n +qd

=
k∑
j=1

χ(`j)q

Γn(s+ m
n )
Z(`−1

j · φjh, s)
∣∣∣
s=−m

n +qd

=
k∑
j=1

χ(`j)q
∫
Oq

(`−1
j · φjh)(X) dνq(X), by (5.11)

=
k∑
j=1

∫
Oq

(φjh)(X) dνq(X)

=
∫
Oq

h(X) dνq(X)

It now follows that
1

Γn(s+ m
n )
Z(h, s)

∣∣∣
s=−m

n +qd
− νq

is a distribution supported at {0}. Lemma 5.2 shows that no (nonzero) distribution supported at {0} satisfies

the necessary homogeneity property. This concludes the proof. �

The main theorem of this section is the following.

Theorem 5.12. For each h ∈ S(n)

(5.13)
1

Γn(s+ m
n )
Z(h, s)

is an entire function of s and defines a family of tempered distributions. For q = 0, 1, 2, . . . , n− 1
1

Γn(s+ m
n )
Z(h, s)

∣∣∣
s=qd−m

n

= νq.

Proof. In place of (5.13) we consider

(5.14)
1

Γn(s)
Z(h, s− m

n
).

By the general discussion in Appendix B this is an analytic family of tempered distributions for s /∈ S ≡
{jd − 2l} ∪ {jd + (e+ 1)− 2l} with j = 0, 1, . . . , n − 1 and l ∈ Z+. Furthermore, for s outside the interval

[e+ 1, (n− 1)d] (5.14) is analytic by Cor. 4.26. By

Z(∇2kh, s− m
n )

Γn(s)
=

( n−1∏
j=0

k−1∏
l=0

s− jd+ 2l
2

)
·
Z(h, s+ 2k − m

n )
Γn(s+ 2k)

we have
Z(h, s− m

n )
Γn(s)

=
1( ∏n−1

j=0

∏k−1
l=0

s−jd+2l
2

) Z(∇2kh, s− 2k − m
n )

Γn(s− 2k)
.

Choosing k big enough so that s − 2k < e + 1 we see that (5.14) is analytic away from S′ = {jd − 2l}.
Therefore we need only check analyticity at points s in S′ ∩ [e+ 1, (n− 1)d].

By Cor. B.7 all we need to show is that
1

Γn(s)
Z(h, s− m

n
)
∣∣
s=s0

<∞
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for s0 ∈ S ∩ [e+ 1, (n− 1)d] for h ∈ C∞
0 (n). By Prop. 5.5 this is the case when s0 = jd, j = 0, 1, . . . , n− 1

i.e., when
1

Γn(s)
Z(h, s− m

n
)
∣∣
s=jd

= νj .

For d = 1 or 2, S ∩ [e+ 1, (n− 1)d] = {jd : j = 0, 1, . . . , n− 1} ∩ [e+ 1, (n− 1)d] and we are finished.

For d > 2 note that
n−1∏
j=0

k−1∏
l=0

s− jd+ 2l
2

has no multiple roots for k = 1, 2, . . . , d2 (for d even) and k = 1, 2, . . . , d (for d odd). Furthermore, S′ ∩ [e+

1, (n− 1)d] = {jd+ 2k : j = 0, 1, . . . , n− 1 and k = 1, . . . , d2 (or d)}.
Case 1. Suppose d is even and greater than 2. Let k = 0, 1, . . . , d2 . Now consider

Z(∇2kh, s− m
n )

Γn(s)
=

( n−1∏
j=0

k−1∏
l=0

s− jd+ 2l
2

)
·
Z(h, s+ 2k − m

n )
Γn(s+ 2k)

evaluated at s = jd. The left hand side is zero as ∇2kh = 0 on Oj . Since the multiplicities of the zeroes of

the polynomial on the right hand side are one has

Z(h, s+ 2k − m
n )

Γn(s+ 2k)

∣∣∣
s=jd

<∞.

Therefore (5.14) is finite for s ∈ S ∩ [e+ 1, (n− 1)d].

Case 2. When d is odd and greater than 2 the proof is exactly as above except k ranges from 0 to d. �

6. Positivity

Define a family of distributions on n by

(6.1) Rs(h) =
π

n
2 (−s+ m

n )

Γn(−s+ m
n )
Z(h,−s), h ∈ S(n).

The following theorem is mostly a restatement of what has been proved earlier.

