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Abstract. Let (G,K) be either (Sp(2n), GL(n)) or (O(n), O(p)×O(q)), p+q =
n. The results of [2] are used to show that certain components of Springer fibers
are iterated bundles. Several consequences, including a vanishing theorem for
sheaf cohomology, are given. It is shown that for (Sp(2n), GL(n)) a maximal
torus of K acts on these components. This generalizes the results of [5].

1. Introduction

For the pairs

(G,K) = (Sp(n), GL(n)) and (O(n), O(p)×O(q)), p + q = n, (1.1)

components of Springer fibers associated to closed K-orbits in the flag variety for G

are described in [2]. We now give a geometric description of these components and

some consequences. In particular, the components are shown to be iterated bundles

involving generalized flag varieties for smaller groups. In addition, we show that for

Sp(n) a maximal torus acts on the components with a finite number of fixed points.

These results extend the results of [5], where the pair (GL(n), GL(p) × GL(q)) is

considered. Certain components of Springer fibers for GL(n) are also shown to be

iterated bundles in [4].

Let (G,K) be one of the pairs (1.1) and suppose that Q is a closed K-orbit in the

flag variety B for G. Using the terminology and notation of [2], the components of

a Springer fiber associated to Q are of the form

Cf = Qm,e · · ·Q0,e · b = Lm,e · · ·L0,e · b. (1.2)

This is the content of Theorem 4.8 and Lemma 4.9 of [2]. If we define

Ri = Qi,e ∩Qi−1,e, i = 1, 2, . . . ,m

R0 = Q0,e ∩B,

then we prove the following theorem in Section 2.

Theorem. As algebraic varieties Cf ≃ Qm,e ×
Rm

Qm−1,e · · ·Q1,e ×
R1

Q0,e/R0.

1



2 L. BARCHINI, WILLIAM GRAHAM, AND R. ZIERAU

One consequence of this is that the Betti numbers of the components of Cf can

be easily calculated.

In Section 3 we show that for the pairs (Sp(n), GL(n)) the diagonal torus H acts

on Cf with a finite number of fixed points. Therefore, localization gives a formula

for the H-character of
∑

p

(−1)pHp(Cf ,O(τ)),

where O(τ) is the sheaf of local sections of a homogeneous line bundle on B pulled

back to Cf . Euler characteristics of such cohomology are important in the represen-

tation theory of real reductive groups as they occur in formulas for the associated

cycles of Harish-Chandra modules. See [3] and [8] for a discussion of this.

2. Preliminaries

As in [2] we consider the pairs (1.1). It is assumed that the reader is familiar with

the construction and results of [2]. The notation used in this article will be as in [2]

without further mention.

Let Q = K · b be a closed K-orbit in B defined by λ ∈ h∗. An important fact

([2, §2.3]) is that (G,K) embeds, in a nice, way into a pair (Ĝ, K̂) equal to either

(GL(2n), GL(n)×GL(n)) or (GL(n), GL(p)×GL(q)). If Ĥ is the diagonal maximal

torus, then there is a λ̂ ∈ ĥ∗ so that λ̂|h = λ and the Borel subalgebra b̂ = ĥ + n̂−

defined by λ̂ satisfies b̂ ∩ g = b. In addition, the generic element f in n− ∩ p is also

generic in n̂− ∩ p̂. The subgroups Li and Qi are the intersections with Ki of the

subgroups L̂i and Q̂i constructed from f for the pair (Ĝ, K̂) as in [1]. Note that Q̂i

is denoted by Qi,K in [1].

The subgroups Q0,e, Q1,e, . . . , Qm,e define an iterated bundle as follows.

Definition 2.1. Let Ri = Qi,e ∩Qi−1,e, for i = 1, 2, . . . ,m, and R0 = Q0,e ∩B.

The group Rm × · · · ×R0 acts on Qm,e × · · · ×Q0,e by

(rm, . . . , r0) · (qm, . . . , q0) = (qmr
−1
m , rmqm−1r

−1
m−1, . . . , r1q0r

−1
0 ).

We refer to the quotient as an iterated bundle and write it as

X = Qm,e ×
Rm

Qm−1,e ×
Rm−1

· · · ×
R1

Q0,e/R0.

Elements of this quotient are written as [qm, . . . , q0], for qi ∈ Qi,e.

The following is easily verified.

