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Abstract. For G = SL(n,R) and K = SO(n) Akhiezer and Gindikin explicitly determine a G-invariant
Stein extension A of G/K in GC/KC. We give several other descriptions of A. In terms of the geometry of

an arbitrary flag variety for GC, A is described as the ‘polar set’ of the closed G-orbit. A is also the space of
‘linear cycles’ in an arbitrary open G-orbit. We also see that A is a domain of holomorphy for Szegö kernels
associated to interesting irreducible representations of G.

1. Introduction

A theorem of Grauert states that a real analytic manifold M has a Stein extension MC, that is, M is a
totally real submanifold of a Stein manifold MC. If a group G acts on M it is natural to ask for a G-invariant
Stein extension. In [1] this question is addressed for M = G/K, a Riemanian symmetric space. Given the
rich structure and function theory of G/K this is a particularly important example.

For G = SL(n; R) Akhiezer and Gindikin explicitly determine a G-invariant Stein extension A ⊂ GC/KC

(see Def. 2.9 below). In this article we give two different (and in a sense dual) descriptions of A and explore
certain G-invariant spaces of functions on G/K. More precisely, let Z be a flag variety for GC = SL(n; C).
Let D (resp. O) be an open G (resp. KC = SO(n; C)) orbit in Z and Y (resp. X0) the dual KC (resp. G)
orbit. (See Def. 2.5 for slightly more precise definitions.) We show that A coincides with the following two
open domains in GC/KC:

M : connected component of {gKC : gY ⊂ D}, and

X̂0 : connected component of {gKC : g−1X0 ⊂ O}.

M is the linear cycle space ([7]), a family of maximal compact complex subvarieties of D. This provides
a natural setting for a holomorphic double fibration and corresponding ‘Penrose’ transform. On the other
hand, X̂0 seems to be closely related to Szegö kernels. This is made explicit in Theorem 5.9 where we
consider the Speh representations realized as spaces of smooth sections on G/K via Szegö maps. Our main
result is that the Szegö kernels extend holomorphically to X̂0(= A), thus providing a realization of the Speh
representations in a holomorphic setting. Furthermore, X̂0 is a domain of holomorphy for the Szegö kernels.

The method of extending representaions is used in [4] to study automorphic forms for SL(2; R). Extensions
of Szegö kernels for discrete series representations for SU(p, q) are studied in [2]. The linear cycle space M
is determined in [5] by very different methods.

2. Geometry of the flag variety

Let G = SL(n; R), K = SO(n) and Z an arbitrary flag variety for GC = SL(n; C). The group K = SO(n)
is defined as the group of isometries of Rn with respect to the standard inner product (v, w) =

∑n
j=1 vjwj ,

having determinant 1. The complexification ofK isKC = SO(n; C), the isometry group of the nondegenerate
symmetric form ( , ) on Cn which is given by the same formula. We will also assume that n ≥ 2. Later
we will restrict to the case of n an even integer, however the results of this section hold for any n ≥ 3.
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The flag varieties for GC may be described as follows. Let m̃ = (m1, . . . ,mk) with mj ∈ Z and 0 < m1 <

m2 < · · · < mk < n and set

Zm̃ = {(z1, . . . , zk) : z1 ⊂ · · · ⊂ zk ⊂ Cn and dim(zj) = mj , for all j = 1, . . . , k}.

Definition 2.1. For 0 < l,m < n set

(2.2) d(l,m) =

{
0, if l +m ≤ n,
l +m− n, if l +m > n.

and

(2.3) e(l,m) =

{
l, if l +m ≤ n,
n−m, if l +m > n.

The following is straightforward.

Lemma 2.4. Suppose w, z ⊂ Cn.

(a) d(l,m) = min{dim(w ∩ z) : dim(w) = l and dim(z) = m},
(b) e(l,m) = max{dim(w ∩ z⊥) : dim(w) = l and dim(z) = m}1,
(c) d(l,m) + e(l,m) = l.

