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Conformally Invariant Systems of Differential
Equations and Prehomogeneous Vector Spaces

of Heisenberg Parabolic Type

By

L. Barchini, Anthony C. Kable and Roger Zierau∗

Abstract

Several systems of partial differential operators are associated to each complex
simple Lie algebra of rank greater than one. Each system is conformally invariant
under the given algebra. The systems so constructed yield explicit reducibility results
for a family of scalar generalized Verma modules attached to the Heisenberg parabolic
subalgebra of the given Lie algebra. Points of reducibility for such families lie in the
union of several arithmetic progressions, possibly overlapping. For classical algebras,
enough systems are constructed to account for the first point of reducibility in each
progression. The relationship between these results and a conjecture of Akihiko Gyoja
is explored.

§1. Introduction

To describe our results, it is first necessary to set the scene. In the body of
the paper we shall work most of the time in an exclusively algebraic framework,
but it will be useful here to take a more inclusive viewpoint, mixing the analytic
and the algebraic. We shall first attempt to explain the significance of our
results and place them in context. To some extent, these remarks may be
taken as an introduction to a broader investigation of which this work and [2]
are the first fruits. Then we shall draw a map to aid the reader in navigating
on the admittedly lengthy journey through the proofs.
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Let G be a split adjoint semisimple real Lie group whose complexified Lie
algebra g is simple and of rank greater than one. By a Heisenberg algebra
we mean a two-step nilpotent Lie algebra with one-dimensional center. It is
known that g contains a unique conjugacy class of parabolic subalgebras whose
nilradicals are Heisenberg algebras, and we call any such parabolic subalgebra
a Heisenberg parabolic. Let q be a Heisenberg parabolic in g with nilradical n,
Q be a connected parabolic subgroup of G whose complexified Lie algebra is q,
and Q̄ be the parabolic subgroup opposite to Q. Let L be a Levi subgroup of Q.
Then n decomposes uniquely under the adjoint action of L as n = V + ⊕ Z(n).
It is known that the triple (L, Ad, V +) is a prehomogeneous vector space. Any
prehomogeneous vector space constructed in this way will be said to be of
Heisenberg parabolic type.

At this point, we would like to draw the reader’s attention to Section
8 where we have summarized information about each of the simple complex
Lie algebras and their Heisenberg parabolics. In particular, we identify the
prehomogeneous vector space (L, Ad, V +) for each one. It is interesting to note
that the five exceptional algebras are the simplest and most uniform from our
current perspective. In contrast, each of the classical algebras displays some
peculiarity or other. The reader may find it useful to refer to the data in this
section as the discussion proceeds.

Having explained the meaning of the latter half of the title, we shall now
address the former. Along with the Heisenberg parabolic Q comes a non-
trivial character χ of L, and we may consider the representation of G smoothly
parabolically induced from χ−s on the parabolic Q̄. Here s is a complex pa-
rameter. If we identify the space of the induced representation with a space
of smooth functions on n in the usual way then we obtain a family of repre-
sentations Πs of g. For each Y ∈ g, Πs(Y ) is the sum of a vector field and a
multiplication operator on n. It gives the infinitesimal action of Y on C∞(n)
via the induced representation associated to the parameter s. Suppose that
D1, . . . , Dn is a list of differential operators on n. We shall say that they con-
stitute a conformally invariant system if, for some choice of s, we have identities
of the form

(1.1) [Πs(Y ), Di] =
n∑

j=1

cY
jiDj

for all Y ∈ g and 1 ≤ i ≤ n, where each cY
ji is a smooth function on n. The

superscript indicates the possible dependence on Y . The particular value of s

appearing in these identities will be called a special s for the given system. It
is possible for a given system to have more than one special s.
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Notice that if D1, . . . , Dn is a conformally invariant system of differential
operators then the Lie algebra g acting via Πs leaves the common solution
space of the system invariant. One might hope to obtain interesting represen-
tations of g or, more optimistically, of G on such spaces of functions. This hope
provides the initial representation-theoretic motivation for considering confor-
mally invariant systems in the context we have just described. The theory of
conformally invariant systems in this sort of context was begun by Kostant in
[16]. In that work, he considered the case where n = 1; that is, where there is
a single conformally invariant operator. His theory was generalized in a certain
direction by Huang [10], who abandoned the framework of conformal invari-
ance in favor of that of differential intertwining operators. We show elsewhere
[2] that Kostant’s original framework can also be generalized successfully. The
remarks we make here on conformally invariant systems will be justified there.
We note that a technical non-degeneracy assumption is a part of the definition
as given in [2]. This condition is automatically satisfied in our examples and is
ignored here for simplicity.