Lemma 2.2. For each i = 1, 2, . . . ,m

(1) Ri is a parabolic subgroup of Qi,e,

(2) Li,e ∩Qi−1,e is a parabolic subgroup of Li,e,
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(3) Li,e ∩Qi−1,e = (Li,e ∩ Li−1,e)U
−

i−1, and

(4) Qi,e/Ri ≃ Li,e/Li,e ∩Qi−1,e.

It follows that the iterated bundle X is a smooth projective variety; see [5,

Prop. 2.5].

3. Geometric structure of the components

We continue with a closedK-orbit Q = K ·b inB and a generic element f in n−∩p,

as in Section 2. The components of the Springer fiber associated to Q (i.e., those

components contained in the conormal bundle T ∗

Q
B) are AK(f) := ZK(f)/ZK(f)e

translates of

Cf := Qm,e · · ·Qo,e · b = Lm,e · · ·L0,e · b, (3.1)

by, for example, [2, Prop. 2.1].

The map

F : X → Cf

[qm, . . . , q0] 7→ qm . . . q0b

is clearly a surjective morphism.

Theorem 3.2. The morphism F is an isomorphism of varieties.

Proof. As Cf is smooth (by, for example, [5, Lem. 2.9]) it suffices to prove that F

is injective. (Recall that in characteristic 0, a bijective morphism of a variety onto

a normal variety is an isomorphism ([10, Cor. 17.4.8]).)

Consider the corresponding morphism for (Ĝ, K̂):

F̂ : X̂ → Q̂m · · · Q̂0 · b,

where X̂ is the iterated bundle constructed from Q̂0, . . . , Q̂m and R̂i = Q̂i ∩ Q̂i−1.

Note that the righthand side is a component Ĉf of a Springer fiber for f for the

pair (Ĝ, K̂). Theorem 2.10 of [5] implies that F̂ is an isomorphism of varieties. (We

remark that the Q̂i here are slightly different than the parabolics used to construct

the iterated bundle in [5]. The parabolics in [5] have been enlarged to contain the

maximal torus Ĥ of K̂. One easily sees that this extra piece of the torus plays no

role and F̂ is an isomorphism.)

There is a commutative diagram

X
F

−−−−→ Cf

ι





y





y

j

X̂ −−−−→
F̂

Ĉf
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The map j is the restriction of the embedding B →֒ B̂. The map ι is the map

sending [qm, . . . , q0] in X to [qm, . . . , q0] in X̂. Once we show that ι is injective, F

will be injective and the theorem will be proved.

For the injectivity of ι we will apply the following lemma.

Lemma 3.3. (1) Qi,e = Q̂i ∩Ki,e.

(2) Ri = R̂i ∩Ki,e.

It follows from our discussion in §2, that qi = q̂i∩ki. This, along with the fact that

Q̂i is connected, implies (1). For (2) note that Ri = Qi,e∩Qi−1,e = Q̂i∩Q̂i−1∩Ki =

R̂i ∩ R̂i−1 ∩Ki,e.

Now suppose that qi, q
′

i ∈ Qi,e and [qm, . . . , q0] = [q′m, . . . , q
′

0] in X̂ . Then there

exist r̂i ∈ R̂i so that

qmr̂
−1
m = q′m and r̂iqi−1r̂

−1
i−1 = q′i−1, i = 1, . . . ,m.

It follows that r̂m ∈ R̂m ∩Qm,e ⊂ R̂m ∩Km,e = Rm (by part (2) of the lemma). By

downward induction, assuming that r̂i ∈ R̂i, we have

r̂i−1 = q′ −1
i−1 r̂iqi−1 ∈ R̂i−1 ∩Ki−1,e = Ri−1.

Therefore [qm, . . . , q0] = [q′m, . . . , q
′

0] in X, so ι is injective. �

When (G,K) = (Sp(n), GL(n)), the component group AK(f) is trivial and Cf

is the only component of the Springer fiber for f associated to Q. For (G,K) =

(O(p, q), O(p) × O(q)) the component group is not in general trivial. As men-

tioned above, the components associated to Q are translates of Cf . Such a translate

zCf , z ∈ ZK(f) is an iterated bundle for the parabolic subgroups zQi,ez
−1.