Definition 2.5. We define the following subsets of Zm̃:

D = {z ∈ Zm̃ : dim(zi ∩ zj) = d(mi,mj), all i, j}, (the maximally complex flags),

X0 = {z ∈ Zm̃ : zj = zj , all j}, (the real flags),

Y = {z ∈ Zm̃ : dim(zi ∩ z⊥j ) = e(mi,mj), all i, j}, (the maximally isotropic flags),

O = {z ∈ Zm̃ : zj ∩ z⊥j = {0}, all j}, (the nondegenerate flags).

The following proposition is well known and easily verified.

Proposition 2.6. With m̃ = (m1, . . . ,mk) as above, Zm̃ is a flag variety for GC and all flag varieties are
equivalent to some Zm̃.

(a) If mj 6= n
2 for all j then, D is the unique open G-orbit in Zm̃. If mj = n

2 for some j then, D splits
into two orbits, which we call D+ and D−.

(b) The unique closed G-orbit is X0.
(c) If mj 6= n

2 for all j then, Y is the unique closed KC-orbit in Zm̃. If mj = n
2 for some j then, Y

splits into two orbits, which we call Y+ and Y−.
(d) The unique open KC-orbit is O.

The affine space GC/KC may be described as the space of all unimodular symmetric bilinear forms on
Cn. The action of G is given by (g · b)(v, w) = b(g−1v, g−1w) and the stabilizer of ( , ) is KC. We write
bg for g · b. Note that if we choose the standard basis of Cn, then GC/KC is identified with the space of
complex symmetric n× n matrices of determinant one. In particular bg is identified with gt

−1
g−1.

Definition 2.7. For each Zm̃ define subsets of GC/KC:

(a) M is the connected component containing eKC of M′ = {gKC : gY ⊂ D}.
(b) X̂0 is the connected component containing eKC of X̂0

′
= {gKC : g−1X0 ⊂ O}.

Note that since Y ⊂ D and X0 ⊂ O the symmetric space G/K = G · eKC is contained inM,M′, X̂0 and
X̂0

′
. We will see that these four sets are open in GC/KC, so they are complex extensions of G/K.

There is a (real) parabolic subgroup P = MAN of G so that X0 = G/P = K/K ∩M and Zm̃ = GC/PC.
From the definition of X̂0 we have the following lemma.

Lemma 2.8. gKC ∈ X̂0 if and only if g−1k ∈ KCMCACNC, for all k ∈ K.

1z⊥ is the subspace of Cn orthogonal to z with respect to ( , ).
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In this case we say that g−1k has a complex Iwasawa decomposition. Unlike the Iwasawa decomposition for
a real group, not every element of GC has a complex Iwasawa decomposition, and for those that do the
uniqueness which holds in the real case fails.

For the remainder of this section we will determine the structure ofM and X̂0 for arbitrary flag varieties.
We will see that M and X̂0 are open and Stein in GC/KC, are independent of the flag variety for GC and
are equal to each other.

Definition 2.9. Let A′ ⊂ GC/KC be the space of unimodular symmetric forms having no isotropic vector
in Rn. Let A be the connected component containing the form ( , ).

Remark 2.10. In [1], for an arbitrary simple Lie group G, a complex extension of G/K in GC/KC is defined
and conjectured to be Stein. This set is defined as the maximal G-invariant domain in GC/KC containing
G/K on which the action of G is proper. They show that for G = SL(n; R), n ≥ 3, it coincides with A.

Theorem 2.11. For any flag variety Zm̃, X̂0 = A.