Theorem 6.2. For Rs as defined above, the following hold.

(1) Rs is defined by the convergent integral

Rs(h) =
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

∫
n

h(X)∇(X)−s dX

for Re(s) < e+ 1.

(2) Rs is a holomorphic function of s on all of C.

(3) Rm
n

=
π

m
2

Γn(mn )
δ0.

(4) For k = 0, 1, 2, . . . ,

P (∂X)kδ0 =
22nk

π( m
n −2k) n

2
Γn(

m

n
+ 2k)Rm

n +2k.

(5) For q = 0, 1, 2, . . . , n− 1, Rm
n −qd = νq, a χq-quasi-invariant measure on Oq.

(6) For h ∈ C∞
c (n) with supp(h) ⊂ Uq

(6.3) Rs(h) = Rqs+(n−q)d
(
∇(n−q)dRn−qs (Th)

)
.
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Our goal is to see precisely when Rs is a positive distribution in the sense that f ≥ 0 implies Rs(f) ≥ 0.

For a given n we set

Ξn = (−∞, e+ 1) ∪ {m
n
− qd : q = 0, 1, 2, . . . , n− 1}.

By the theorem the distributions Rs are positive if s ∈ Ξn. The following includes a converse.

Theorem 6.4. If Rs is a positive distribution then s ∈ Ξn. The distribution −Rs is never positive.

Proof. By Proposition C.4 the theorem holds for the n = 1 cases. Now assume n > 1 and the statement

holds for n− 1 in place of n.

Case 1. s =
m

n
+ 2k, k = 0, 1, 2, . . .. By Thm. 6.2, part (4)

Rm
n +2k = CkP (∂X)δ0, where Ck is a positive constant.

This is positive if and only if k = 0, i.e., s = m
n ∈ Ξn.

Case 2. s ∈ R \ {mn + 2k : k = 0, 1, 2, . . . }. Recall that Lemma 3.14 provides coordinates φ : Oq(q) × nLq ×
n′n−q → Uq and take q = 1. Define a smooth function h as follows. Choose nonnegative (and not identically

zero) functions

ϕ ∈ C∞
c (n1) with supp(ϕ) ⊂ U1

ψ ∈ C∞
c (nL1 )

ϕ′ ∈ C∞
c (n′1).

Then

h(x) =

{
ϕ(X)ψ(u)ϕ′(X ′), if x = φ(X,u,X ′)
0, if x /∈ image(φ)

defines a nonnegative smooth function on n of compact support with supp(h) ⊂ U1. Furthermore,

(6.5) Th(X,X ′) = cϕ(X)ϕ′(X ′), cψ =
∫
ψ(u)du > 0.

It follows from Thm. 6.2, part (6) that

Rs(h) = cψ R
1
s−(n−1)d(ϕ · ∇

d(n−1)
1 )Rn−1

s (ϕ′).

Since supp(ϕ) is compact and away from {0} (= {X ∈ n1 : ∇1(X) = 0}),

R1
s−(n−1)d(ϕ∇

(n−1)d
1 ) =

π(−s+ m
n ) n

2

Γ1(−s+ m
n )

∫
n1

ϕ(X)∇1(X)−s+2d(n−1) dX

for all s. In particular this is nonzero and has the same sign as Γ1(−s + m
n ). Therefore, there are positive

constants C+(s) so that

Rn−1
s (ϕ′) = C+(s)Γ1(−s+

m

n
)Rs(h).

Now suppose that Rs is a positive distribution. If Γ1(−s + m
n ) > 0 then Rn−1

s (ϕ′) > 0 for all ϕ′ ∈
C∞
c (n′n−1). Therefore, Rn−1

s is a positive distribution, so s ∈ Ξn−1. Therefore, s ∈ Ξn. However, if

Γ1(−s+ m
n ) < 0 then −Rn−1

s is positive which contradicts the inductive hypothesis.

Now suppose −Rs is a positive distribution. When Γ1(−s+m
n ) > 0, −Rn−1

s will be a positive distribution,

a contradiction to the inductive hypothesis. When Γ1(−s + m
n ) < 0, Rn−1

s is a positive distribution, so

s ∈ Ξn−1. However, Γ1(−s+ m
n ) > 0 when s ∈ Ξn−1 (since −s+ m

n > 0 for s ∈ Ξn−1).