Now consider the map π : X → Qm,e/Rm ≃ Lm,e/Lm,e ∩ Qm−1 defined by

π([qm, . . . , q0]) = qmRm. The fiber is Xm−1 := Qm−1,e ×
Rm−1

· · · ×
R1

Q0,e/R0. It is

often the case that Lm,e/Lm,e ∩ Qm−1 is just a point; this happens when Lm ⊂

Lm−1. So, we suppose that m′ is the greatest integer so that Lm′ * Lm′−1. Then

X ≃ Qm′,e ×
Rm′

· · · ×
R1

Q0,e/R0 and there is a fibration X → Lm′,e/Lm′,e ∩ Qm′−1,e

with fiber Xm′−1 = Qm′−1,e ×
Rm′

−1

· · · ×
R1

Q0,e/R0. Note that Xm′−1 is isomorphic to

a component of a Springer fiber for f ′ = f0+ · · ·+ fm′−1 for the pair (G′

m′ ,K ′

m′), in

the notation of [2, §3.2].

Corollary 3.4. Either Cf = L0,e ·b or there is an m′ (1 ≤ m′ ≤ m) and a fibration

Cf → Fm′ ,

where Fm′ is the nontrivial generalized flag variety Lm′,e/Lm′,e ∩ Qm′−1,e and the

fiber is a component of a Springer fiber associated to a closed K ′-orbit for a smaller

pair (G′,K ′).
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4. The topology of the components

As an application of Theorem 3.2 the Poincaré polynomials of the components

Cf can be computed. Recall that the Poincaré polynomial of a topological space Z

is defined by

Pt(Z) =
∑

k

dim(Hk(Z,Q))tk.

As described in [5, §2.2] the Poincaré polynomial of Cf is

Pt(Cf ) =

m
∏

i=0

Pt(Qi,e/Ri) =

m
∏

i=1

Pt(Li,e/Li,e ∩Ri).

Since for each i > 0, Li,e/Li,e∩Ri is a generalized flag variety, and Li,e∩Ri has Levi

subgroup Li,e∩Li−1,e, Pt(Li,e/Li,e ∩Ri) is the quotient of the Poincaré polynomials

of the flag varieties for Li,e and Li,e ∩Li−1,e. The structure of these groups is given

in [2, Rem. 4.5]. Therefore we need only consider the general linear and special

orthogonal groups. The flag varieties for these groups have Poincaré polynomials as

follows:

GL(k) :
(1− u2)(1 − u3) · · · (1− uk)

(1− u)k−1
,

SO(2k + 1) :
(1− u2)(1 − u4) · · · (1− u2k)

(1− u)k
,

SO(2k) :
(1− u2)(1 − u4) · · · (1− u2k−2)(1− uk)

(1− u)k
,

u = t2. These equations follow from the fact that the Poincare polynomial of the

flag variety of a semisimple complex group is
∑

w∈W uℓ(w) (where W is the Weyl

group) together with [6] (in particular Theorem 3.15 and the list on page 59 of that

book). Combining all these facts, we can easily compute the Poincare polynomial

of Cf . We illustrate this with two examples.

Example 4.1. Type C. Consider the example of §3.1 of [2] for Sp(7) with array given

by

r

1
r

2

r

-7

r

3
r

4

r

-6
r

-5
;
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see [2, Eqn. 3.3]. Then

L0 = GL(2) ×GL(1) ×GL(2) ×GL(2)

L1 = GL(2) ×GL(1)

L1 ∩ L0 = (GL(1) ×GL(1)) ×GL(1)

L2 = GL(1)

L2 ∩ L1 = GL(1).

Therefore,

Pt(Cf ) =
(1− u2)

(1− u)

(1− u2)

(1− u)

(1− u2)

(1− u)

(1− u2)

(1− u)
= (1 + t2)4.

Example 4.2. Type D. Consider the pair (G,K) = (O(20), O(12)×O(8)) with closed

K-orbit determined by the array

r

7
r

8
r

9

r

1
r

2
r

3

r

10

r

4
r

5
r

6

.

Then

L0 = GL(3) ×GL(3) ×GL(1)× SO(6)

L1 = GL(2) × SO(9)

L1 ∩ L0 = GL(2)×GL(2) × SO(5)

L2 = GL(1) × SO(8)

L2 ∩ L1 = GL(1)× SO(8)

L3 = SO(7)

L3 ∩ L2 = SO(7).