Proof. It suffices to show that X̂0

′
= A′. Suppose that gKC /∈ X̂0

′
, i.e., bg is degenerate on some real

subspace of dimension mj (some j). Then bg has a real isotropic vector.
Now suppose that bg has a real isotropic vector v0. The subspace of Rn perpendicular to v0 with respect to

both the real and imaginary parts of bg has (real) dimension at least n−2. Thus for each m = 1, 2, . . . , n−1
there is a subspace E ⊂ Rn of dimension m containing v0 and so that bg(v0, v) = 0 for all v ∈ E. Applying
this to m = mk and setting zk = EC, we see that zk is degenerate for bg. Now zk belongs to some real flag
z = (z1 ⊂ · · · ⊂ zk). However, g−1z /∈ O. �

Theorem 2.12. For any flag variety Zm̃, M = A.

Proof. It suffices to prove that M′ = A′. In order to prove this for an arbitrary flag variety it is simpler to
consider separately the full flag variety (m̃ = (m1, . . . ,mn−1)) and the flag variety corresponding to maximal
parabolic subgroups (m̃ = (m)). Denote (temporarily) the two M’s by M′full and M′max. Since there is a
fibration of the full flag variety over any other and a fibration of any flag variety over one of the flag varieties
corresponding to the maximal parabolic theM for an arbitrary flag variety Z satisfiesM′full ⊂M′ ⊂M′max.
It therefore suffices to show that A′ ⊂M′full and M′max ⊂ A′.

We first show A′ ⊂ M′full. Suppose that gKC /∈ M′full, so gY 6⊂ D. There is a flag z = (zj) ∈ Y so that
for some i0, j0, dim(gzi0 ∩ gzj0) > d(i0, j0). We may assume i0 < j0, i.e., zi0 ⊂ zj0 . Now z is maximally
isotropic means that gz is maximally isotropic for bg, i.e., dim(gzi0 ∩ (gzj0)⊥g ) = e(i0, j0), where ⊥g refers
to orthogonality with respect to bg. Therefore, by part (c) of Lemma 2.4, gzi0 ∩ gzj0 meets gzi0 ∩ (gzj0)⊥g

in at least one dimension. We have {0} 6= gzi0 ∩ gzj0 ∩ (gzj0)⊥g ⊂ gzj0 ∩ gzj0 ∩ (gzj0)⊥g , so bg has a real
isotropic vector.

Now consider Z(m), the Grassmannian of all m-planes in Cn. Suppose bg /∈ A′. Let v0 ∈ Rn be a real
isotropic vector for bg. There is a w0 ∈ Cn so that bg(v0, w0) = 1. Set U = (span{v0, w0})⊥. Then bg is
nondegenerate on U and we may choose an m−1 dimensional subspace u ⊂ U which is maximally isotropic.
Set z = g−1(Cv0 + u), a maximally isotropic m-dimensional subspace. Now

dim(gz ∩ gz) = dim((Cv0 + u) ∩ (Cv0 + u)) ≥ 1 + d(m,m).

So gz 6⊂ D, i.e., gKC /∈M′max. �

Corollary 2.13. X̂0 =M = A is a Stein extension of GC/KC.

Proof. A′ is an affine space with the hyperplanes Hv = {bg : bg(v, v) = 0}, v ∈ Rn, removed. Therefore, as
noted in [1], A′ and its connected component A are Stein. �
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As we have definedM in Definition 2.5,M is the linear cycle space (see [7] for the definition) in the cases
where D is the unique open G-orbit in Zm̃, i.e., when mj 6= n

2 for all j. The following proposition shows
that in factM is the linear cycle space for all open orbits in all Zm̃. The right-hand side of equation 2.15 is
the definition of the linear cycle space.

Proposition 2.14. Let n ≥ 4. Suppose mj = n
2 for some j. Let D± be the two open G-orbits and Y± the

two closed KC-orbits in Zm̃ as in 2.6. Then

M′ =M′± ≡ {gKC : gY± ⊂ D±}, and,

M =M± ≡ the connected component of M± containing eKC.(2.15)

Proof. Write Y± = KC(z±) ⊂ D± = G(z±). The action of G on Z extends to an action of G′ ≡ GL(n; R)
which is transitive on D. Since D is not connected stabG′(z±) ⊂ G. In fact (for properly chosen z±) there
is w0 ∈ O(n) so that z+ = w0 · z−. If gY ⊂ D then either gz+ ∈ D+ or gz+ ∈ D−. In the first case, by the
connectedness of Y+ and the disconnectedness of D, gY+ ⊂ D+. In the second case gY+ ⊂ D−. However
gY+ ⊂ D− cannot happen since gz+ = g′w0z+ for some g′ ∈ G, i.e., g−1g′w0 /∈ G. Therefore M′ ⊂M′±.