26 L. BARCHINI, M. SEPANSKI, AND R. ZIERAU

Case 3. s ∈ C \R. We choose nonnegative functions in a similar manner as above, however the roles of

n1 and nn−1 are switched (that is, we take q = n− 1). Let

ϕ ∈ C∞
c (nn−1) with supp(ϕ) ⊂ On−1(n− 1),

ψ ∈ C∞
c (nLq ) with cψ =

∫
ψ(u)du > 0,

ϕ1, ϕ2 ∈ C∞
c (n1) such that

R1
s(ϕ1)

R1
s(ϕ2)

= αs ∈ C \R.

Note that since ϕ has compact support in On−1(n− 1)

Rn−1
s−d (∇n−1ϕ) =

π
n
2 (−s+ m

n )

Γn−1(−s+ m
n )

∫
nn−1

ϕ(X)∇n−1(X)−s+ddX

for all s ∈ C. Since we are in the case where s ∈ C \ R, Γn−1(−s + m
n ) has no poles. Therefore, cϕ ≡

Rn−1
s−d (∇dn−1 · ϕ) 6= 0.

To see that functions ϕ1 and ϕ2 exist note that the functions ϕ̃1(X ′) = ||X ′||2e−||X′||2 and ϕ̃2(X ′) =

e−||X
′||2 , X ′ ∈ n1 are Schwartz functions so that

R1
s(ϕ̃1)

R1
s(ϕ̃2)

=
1
2
(−s+ e+ 1)

by (C.5). We may take ϕ1 and ϕ2 to be compactly supported functions approximating ϕ̃1 and ϕ̃2 sufficiently

closely.

Again using the coordinates φ : (X,u,X ′) → exp(u)(X + X ′) we define smooth compactly supported

functions by

hi(x) =

{
ϕ(X)ψ(u)ϕi(X ′), if x = φ(X,u,X ′)
0, if x /∈ image(φ)

for i = 1, 2. By Thm. 6.2, part (6) we have

Rs(hi) = cψcϕR
1
s(ϕi).

Now Rs(hi) cannot be positive (or negative) for both i = 1 and i = 2 since

Rs(h1)
Rs(h2)

=
R1
s(ϕ1)

R1
s(ϕ2)

= αs ∈ C \R.

Therefore, ±Rs is not a positive distribution for s ∈ C \R. �

7. Generalized principal series representations

For each s ∈ C there is a normalized principal series representation

IndGP (s) = {ϕ : G→ C |ϕ is smooth and ϕ(gman) = e−(s+ m
n )Λ0(log(a))ϕ(g),man ∈ P = MAN}.

The group G acts by left translation:

(g · ϕ)(g1) = ϕ(g−1g1).

This principal series representation may be realized as smooth functions on n as follows. Write nY ≡ exp(Y )

for Y ∈ n. For ϕ ∈ IndGP (s) set

f(Y ) = ϕ(nY ), Y ∈ n.

Then IndGP (s) may be identified with

I(s) = {f ∈ C∞(n) : f(Y ) = ϕ(nY ), for some ϕ ∈ IndGP (s)}.
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Since NP is dense in G and any g ∈ NP has a unique decomposition as

g = n(g)m(g)a(g)n(g) ∈ NMAN,

the action is given by

(g · f)(Y ) = e−(s+ m
n )Λ0(a(g−1nY ))f(log(n(g−1nY ))).

In particular

(` · f)(Y1) = e−(s+ m
n )Λ0(a(`))f(`−1 · Y1)

(nY · f)(Y1) = f(Y1 − Y ).

For each s with Re(s) > d(n− 1) there is a G-intertwining operator

Ãs : I(s) → I(−s)

which is given by the convergent integral

(Ãsf)(Y ) =
∫

n

ϕ(nY wnY1)dY1.

The form we will use is easily derived from this ([10], pages 183 and 200):

(Ãsf)(Y ) =
∫

n

∇(Y1)s−
m
n f(Y + Y1) dY1

=
∫

n

∇(Y1 − Y )s−
m
n f(Y1) dY1.

The integral converges for Re(s) > d(n− 1) (by Lemma 3.16 and by Lemma 3.15).

Note that the Schwartz space S(n) is contained in I(s) for all s. Also, for each f ∈ I(s) there is a constant

C so that

|f(Y )| ≤ Ce−(Re(s)+ m
n )Λ0(H(nY )),

for all Y ∈ n. In particular,

(7.1) I(s) ⊂ L2(n, e2Re(s)Λ0(H(nY ))dY ).