Therefore,

Pt(Cf ) =
(1− u2)2(1− u3)3(1− u4)(1− u6)(1 − u8)

(1− u)8

= (1 + u)4(1 + u2)2(1 + u3)(1 + u4)(1 + u+ u2)4

= (1 + t2)4(1 + t4)2(1 + t6)(1 + t8)(1 + t2 + t4)4.

5. A vanishing theorem

Suppose χτ is a character of H with differential τ ∈ h∗. Then χτ extends to a

character of B ∩K, and therefore defines a holomorphic homogeneous line bundle

Lτ on the flag variety BK . For any subvariety Z ⊂ BK we may pull back Lτ to a
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line bundle on Z. Denote the sheaf of local sections of this line bundle by OZ(τ).

When Z = Cf the polynomial

p(τ) :=
∑

r

(−1)r dim(Hr(Z,OZ(τ)))

is of particular interest. The significance of this Euler characteristic is that it is a

polynomial in whose leading homogeneous term is the multiplicity of K · f in the

associated cycle of the coherent family of discrete series representations associated

to the closed K-orbit Q in B. For a discussion of this see, for example, [3], [8] and [1,

§6]. See [7] for a such an Euler characteristic arising in a slightly different context.

See Section 6 for more on this alternating sum. The main result of this section is

the following vanishing theorem.

Theorem 5.1. If τ ∈ h∗ is ∆+
c -dominant, then Hr(Cf ,OCf

(τ)) = 0, for r > 0.

Proof. Suppose that τ ∈ h∗ is ∆+
c -dominant. Let us use the notation

Xk := Qk,e ×
Rk

· · · ×
R1

Q0,e/R0, for k = 1, . . . ,m,

and X0 := Q0,e/R0. The map

ψk : Xk → BK

[qk, . . . , q0] 7→ qk · · · q0 · b

is an isomorphism onto its image (asXk is a closed subvariety ofX via the embedding

[qk, ..., q0] 7→ [1, 1, .., 1, qk , ..., q0] and ψk is the restriction of the morphism F of

Theorem 3.2). Denote by Ok(τ) the sheaf of local sections of the pullback of Lτ

to Xk. Then the theorem is equivalent to the statement Hr(Xm,Om(τ)) = 0, for

r > 0. This will be proved using the Leray spectral sequence and induction.

The first observation is that for each k = 1, . . . ,m there is a fibration

πk : Xk → Fk := Qk,e/Rk

with fibers isomorphic to Xk−1. The Leray spectral sequence has E2 terms

Hp(Fk, R
qπk(Ok(τ))). (5.2)

Furthermore, Rqπk(Ok(τ)) is the sheaf of sections of the homogeneous bundle asso-

ciated to the Rk-representation H
q(Xk−1,Ok−1(τ)).

We use induction to prove the following claim for k = 0, 1, . . . ,m.

Claim: Hr(Xk,Ok(τ)) = 0, r > 0, and H0(Xk,Ok(τ)) is a direct sum of irreducible

Qk,e-representations.

Note that since Qk,e acts on Xk, H
0(Xk,Ok(τ)) is a Qk,e-representation. Typi-

cally a finite dimensional representation ofQk,e does not decompose into a direct sum

of irreducible subrepresentations. The statement of the claim is that H0(Xk,Ok(τ))



8 L. BARCHINI, WILLIAM GRAHAM, AND R. ZIERAU

does in fact decompose under Qk,e into a direct sum of irreducibles. It follows that

U−

k acts trivially on H0(Xk,Ok(τ)).

If k = 0 then the Borel-Weil Theorem implies that the claim holds, because τ is

dominant, and H0(X0,Ok(τ)) is already irreducible under L0,e.

Now assume that 1 ≤ k ≤ m and the claim holds for k − 1 in place of k. Decom-

pose H0(Xk−1,Ok−1(τ)) into irreducible Qk−1,e-representations (as we may by the

inductive hypothesis):

H0(Xk−1,Ok−1(τ)) =
⊕

i

E−τi ,

where E−τi has lowest weight −τi as Lk−1,e-representation. We observe that −τi is

antidominant for ∆+
c,k−1 := ∆+(kk−1), since the lowest weight vector is annihilated

by u−k−1 (and qk−1 is a parabolic subalgebra of kk−1). Now decompose each E−τi

under Lk,e ∩ Lk−1,e:

E−τi |Lk,e∩Lk−1,e
=

⊕

j

F−τij ,

where −τij is the lowest weight of F−τij . Since U−

k−1 acts trivially, as noted above,

this is in fact a decomposition as Rk-representations. It follows that

R0πk(Ok(τ)) =
⊕

i,j

Ok(F−τij ),

where Ok(F−τij ) is the sheaf of sections of the homogeneous bundle on Fk as-

sociated to the Rk representation F−τij . Our inductive hypothesis implies that

Rqπk(Ok(τ)) = 0, for q > 0. Therefore (5.2) is zero for q > 0 and when q = 0 is
⊕

i,j

Hp(Fk,Ok(F−τij )). (5.3)

This will be easy to compute once we know that each τij is dominant for ∆+(lk).