As in the proof of Theorem 2.12,M′± ⊂M′ will follow fromM′max,± ⊂M′(= A′). Thus we may assume
our flag variety is Z(n), the Grassmannian of n planes in C2n. For gKC /∈ A′ there is a real vector v0 so that
bg(v0, v0) = 0. One constructs z as in the proof of Theorem 2.12 above, however since n ≥ 2 we may choose
z to be in either of Y±. Now gY± 6⊂ D, gY± 6⊂ D±. �

3. Parameters for the Speh representations

In this section we set G = SL(2n; R) and describe parameters for the Speh representations of G. It is
slightly more convenient to first describe the parameters for certain representations of G′ = GL+(2n; R),
the group of invertible linear transformations with positive determinant. The Speh representations will be
the restrictions to G.

The maximal compact subgroup of G′ is K ′ = SO(2n). The Lie algebra g′ contains a fundamental Cartan
subalgebra t0 + a′0 having blocks (

aj θj
−θj aj

)
down the diagonal. Setting

ej


a1 θ1

−θ1 a1

. . .
an θn
−θn an

 =
√
−1θj and fj


a1 θ1

−θ1 a1

. . .
an θn
−θn an

 = aj

the roots are

∆(t + a′, g′) = {±(ej ± ek)± (fj − fk) : j 6= k} ∪ {±2ej}.

A θ-stable parabolic subgroup Q = HU is defined by λ0 ≡
∑n
j=1 ej ;

q = h + u,

∆(h, t + a′) = {α : 〈α, λ0〉 = 0} and,

∆(q, t + a′) = {α : 〈α, λ0〉 > 0}.

In the terminology of [6], there is a family of representationsAq(mλ0), m ∈ Z. We let πm be the restrictions
of the Aq(mλ0), m ∈ Z, to g. Then for m ≥ −n, πm is an irreducible, unitarizable representation with lowest
K-type E of highest weight µ = (m+ n+ 1)λ0. See, for example, [6], pages 586-8.
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The Langlands parameters of the πm may be determined as on pages 764-5 of [6]. Write a0 = a′0 ∩ g. A
real parabolic subgroup P = MAN of G is determined by

A = exp(a0),MA = ZG(a) and Σ(n0, a0) = {fj − fk : j < k}.

Therefore, MA consists of 2 times2 blocks down the diagonal and we may take

M = {g ∈ (SL±(2; R))n : det(g) = 1} and,

Me = (SL(2; R))n (the identity component).

Let

ν =
n∑
j=1

(n− 2j + 1)fj ∈ a∗.

Write χm for the character of (SO(2))n = Me∩K with differential (m+n+ 1)λ0 and let δMe
be the discrete

series representation of Me with minimal Me ∩K-type χm. Let

δM = IndMMe
(δMe

).

Then πm occurs as the unique irreducible quotient of the normalized principal series representation

IndGP (δM ⊗ ν) = {ψ :G→W : ψ is smooth and

ψ(gman) = e−(ν+ρ)(a)δM (m−1)ψ(g), for man ∈MAN, g ∈ G}.

In Section 4 we will use the fact that δMe may be realized on a space of smooth sections of the homogeneous
vector bundle on Me/Me ∩K corresponding to χm.

4. The Szegö map

We begin this section with an arbitrary connected semisimple Lie group G and a parabolic subgroup
P = MAN . We choose a Cartan involution θ, giving us a Cartan decomposition g = k + s of the Lie algebra
of G.