The intertwining operators Ãs are complex analytic in s for Re(s) > d(n − 1) and have meromorphic

continuations to all of C. This is a well-known general fact (see, for example, [10] and [26]). However one

can see this directly for Schwartz functions as follows.

Ãs(P (∂Y )f)(Y ) =
∫

n

f(Y + Y1)P (∂Y )∇(Y1)s−
m
n dY1 = b(s− m

n
)(Ãs−2f)(Y ),

so the argument of Section 4 applies. Define

As(f) =
π

ns
2

Γn(s)
Ãs(f).

For s ∈ R there is a G-invariant hermitian form on I(s) defined by

(7.2) 〈f1, f2〉 =
∫

n

f1(Y )Asf2(Y )dY.

See [10, Prop. 14.23], for example. Also, there is a well-defined invariant hermitian form on the image of As
in I(−s) given by

(7.3) 〈Asf1, Asf2〉s = 〈f1, f2〉.

Consider Schwartz functions f, f1 and f2 on S(n). Let τY f = f( · + Y ). Then for Re(s) � 0

(Asf)(Y ) =
π

ns
2

Γn(s)
Z(τY f, s−

m

n
),
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by the definitions as integrals. This holds for all s since both sides are meromorphic in s. By Theorem 4.4

(Asf)(Y ) =
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

Z((τY f)̂,−s)
= Rs((τY f) ̂ ).

(7.4)

Therefore, for s� 0

〈Asf1, Asf2〉s =
∫

n

f1(Y )Rs((τY f)̂) dY

=
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

∫
n

∫
n

f1(Y )∇(X)−se2πi〈X,Y 〉f̂2(X) dXdY

=
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

∫
n

∇(X)−sf̂1(X)f̂2(X) dX

= Rs
(
(f1 ∗ f2)̂)

.

Since both sides are real analytic in s we have proved the following proposition.

Proposition 7.5. For s ∈ R and f1, f2 ∈ S(n)

(7.6) 〈Asf1, Asf2〉s = Rs
(
(f1 ∗ f2)̂)

= Rs
(
f̂1f̂2

)
.

Proposition 7.7. When s /∈ Ξn the hermitian form 〈 , 〉s on Im(As) is not positive definite (so the (g,K)-

module of Im(As) is not unitarizable).

Proof. The distribution Rs is positive if and only if the right hand side of (7.6) is positive when f1 = f2. �

Proposition 7.8. ([20, Theorems 4A and 4B]) For G 6= SO(p, q) (case 4 on tables 1 and 2) the principal

series representation I(s) satisfies

(1) I(s) is irreducible and unitarizable for |s| < e+ 1, and

(2) I(s) contains a unitarizable quotient for s = m
n − dq for q = 0, 1, . . . , n− 1.

Remark 7.9. Considering s ≥ 0, the points of possible unitarizability of Im(As) are

Ξn ∩ [0,∞) = [0, e+ 1) ∪ {m
n
− qd : q = 0, 1, . . . , n− 1}

pictured as the following set:

0 e+1
m
nt t t t . . . t t t︸ ︷︷ ︸

d︸ ︷︷ ︸
n− 1 points

8. Unitary Realization

For this section we assume the G 6= SO(p, q) and we consider only s ≥ 0. Consider the image of As in

I(−s). Im(As) is G-invariant and (7.3) defines a G-invariant hermitian form on Im(As). By Prop. 7.8, this

form is positive definite (on the K-finite vectors) for

(8.1) s ∈ Ξn.

For s satisfying (8.1) define

H0
s = Im(As),

a pre-hilbert space with inner product 〈 , 〉s. Let Hs be the completion. Then Hs is a unitary representation

of G.
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Lemma 8.2. As(S(n)) ⊂ Hs is dense.

Proof. We check that As(S(n))⊥ = 0. Suppose that f2 ∈ I(s) and Asf2 ⊥ As(S(n)) i.e., for all f1 ∈ S(n)

0 = 〈Asf1, Asf2〉s =
∫

n

f1(Y )Asf2(Y )dY.

By (7.1)

f1 ∈ L2(n, e2Re(s)Λ0(H(nY ))dY ) and Asf2 ∈ L2(n, e−2Re(s)Λ0(H(nY ))dY ).