We now prove this. As noted above each τi is dominant for ∆+(kk−1). Let W−τi

be the irreducible Kk−1,e representation having lowest weight −τi and let w−τi be a

lowest weight vector. It follows that

F−τij ⊂ E−τi = spanC{Lk−1,e · w−τi} ⊂W−τi .

Since Lk−1,e normalizes u−k−1 (and w−τi is annihilated by u−k−1) we conclude that

F−τij is annihilated by u−k−1. Letting w−τij be a lowest weight vector of F−τij , the

negative root vectors in lk ∩ lk−1 (as well as the root vectors in u−k−1) annihilate

w−τij . By Lemma 2.2, (2) and (3), w−τij is annihilated by all negative root vectors

for lk, so τij is dominant for ∆+(lk).

We may now conclude that (5.3) is zero when p > 0 and is a direct sum of

irreducible Qk,e-representations (by the Borel-Weil Theorem) when p = 0.

Therefore, the claim holds for k. This completes the proof of the theorem. �
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6. Torus action

First suppose that (G,K) = (Sp(n), GL(n)). Let H be the diagonal torus in G.

Then H is a maximal torus for both G and K. We prove the following.

Theorem 6.1. The component Cf is stable under the action of H on B.

This follows immediately from (1.2) and the next lemma.

Lemma 6.2. There is a decomposition H = Tm · · ·T1T0, where each Ti is a torus

in Li that commutes with all Lj, with j > i.

Proof. Set Tm = H ∩ Lm. For i = 0, 1, . . . ,m− 1 set

Ti = {diag(z1, . . . , z2n) ∈ Sp(n) : zl = 1 unless l is in the ith (doubled) string}.

�

Since Cf ⊂ B, this H-action has a finite number of fixed points. Therefore, the

H-character of the Euler characteristic of the cohomology of a line bundle on Cf

can be computed using localization. In particular, if τ ∈ h∗ is an integral weight,

then the formula of [5, Thm. 4.6] computes the H-character of

∑

(−1)pHp(Cf ,OCf
(τ))

as a sum over the fixed points.

The discussion surrounding Theorems 4.8 and 4.9 of [5] applies without change

to the components Cf for the pair (G,K) = (Sp(n), GL(n)). Thus, formulas may

be given for the classes of [Cf ] in equivariant cohomology and K-theory in terms of

the classes of Schubert varieties. This answers a question of T. A. Springer ([9]) for

the components Cf .

When (G,K) = (O(p+ q), O(p)×O(q)) the diagonal maximal torus does not act

on all components Cf . It is also the case that the diagonal maximal torus of K need

not act on a component Cf . A simple example is the following.

Suppose (G,K) = (O(8), O(6) × O(2)) and λ = (4, 3, 1, 2) defines the positive

system ∆+ that determines the closed K-orbit Q. Then the doubled array is

r

1
r

2

S
S
Sr
7
�
�
�

������
r

3
HHHHHH

r

4

S
S
Sr
8
�
�
�
r

5
r

6
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and f = X4−2 + X3−4 + X−(3+4). Let l1 = exp(−(X1−3 + X1+3)) and h =

diag(1, 1, z−1 , z, 1, 1, 1, 1). Then one easily computes

l−1
1 h−1 · f = h · f + (z − z−1)X1−4.

This lies in n−∩p if and only if z = ±1. Therefore, l1 ·b ∈ γ−1
Q

(f), but hl1 ·f /∈ γ−1
Q

(f)

(for z 6= ±1). Therefore γ−1
Q

(f), so Cf , is not stable under the diagonal maximal

torus of K.

We note that the argument for Type C fails because H cannot be decomposed as

in Lemma 6.2. We have not excluded the possibility of a different maximal torus of

K acting on Cf .
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