Let (δM ,W ) be a representation ofM and ν ∈ a∗. Suppose that (τ, E) is aK-type of a normalized principal
series representation IndGP (δM ⊗ ν). Let E → G/K be the homogeneous vector bundle corresponding to E
and C∞(G/K, E) the space of smooth sections. We construct non-zero G-intertwining maps

(4.1) S : IndGP (δM ⊗ ν)→ C∞(G/K, E)

as follows. Since IndGP (δM ⊗ ν)|K ∼= ⊕µ∈K̂Eµ ⊗ HomM∩K(Eµ,W ), E is a K-type if and only if there exists
a non-zero T ∈ HomM∩K(Eµ,W ). Choosing such a T , the adjoint T ∗ gives an intertwining operator S as in
(4.1) defined by

(4.2) (Sψ)(g) =
∫
K

τ(k)T ∗(ψ(gk))dk.

This may be rewritten in terms of a kernel operator by using the Iwasawa decomposition and a standard
integration formula. The Iwasawa decomposition with respect to P = MAN is the smooth (unique) decom-
position

(4.3) g = κ(g)m(g) exp(H(g))n(g)

where κ(g) ∈ K,m(g) ∈ exp(m ∩ s),H(g) ∈ a and n(g) ∈ N . The integration formula for the change of
variables k → κ(g−1k) gives

(4.4) (Sψ)(g) =
∫
K

e(ν−ρ)H(g−1k)τ(κ(g−1k))T ∗(m(g−1k)ψ(k))dk.
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Therefore S is defined by integrating against a kernel:

s : G×K → HomM∩K(W,E)

s(g, k)(w) = e(ν−ρ)H(g−1k)τ(κ(g−1k))T ∗(m(g−1k)w).

We call S a Szegö map and s the Szegö kernel.

Remark 4.5. s( , k) is a section of E → G/K. We will want to extend s( , k) holomorphically to a domain
in GC/KC. For this we note that E extends to a holomorphic representation of KC defining a holomorphic
homogeneous vector bundle EC → GC/KC. Thus, more precisely, we want to extend sections in C∞(G/K, E)
to holomorphic sections of EC → GC/KC defined on some domain in GC/KC.

A useful variant of the above construction is as follows. We note that if δM = IndMMe
(δMe

), as is the case
for the representations in Section 3 (and nearly the case for all Langlands parameters) then the Szegö maps
may be defined as follows. For T ∈ HomMe∩K(δMe

, E)

S : IndGMeAN (δMe
⊗ ν)→ C∞(G/K, E)

(Sψ)(g) =
∫
K

e(ν−ρ)H(g−1k)τ(κ(g−1k))T ∗(m(g−1k)ψ(k))dk.

For us this will be useful since the realization of δMe is slightly simpler than that of δM .
Specialize to G = SL(2n,R) and let πm, δM , ν, etc. be as in Section 3. We assume m ≥ −n.

Proposition 4.6. The image of S is an irreducible subrepresentation of C∞(G/K, E).

Proof. This is a consequence of several general facts contained in [3]. First, πm occurs as a representation
in Dolbeault cohomology; πm is infinitesimally equivalent to Hs(G/H,L]λ). There is an intertwining map

S : IndGP (δM ⊗ ν)→ Hs(G/H,L]λ).

Furthermore, there is a ‘real Penrose transform’ P from cohomology to C∞(G/K, E) so that P · S = S, the
Szegö map defined above. We remark that the conditions necessary here are precisely the conditions on [6],
page 764. These hold exactly for m ≥ −n, as we are assuming. Now the irreducibility of the image of S
follows from the irreducibility of Hs(G/H,L]λ). �

Proposition 4.7. If m is sufficiently large then for each ψ ∈ IndGP (δM ⊗ ν), Sψ extends to a holomorphic
section of EC →M.