Therefore,

0 =
∫

n

(
f1(Y )e−sΛ0(H(nY ))

)(
Asf2(Y )esΛ0(H(nY ))

)
dY,

where the integrand is now written as a product of two functions in L2(n, dY ). Since e−sΛ0(H(nY )) is a power

of a nonzero polynomial {f1(Y )e−sΛ0(H(nY )) : f1 ∈ S(n)} is dense in L2(n, dY ). We now conclude that

Asf2 = 0. The lemma follows from the fact that H0
s is dense in Hs. �

For the unitary realizations of the Is we treat the cases of s ∈ [0, e+1) and s = m
n − qd, d = 0, 1, . . . , n−1

separately because the distributions Rs have very different forms in these two cases.

Case 1: s ∈ [0, e + 1). For s ∈ [0, e + 1), Rm
n −s is given by a convergent integral. Therefore by (7.4) and

Prop. 7.5

Asf(Y ) =
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

∫
n

e−sπi〈X,Y 〉f̂(X)∇(X)−sdX

=
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

(
f̂ ∇( · )−s

)̂(Y )
(8.3)

and

(8.4) 〈Asf1, Asf2〉s =
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

∫
n

f̂1(X)f̂2(X)∇(X)−sdX

for all Schwartz functions f, f1 and f2 on n.

The Schwartz space S(n) has a natural action by P = LN via the Fourier transform as follows. Let ∨

denote the inverse Fourier transform. For h ∈ S(n) define

(p · h)(X) = (p · h∨)̂(X).

Then

(` · h)(X) = e(s−m
n )Λ0(a(`))h(` ·X)

(nY · h)(X) = e−2πi〈X,Y 〉h(X).
(8.5)

Theorem 8.6. For s ∈ [0, e + 1), let dsX =
π

n
2 (−s+ m

n )

Γn(−s+ m
n )

dX. Then Hs is unitarily equivalent to

L2(n,∇(X)−sdsX) as P -representations. This representation is irreducible.

Proof. Temporarily set Vs = As(S(n)). Then

Vs = {
(
h∇(X)−sdX)̂ : h ∈ S(n)}

by (7.4). We have S(n) ⊂ L2(n,∇(X)−sdsX) and Vs ⊂ Hs as dense subspaces (by Lemma 8.2). Consider

T : S(n) → Vs
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defined by

T (h) =
(
h · ∇( · )−s

)̂.
We will check that T is an isometry onto a dense subset of Hs and is P -equivariant, then T will extend to a

unitary equivalence of unitary P -representations.

Let h ∈ S(n).

〈T (h), T (h)〉s = 〈As(h∨), As(h∨)〉s, by (8.3)

=
∫

n

|h(X)|2∇(X)−sdsX, by (8.4).

(Note that Rs is given by a convergent integral for s ∈ [0, e+ 1).) The equivariance follows easily:

T (p · h) = T ((p · h∨)̂) = As(p · h∨) = p ·As(h∨) = p · T (h).

The irreducibility is a standard application of Schur’s Lemma as follows. Any N -intertwining operator of

L2(n,∇(X)−sdsX) must be multiplication by a bounded function. Transitivity (up to measure zero) of L on

n shows that if the operator is also L-intertwining then the bounded function must be a constant (a.e.). �

Corollary 8.7. The P -representation L2(n,∇(X)−sdsX) extends to an irreducible unitary representation

of G.

Case 2: s = m
n − qd, q = 0, 1, . . . , n− 1. Define

FR(f) = f̂ |Oq
, for f ∈ S(n)

and

FE(h) =
(
h dνq

)̂, for h ∈ FRS(n).

Then by (7.4) and (7.6)

As(f) = FEFR(f), f ∈ S(n),(8.8)

and

〈Asf1, Asf2〉s =
∫
Oq

f̂1f̂2dνq.(8.9)

As in Case 1, we may define a P -action on L2(Oq, dνq) via the Fourier transform. Letting h ∈ L2(Oq, dνq)
and s = m

n − dq we define

(` · h)(X) = e−dqΛ0(a(`))h(`−1 ·X) = χd(`)−
1
2h(`−1 ·X)

(nY · h)(X) = e−2πi〈X,Y 〉h(X).

Lemma 8.10. Let q = 0, 1, . . . , n− 1.