In [2], the authors relate the existence of conformally invariant systems to
the existence of homomorphisms between suitable generalized Verma modules.
On the other hand, the results of Collingwood and Shelton [6] relate the exis-
tence of homomorphisms between generalized Verma modules to the existence
of differential intertwining operators between the corresponding smooth degen-
erate principal series representations. Such differential intertwining operators
have been the object of intensive investigation, particularly in the case where G

is of Hermitian type. Jakobsen’s work [11] provides some classification results
for such operators. We also wish to mention that many particular examples
of conformally invariant systems have appeared in the literature, without their
necessarily being identified as such. One notable class of examples may be
found in the work of Davidson, Enright, and Stanke [7].

There is a close connection between the existence of a conformally invari-
ant system of differential operators with given special s and the reducibility
of the generalized Verma module M(−s) = U(g) ⊗U(q) C−s. Here Cs denotes
the one-dimensional q-module obtained by letting the nilradical of q act triv-
ially on C, and the Levi subalgebra l act by s times the derived character of
the character χ of L. Indeed, with respect to a certain natural equivalence
relation, equivalence classes of suitable conformally invariant systems of differ-
ential operators with a given special s are in one-to-one correspondence with
the irreducible l-submodules of the space M(−s)n; we do not presently need
to make explicit the additional conditions subsumed in the word “suitable”.
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The identity operator (a differential operator of order zero) by itself forms a
conformally invariant system for which every s is special. The equivalence class
of this system corresponds to the l-submodule of M(−s)n spanned by the stan-
dard generator of M(−s). If, for a given s, there is a suitable conformally
invariant system not equivalent to the system given by the identity operator
then it follows that M(−s) is reducible.

We have now described the prehomogeneous vector spaces of Heisenberg
parabolic type and given the definition of a conformally invariant system of
differential operators that is relevant in the current context. How then are
these two objects to be connected? The connection is made via the classical
invariant theory of the spaces (L,Ad, V +), and we now explain this. By a
covariant of (L, Ad, V +) we mean a representation (L, ρ, W ) of L on a finite-
dimensional complex vector space W , together with an L-equivariant polyno-
mial map F : V + → W . It is usual to speak of F as being the covariant,
with the target representation implicit. Some goals of classical invariant theory
are to obtain a complete description of the covariants of a given space, to de-
termine which are fundamental (in some sense to be made precise in context)
and which derived, and to elucidate the algebraic and geometric meaning of
the fundamental covariants. The reader may find a useful discussion of the
invariant theory of the prehomogeneous vector spaces of Heisenberg parabolic
type in Section 5.5 of [9].

Observe that if F is a covariant then the ideal (F ) C C[V +] generated
by the components of F (with respect to any basis of W ) is L-invariant. In
particular, the zero set Z(F ) of this ideal is the union of the Zariski closures of
certain L-orbits in V +. In the current situation, if O is an L-orbit in V + then
its vanishing ideal I(O) is a homogeneous ideal in C[V +], and its homogeneous
components are covariants of V +. Note, however, that the ideal (F ) will not
in general be radical, so that thinking in terms of covariants and L-invariant
homogeneous ideals gives a finer perspective than thinking in terms of L-orbit
closures in V +.