Proof. In light of the above proof Sψ = P (Sψ). In [8] a ‘complex Penrose transform’

PC : Hs(G/H,L]λ)→ Hol(M, EC)

is studied. The construction of PC is in terms of the linear cycle space M. (We remark that G/H is D or
D±.) If r : Hol(M, EC)→ C∞(G/K, E) is the restriction of holomorphic sections to G/K then r · PC = P .
In particular Sψ = r(PCSψ), the restriction of the holomorphic section PCSψ from M to G/K. �

The following section strengthens this proposition considerably. The condition that m be sufficiently
large is replaced by m ≥ −n. More importantly, it is seen that the Szegö kernel extends holomorphically to
X̂0(=M). In fact, the Szegö kernel is singular on the boundary of X̂0.

5. Holomorphic extension of the Szegö Kernel

As a first step in the proof of Theorem 5.9 we will give an explicit formula for the Szegö kernel for discrete
series representations of G1 = SL(2; R). We take the upper triangular parabolic subgroup P1 = M1A1N1

with

M1 = {±I}, A1 = {exp
(
a 0
0 −a

)
} and N1 = {

(
1 x
0 1

)
}.
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The maximal compact subgroup is

K1 = {kθ =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
}.

Let χd(kθ) = eidθ. We consider the discrete series representation of G1 with minimal K1-type χd, for
d ≥ 2, d ∈ Z. Let sgn be the sign representation of M1, α1 the root of a1 in n1 and ε1 = 1

2α1. Then
IndG1

P1
(sgnd ⊗ (−d+ 1)ε1) contains the discrete series representation as a quotient and

S1 : IndG1
P1

(sgnd ⊗ (−d+ 1)ε1)→ C∞(G1/K1, χd)

is given by

(5.1) (S1f)(g) =
∫
SO(2)

e−dε1H(g−1k)χd(κ(g−1k))f(k)dk.

Letting X̂1
0 be the domain X̂0 of Def. 2.7 for G = G1 = SL(2; R) we have the following fact.

Lemma 5.2. The Szegö kernel of S1 in formula (5.1) extends holomorphically in g to X̂1
0 .

Proof. Consider the standard representation of G1 on C2. Write

v+ =
(

1
0

)
, the highest weight vector and

v0 =
(

1
i

)
, a vector of SO(2) weight eiθ.

Therefore, for the K1,C-invariant symmetric form ( , ) on C2

edε1H(g−1k)χd(κ(g−1k)) = (g−1kv+, v0)d.

Note that this is a holomorphic function of g. Furthermore,

e2dε1H(g−1k) = (g−1kv+, g
−1kv+)d,

a holomorphic function of g. Thus, the Szegö kernel

s1(g, k) =
(

(g−1kv+, v0)
(g−1kv+, g−1kv+)

)d
extends holomorphically on any set where the denominator is non-zero. For g ∈ G1,C this denominator is
non-zero for each k ∈ K1 if and only if gK1,C ∈ X̂1

0 , by Theorem 2.11. �

We now return to G = SL(2n; R) and let P = MAN, δM , δMe , ν, πm and E as in Section 3. Thus, E is the
minimal K-type of πm and has highest weight (m+n+1)λ0 ∈ t∗. We identify E with the K-subrepresentation
of F = Symm+n+1(∧nC2n) generated by

φ = (v+)m+n+1, v+ = (e1 + ie2) ∧ · · · ∧ (e2n−1 + ie2n),

({ej} the standard basis of C2n). Thus, it makes sense to write

(5.3) s(g, k)(w) = g−1
(
e(ν−ρ)H(g−1k)gκ(g−1k)T ∗(m(g−1k)w)

)
for w ∈W, g ∈ G and k ∈ K.

Since Me = (SL(2; R))n, the discrete series representations δMe
may be realized as smooth sections on

Me/Me ∩K:
W ⊂ {w : Me → C · φ |w(mk) = k−1w(m), for k ∈Me ∩K}.