(1) L2(Oq, dνq) is an irreducible unitary representation of P .

(2) FR : S(n) → L2(Oq, dνq) is P -equivariant and has dense image.
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Proof. For unitarity note that ||nY · h||2Oq
= ||h||2 is clear from (8.5) and

||` · h||2Oq
=

∫
Oq

||` · h||2dνq

=
∫
Oq

||χd(`)−
1
2h(`−1 ·X||2dνq(X)

=
∫
Oq

||h(X)||2dνq(X), by Cor. 3.7.

Irreducibility is as in the proof of Theorem 8.6. The P -equivariance of FR is also as in the proof of Theorem

8.6. The image of FR is dense by irreducibility of L2(Oq, dνq). �

Theorem 8.11. FE extends to a P -equivariant unitary equivalence between L2(Oq, dνq) and Hm
n −qd, q =

0, 1, . . . , n− 1.

Proof. FE : FR(S(n)) → H0
m
n −qd

is an isometry by (8.8) and (8.9). By part (2) of Lemma 8.10, FE extends

to a unitary equivalence of L2(Oq, dνq) and Hm
n −dq = H0

m
n −dq

. We now check the P -equivariance of FE on

FR(S(n)). Let h = FR(f) ∈ FR(S(n)).

FE(p · h) = FE(p · FRf) = FEFR(p · f)As(p · f) = p ·Asf = FE(FRf) = FE(h).

�

Corollary 8.12. The P -representations L2(Oq, dνq) extend to irreducible unitary representations of G.

Appendix A. Tables

The following two tables give information on the groups under consideration in this paper.

G n = rank(n) m = dim(n) d e
1. GL(2n,R), n ≥ 2 n n2 1 0
2. O(2n, 2n), n ≥ 2 n n(2n− 1) 2 0
3. E7(7) 3 27 4 0
4. O(p, q), p, q ≥ 3 2 p+ q − 2 (p+ q − 4)/2 0
5. Sp(n,C) n n(n+ 1) 1 1
6. SL(2n,C) n 2n2 2 1
7. SO(4n,C) n 2n(2n− 1) 4 1
8. E7,C 3 54 8 1
9. SO(p,C) 2 2(p− 2) p− 4 1
10. Sp(n, n) n n(2n+ 1) 2 2
11. SL(2n,H) n 4n2 4 3
12. SO(p, 1) 1 p 0 p− 1

Table 1
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V ' n L ∇
1. M(n× n,R) GL(n,R)×GL(n,R) |det |
2. Skew(2n : R) GL(2n, R) Pfaffian
3. Herm(3,Osplit) E6(6)×R× degree 3 real polynomial
4. Rp−1,q−1 R×SO(p− 1, q − 1) (X,X)
5. Sym(n,C) GL(n : C) |det |
6. M(n× n,C) S(GL(n,C)×GL(n,C)) |det |
7. Skew(2n,C) GL(2n,C) |Pfaffian|
8. Herm(3,O)C E6,CC× |degree 3 complex poly|
9. Cp−1 O(p− 2 : C)×C× |(Z,Z)|
10. Sym(2n,C) ∩M(n× n,H) GL(n,H) |detC(Z)| 12
11. M(n× n,H) GL(n,H)×GL(n,H) |detC(Z)| 12
12. Rp,1 O(p− 1)×R× || · ||

Table 2. Jordan algebras for the groups in Table 1.

Remark A.1. For Cases 10 and 11 we view the quaternionic matrices as complex matrices of the form

Z =
(
A B
−B A

)
. Then detC refers to the determinant of the complex matrix.

Appendix B. Meromorphic families of distributions

We give a few (well-known) general facts about meromorphic families of distributions. Suppose m(x)

is a positive polynomial of degree m on Rn with Bernstein polynomial b(s) defined by m(∂x)m(x)
s
2 =

b(s)m(x)
s
2−1. Let {αj} be the roots of b(s) and set S = {αj − 2l : l ∈ Z+}. Define, for h ∈ S(Rn),

Ts(h) =
∫
Rn

h(x)m(x)
s
2 dx,

a convergent integral for Re(s) > 0. For Re(s) > 0, Ts(h) is a complex analytic function of s. From the

formula

(B.1) Ts(h) =
1

b(s+ 2)b(s+ 4) · · · b(s+ 2k)
Ts+k(m(∂x)kh(x))

it follows that Ts(h) has a meromorphic continuation to all of C with possible poles in S.