We show that each of the spaces (L,Ad, V +) has four natural covariants,
which we call τ1, . . . , τ4. The subscript indicates the degree of the polynomials
comprising the covariant. When g is a symplectic algebra, τ3 and τ4 are identi-
cally zero; with this exception, all the τj are non-zero. Up to twists by powers
of χ, which we shall presently ignore, τ1 takes its values in the dual of V +, τ2

takes its values in the adjoint representation of L on l, τ3 is a self-map of V +,
and τ4 has one-dimensional image and is essentially a relative invariant of V +.
Thus the existence of τ1, . . . , τ4 reflects the decomposition of g as an l-module.
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This list of covariants includes some much-studied examples. For instance, if
g has type G2 then V + is the space of binary cubic forms, τ2 is the Hessian
covariant, and τ3 is the so-called cubocubic covariant.

Naively stated, what we do is to associate to each covariant τj a conformally
invariant system Ωj(Y1), . . . , Ωj(Yn), where Y1, . . . , Yn is an ordered basis for
the codomain of τj . We generally refer to this conformally invariant system
simply as Ωj . In this way, for each simple complex Lie algebra g, except for
sl(2), we produce several systems of differential operators conformally invariant
under a suitable action of g. There are a two caveats to this naive formulation.
First, in some cases the covariant τ2 is reducible and we actually attach a
system Ω2 to each of its irreducible components. Secondly, we only construct
Ω3 when g is an exceptional algebra. In a sense that will be explained below,
we do not require Ω3 for the classical algebras, so this omission is not harmful.
Moreover, it is not currently clear that such a system exists for the classical
algebras. The systems and their special s values are summarized in Subsection
8.10.

We must, of course, explain what we mean by saying that the system Ωj

is associated to the covariant τj . Let D[n] be the Weyl algebra of n; that is,
the ring of polynomial-coefficient differential operators on n. We construct a
subring of D[n], which we shall here denote by C[∇]. It arises from a right
action of N = exp(n) on functions on n, and is naturally isomorphic to U(n).
As we show in [2], every equivalence class of conformally invariant systems
of differential operators on n has a representative all of whose members lie
in the subring C[∇]. (For the present purpose, it is enough to observe that
each of the differential operators Ωj(Y ) lies in C[∇]). Suppose then that we
have a conformally invariant system D = D1, . . . , Dn whose members lie in
C[∇]. We may regard each Dj as an element of U(n) and consider its image in
gr(U(n)) ∼= S(n). There is a homomorphism S(n) → S(V +) that extends the
projection map n → V + and, after applying this homomorphism, we obtain a
list of elements of S(V +). There is an L-relatively invariant symplectic form
on V +, unique up to proportionality, and we may use it to identify S(V +) with
S((V +)∗) = C[V +]. Under this identification, we obtain a list of elements of
C[V +]. Let us denote by J(D) the ideal in C[V +] generated by these elements.
When we say that Ωj is associated to τj , the precise content of this statement
is that J(Ωj) = (τj). When τ2 is reducible, the obvious refinement of this
statement holds for the systems and covariants associated to each irreducible
summand. The reader will see below that the construction of Ωj is guided by
the requirement that J(Ωj) = (τj), which thus comes for free. The difficulty is



6 L. Barchini, Anthony C. Kable and Roger Zierau

in establishing the conformal invariance of the resulting system for some s.
Because of the connection between conformally invariant systems and re-

ducibility of generalized Verma modules, our results can be tested against
Jantzen’s results [12] and against the expectations arising from a conjecture
of Gyoja [8]. Recall that Jantzen [12] gave a necessary and sufficient condition
for reducibility of a generalized Verma module. This condition allows us to
test any particular M(s) for reducibility, but does not give an explicit proper
submodule when reducibility is indicated. Thus it allows us to decide that a
particular s is a special s for some conformally invariant system, without giving
a hint as to what the corresponding system might be.