For the Szegö kernel we must specify an Me ∩K homomorphism T ∗ : W → E. Set

T ∗(w) = w(e) ∈ C · φ ⊂ E.

This allows the following form of the Szegö kernel.
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Lemma 5.4. For g ∈ G, k ∈ K and w ∈W ,

s(g, k)(w) = e(ν−ρ)H(g−1k)g−1kn(g−1k)−1m(g−1k)−1w(m(g−1k)−1).

Proof. It follows from (4.3) that

κ(g−1k) = g−1kn(g−1k)−1m(g−1k)−1 exp(H(g−1k)).

So by (5.3)

s(g, k)(w) = e(ν−ρ)H(g−1k)g−1kn(g−1k)−1m(g−1k)−1e−H(g−1k)(m(g−1k) · w)(e)

= e(ν−ρ)H(g−1k)g−1kn(g−1k)−1m(g−1k)−1w(m(g−1k)−1).

Since exp(−H(g−1k))φ = e−(m+n+1)(
∑n
j=1 fj)(H(g−1k)) · φ = φ, as

∑
fj = 0 on sl(2n; R). �

Lemma 5.5. As a function of gKC, m(g−1k)−1w(m(g−1k)−1) extends holomorphically on X̂0, for each
k ∈ K and w ∈W .

Proof. By (4.3) m(k′g′) = m(g′) for all g′ ∈ G and k′ ∈ K. Therefore m(g−1k)−1w(m(g−1k)−1) is well
defined on G/K. Since mw(m) is a function on M0/M0 ∩K0, we need to check two things:

(a) If gKC ∈ X̂0 then m(g−1k)−1 ∈
(
X̂1

0

)n and,
(b) gKC → m(g−1k)−1(MC ∩KC) is a holomorphic map from GC/KC →MC/MC ∩KC.

Consider gKC ∈ X̂0. By Theorem 2.11, X̂0 is independent of the flag variety Z. We compare X̂0 for
the flag varieties Z = GC/PC and GC/BC, BC the Borel subgroup of upper triangular matrices. Thus
g−1k ∈ KCBC for all k ∈ K.

To show (a) it suffices to show m(g−1k)k1 ∈ (MC ∩KC)(BC ∩MC), for all k1 ∈M ∩K.
Since k1 normalizes KC,MC, AC and NC, m(g−1k)k1 = k1m(k−1

1 g−1kk1). It is clear that g−1k ∈ KCPC

exactly when k−1
1 g−1kk1 ∈ KCPC, therefore it is enough to show that for x ∈ KCPC, m(x) ∈ (MC ∩

KC)(BC ∩MC). Write

x = k′

m1(x)
. . .

mn(x)

 a′n′ ∈ KCMCACNC

= k′′a′′n′′ ∈ KCÃCÑC,

where BC = ÃCÑC. Since ÑC = (MC ∩ ÑC)NC we may write

k′′a′′n′′ = k′′

b1 . . .
bn

 a′′′n′′′ ∈ KC(BC ∩MC)ACNC.

Since the NC part is unique (see below) n′ = n′′ and

k′′′
−1
k′ =

m1b1
. . .

mnbn

 a′
−1
a′′′ ∈MCAC.

In particular k′′′−1
k′ ∈M ∩K and mj(x) ∈ (KC ∩MC)(BC ∩MC).

Write LC = MCAC, so PC = LCNC. The expression g = κ(g)`(g)n(g) ∈ KCLCNC is not unique.
However, since KC ∩ LCNC = KC ∩ LC, n(g) is unique. Next we show that n(g−1) and `(g−1)t`(g−1) are
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holomorphic on X̂0. For this we write the matrices as an array of 2× 2 blocks. The notation is:

nij is the 2× 2 block of n(g−1) in the ijth position,

`i is the 2× 2 block of `(g−1) in the ith diagonal position,

bij is the 2× 2 block of gt−1
g−1 in the ijth position.