Lemma B.2. Consider the Laurent expansion of Ts(h) for an arbitrary s0 ∈ C:

Ts(h) =
∞∑

m≥−d

Tm(h)(s− s0)m

for some d = 0, 1, 2, . . . . Then each Tm is a tempered distribution.

Proof. Let N ∈ Z+ and let || · ||N be the Schwartz norm

||h||N = sup{(1 + |x|)N |h(x)|}.

In particular, |h(x)| ≤ ||h||N (1 + |x|)−N for all x ∈ Rn. Choose a constant C ′ so that

|m(x)| ≤ C ′(1 + |x|)M , x ∈ RN .

Therefore,

|h(x)m(x)
s
2 | ≤ C ′||h||N (1 + |x|)−(N−Re( s

2 )M) for Res > 0.
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For any s1 with Re(s1) > 0 we may choose a neighborhood Uδ = {s : |Re(s) − Re(s1)| < δ} in the right

half-plane so that N − Re( s2 )M ≥ n+ 1, for all s ∈ Uδ. Therefore, for s ∈ Uδ

(B.3) |h(x)m(x)
s
2 | ≤ C ′||h||N (1 + |x|)−(n+1)

and

(B.4) |Ts(h)| ≤ C ′||h||N
( ∫

RN

(1 + |x|)−(n+1) dx
)

= C||h||N .

Therefore, Ts is a tempered distribution for Re(s) > 0. Furthermore, there is a convergent power series

expansion Ts(h) =
∑∞
m=0 T

m(h)(s− s1)m. We see that each Tm is a tempered distribution as follows. Let

hj → h in S(Rn). Then by (B.4) Ts(hj) → Ts(h) uniformly on compact sets (in the right half-plane).

Therefore, Tm(hj) → Tm(h) (as the coefficients in the expansion are derivatives of Ts(h)).

Now consider an arbitrary s1 ∈ C. Choose k in (B.1) large enough so that Re(s1) + k > 0. Write

b(s+ 2) · · · b(s+ 2k) = b1(s)(s− s1)d with b1(s1) 6= 0 and d a nonnegative integer. Then

Ts(h) =
1

b1(s)
1

(s− s1)d
Ts+k(m(∂x)h(x)).

Expanding Ts+k about s1 + k (as above) gives

Ts(h) =
1

b1(s)
1

(s− s1)d

∞∑
m=0

Tm(m(∂x)h(x))(s− s1)m(B.5)

=
1

b1(s)

∞∑
m=−d

Tm+d(m(∂x)h(x))(s− s1)m.(B.6)

As each Tm in (B.5) is tempered the Lemma is proved. �

Now suppose g(s) is an entire function and set T̃s(h) = g(s)Ts(h) for each h ∈ S(n). By the above Lemma

T̃s is a meromorphic family of tempered distributions and we may write

T̃s(h) = g1(s)
∑

m≥−d1

Tm(h)(s− s1)m

where g(s) = g1(s)(s− s1)d1 , g1(s1) 6= 0.

Corollary B.7. Suppose s1 is a possible pole of T̃s(h), for some h ∈ S(Rn). If T̃s1(h) < ∞ for all

h ∈ C∞
0 (Rn) (=compactly supported functions) then T̃s1(h) is finite for all h ∈ S(Rn) and defines a tempered

distribution.

Proof. If T̃s1(h) < ∞ for all h ∈ C∞
0 (Rn) then Tm(h) = 0 for all m = −1,−2, . . . ,−d1 and h ∈ C∞

0 (Rn).

As each Tm is tempered, Tm(h) = 0 for all m = −1,−2, . . . ,−d1 and h ∈ S(Rn). Now

Ts1(h) = g1(s1)T 0(h),

a tempered distribution. �

Appendix C. Rank one case

Many of the arguments given in this article use induction on the rank of n. In this appendix we collect

the facts about the rank one case which are used. First we make some observations about the Lie algebras

g1 and n1, when g is on Table 1.
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Recall that g1 is the Lie algebra generated by the root spaces for ±2ε1. This is a simple Lie algebra and,

although g1 does not in general satisfy 2.1, the integer e + 1 (the dimension of the root space for the long

root) is the same as for g. From Table 1 we see that g1 is

gl(2,R) in cases 1-4,

sl(2,C) in cases 5-9,

sp(1, 1) in case 10,

sl(2,H) in case 11 and

so(p, 1) in case 12.

Note that dim(n1) = e+ 1. The following lemma computes ∇(X) and ∇(Y ) for each g1. We express ∇ and

∇ in terms of 〈 , 〉 = − 1
4mBg.

Lemma C.1. Suppose that n has rank 1. Then ∇(X) = ||X|| and ∇(Y ) = ||Y ||.

Proof. It is enough to compute just ∇(Y ) = ||Y || since for X = θ(Y ), ||X||2 = 〈θ(X), X〉 = 〈Y, θ(Y )〉 =

||Y ||2. We do a case-by-case calculation. The cases of sl(2,R) and sl(2,C) may be done simultaneously.

Here

n =
{
Y =

(
0 0
y 0

) }
with y ∈ R or C

and n = θ(n). Also

a =
{ (

a 0
0 −a

)
: a ∈ R

}
,

and the Weyl group element is represented by

w =
(

0 1
−1 0

)
.

We need to compute ∇(Y ) = eε1(a(wnY )). Consider the standard representation on C2 with the usual

hermitian metric ( , ). Then

eε1(a(wnY )) =
∣∣∣∣( (

1
0

)
, wnY ·

(
1
0

) )∣∣∣∣
=

∣∣∣∣( (
1
0

)
,

(
y 1
−1 0

) (
1
0

) )∣∣∣∣
= |y|.

Now we need to compare |y| with ||Y ||. Since 1
4mB(ξ, η) = Re(Tr(ξη) we have ||Y ||2 = Tr(Y

t
Y ) = |y|2.

Therefore, ∇(Y ) = ||Y ||. The other cases are done similarly. �

For the cases when n is of rank one, the functional equation is simply a statement about the distribution

|x|−1 in euclidean space Rm and is well-known. A good reference is [8, vol. 1, Ch. II.3].

Proposition C.2. Consider Rm for any integer m and f ∈ S(Rm). With Fourier transform defined by

f̂(y) =
∫
Rm

f(x)e−2πi〈y,x〉dx,

the functional equation takes the form

(C.3)
π

m−s
2

Γ(m−s2 )

∫
Rm

f(x)|x|−sdx =
π

s
2

Γ( s2 )

∫
Rm

f̂(y)|y|s−mdy.

The following Proposition is also well-known, see for example [8, vol 4, Ch. II.3.6]. We give a short proof

here since our proof of Theorem 6.4 refers to formula (C.5) occurring below.
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Proposition C.4. The distributions R1
s(f) =

π
−s+m

2

Γ( s2 )
|x|−s are positive if and only if s ≤ m.

Proof. When s < m the function |x|−s is a locally L1 positive function (and Γ(−s+m2 ) > 0) so the distribution

is clearly positive. For s = m, R1
m = π

m
2

Γ( m
2 ) · δ0, a positive distribution.

To see that R1
s is not positive for s ∈ C \ (−∞,m] consider the positive Schwartz functions

ϕ1(x) = |x|2e−|x|
2

and ϕ2(x) = e−|x|
2
.

We claim that

R1
s(ϕ1) =

1
4
π
−s+m

2 Vol(Sm−1) · (−s+m)

R1
s(ϕ2) =

1
2
π
−s+m

2 Vol(Sm−1).

Then

(C.5)
R1
s(ϕ1)

R1
s(ϕ2)

=
−s+m

2
,

so both R1
s(ϕi), i = 1, 2 cannot be positive for s ∈ C \ (−∞,m).

By analytic continuation it suffices to check the claim for s� 0.

R1
s(ϕ1) =

π
−s+m

2

Γ(−s+m2 )

∫
Rm

e−|x|
2
|x|−s+2dx

=
π
−s+m

2

Γ(−s+m2 )

∫
Sm−1

∫ ∞

0

e−r
2
r−s+m+1drdσ

=
π
−s+m

2

Γ(−s+m2 )
Vol(Sm−1)

∫ ∞

0

e−tt
−s+m+1

2
dt

2
√
t
dt

=
1
2
π
−s+m

2 Vol(Sm−1)
Γ(−s+m2 + 1)

Γ(−s+m2 )
=

1
4
π
−s+m

2 Vol(Sm−1) · (−s+m).

The second part of the claim has a similar proof. �
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