Then matrix multiplication gives the following recursive formulas.

njk = (`tj`j)
−1
(
bjk −

j−1∑
i=1

ntij`
t
i`inik

)
, (j < k)

`tk`k = bkk −
k−1∑
i=1

ntik`
t
i`inik.

(5.6)

Note that `tk`k and njk are holomorphic in `ti`i and nim with i < k and m ≤ k. Since `t1`1 = b11 is
holomorphic in gKC the formulas (5.6) show that each njk and `tk`k is holomorphic, so also n(g−1) and
`(g−1)t`(g−1).

The identification g → gt
−1
g−1 of GC/KC with the space of symmetric n × n matrices of determinant

one is biholomorphic, and similarly for LC/KC ∩LC. Therefore gKC → `(g−1)−1LC ∩KC is a well-defined
holomorphic map on X̂0. Since MC ∩AC ⊂ LC ∩KC = MC ∩KC, MC ∩ (LC ∩KC)AC = MC ∩KC and so
LC/(LC ∩KC)AC ' MC/MC ∩KC. Thus the quotient map π : LC/LC ∩KC → MC/MC ∩KC given by
π(maLC ∩KC) = mMC ∩KC is holomorphic. In particular, gKC → m(g−1)−1MC ∩KC is a well-defined
and holomorphic map X̂0 →MC/KC ∩MC, for all k ∈ K.

We may now conclude that m(g−1k)−1w(m(g−1k)−1) is holomorphic on X̂0.
�

From the above proof it follows that both `(g−1)t`(g−1) and m(g−1)tm(g−1) are holomorphic. However
`(g−1)t`(g−1) = exp(2H(g−1))m(g−1)tm(g−1), therefore gKC → exp(2H(g−1)) is a holomorphic map X̂0 →
GC. We use this fact in the following Lemma.

We now consider the scalar part of the kernel which may be written in terms of principal minors. Therefore
we let ∆`(B) denote the `th principal minor of the complex matrix B.

Lemma 5.7. For each k ∈ K and g ∈ GC

e(ν−ρ)H(g−1k) =
n∏
j=1

1
∆2j((g−1k)t(g−1k))

1
2
,

is a meromorphic function on GC/KC.

Proof. Set Λ` = 2
∑`
j=1 fj and compute eΛ`(H(g−1k)). Consider theGC representation ∧2`C2n, ` = 1, 2, . . . , n.

Then v+,` = e1 ∧ · · · ∧ e2` is a highest a-weight vector of weight Λ` which is fixed by each m ∈ (SL(2; R))n.
Therefore

e(2Λ`)H(g) = (gv+,`, gv+,`)

= det
(
(gei, gej)1≤i,j≤2`

)
= ∆2`(gtg).

In particular, ∆2j((g−1k)t(g−1k) has holomorphic square root by the comment preceding the Lemma. The
lemma follows since ν − ρ = −

∑n
j=1(n − 2j + 1)fj = −

∑n
`=1 Λ` + (n + 1)

∑n
j=1 fj = −

∑n
`=1 Λ` (as∑n

j=1 fj = 0). �

Corollary 5.8. The function gK → e(ν−ρ)H(g−1k) is holomorphic on X̂0.
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Proof. This follows from the definition of X̂0 applied to the flag variety Z = GC/PC as follows. For the flag
x0 = (z1 ⊂ z2 ⊂ · · · ⊂ zn−1), z` = span{e1, . . . , e2`}, X0 = G ·x0. Now gKC ∈ X̂0

′
if and only if g−1kx0 ∈ O

for all k ∈ K. Thus bk−1g is nondegenerate on all z`, i.e., ∆2`

(
(g−1k)t(g−1k)

)
6= 0, for all k ∈ K and all

` = 1, . . . , n. �

We have proved the following theorem.

Theorem 5.9. The Szegö kernel extends holomorphically to X̂0. Thus, the Speh representations occur as a
space of holomorphic sections of the restriction of EC → GC/KC to X̂0.
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