We now describe a modification of Gyoja’s conjecture as it applies in our
setting. For Gyoja’s original formulation, the reader is encouraged to consult
[8]. For any parabolic subalgebra q = l ⊕ n we follow Gyoja in defining an
L-quasi-invariant polynomial P ∈ C[n]. In our cases, we always have P =
y2−∆, where y is a coordinate on the center of n and ∆ ∈ C[V +] is a suitably
normalized relative invariant. Let bP (s) be the Bernstein-Sato polynomial of
this quasi-invariant. Gyoja’s conjecture suggests that M(s) is reducible if and
only if s = r + j, where bP (r) = 0 and j ≥ 1 is a natural number. If s is
special for one of our conformally invariant systems then M(−s) is reducible
and so we expect that s = −r − j, where r is a root of bP (s) and j ≥ 1. In
order to test this, one needs to know the Bernstein-Sato polynomial bP (s). The
determination of this polynomial is itself a non-trivial problem, which we do not
completely solve. What we do is to produce a quartic polynomial b(s) such that
bP (s) | b(s). We conjecture that bP (s) = b(s); this has been verified for low rank
cases and should not be out of reach in general. In hindsight, it emerges that the
special s for the conformally invariant systems we construct are precisely all the
numbers −r−1, where r is a root of b(s). Thus our constructions make explicit
the first point of reducibility in each of the arithmetic progressions expected
from Gyoja’s conjecture and the conjecture that bP (s) = b(s). We have verified,
using Jantzen’s result, that this point is in fact the first reducibility point in
all cases. We do not include the verification in the current work, since it would
add substantially to its length; we shall return to the general question in the
future. The intimate relationship between the systems we construct and the
roots of bP (s) is one striking feature of our results.

After the present work was completed, we found the article [1] of Astashke-
vich and Brylinski. In this work, the authors construct a number of so-called
exotic differential operators on the ring of regular functions of the complex mini-
mal nilpotent orbit in the non-symplectic classical simple algebras. Among their
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operators may be found versions of the conformally invariant systems that we
shall later refer to as Ω2(Z0), Ωsmall

2 , and Ω4 for these algebras. Astashkevich
and Brylinski were not seeking conformally invariant systems and did not con-
sider the conformality of the systems they constructed, yet they were led from
their own starting point to some of the systems that we construct herein. This
convergence may serve to support the claim that conformally invariant systems
of differential operators for the simple algebras are rather remarkable objects
and will tend to appear in contexts not obviously connected with conformality.

Now that we have described our results in general terms, and discussed
their relationship with other results and conjectures, it is time to describe the
organization of the current work. Section 2 is devoted to defining the covariants
τ1, . . . , τ4, establishing their general properties, and proving a number of other
algebraic facts that apply uniformly to all simple complex Lie algebras and their
Heisenberg subalgebras. Most of these results are routine, but we wish to draw
the reader’s attention to the four final propositions in this section, beginning
with Proposition 2.1. In this result, we define a constant c(g, C) associated to
the algebra g and a component C of the graph obtained by taking the Dynkin
diagram of g and deleting those nodes joined to the highest root in the extended
Dynkin diagram and the edges that touch them. This constant is defined as the
constant of proportionality between two expressions, the content of Proposition
2.1 being that they are indeed proportional. It emerges that all our special s

can be expressed in terms of the constants c(g,C) and dim(V +). Thus the
constants c(g, C) are critical for our work. The values of these constants for all
g and C are given in Section 8; the true significance of c(g, C) perhaps remains
to be uncovered. In Propositions 2.2, 2.3, and 2.4, further proportionalities are
established. The constants that appear in these proportionalities all turn out
to be expressible in terms of c(g,C) and dim(V +). The notation introduced in
Section 2 is in force for the remainder of the paper.

In Section 3, we identify a simple condition on the root system of g and
study the further algebraic properties of those algebras that satisfy it. The
condition turns out to be equivalent to the non-vanishing of the covariants
τ3 and τ4, and to be satisfied for all algebras except the symplectic algebras.
Among all prehomogeneous vector space of Heisenberg parabolic type, only
those associated to a symplectic algebra have no non-zero relative invariants,
and this is closely connected with their failure to satisfy our condition. The
notation introduced in this section remains in force subsequently; in particular,
the root δ continues to play a significant role.

We describe the embedding of g into the Weyl algebra of n in Section 4. A
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general expression for the differential operator Πs(Y ) associated to an element
Y of g is given in Proposition 4.1. It is particularly important to have a good
expression for the differential operator D

(s)
−γ = Πs(X−γ) associated to the root

vector X−γ , where γ is the highest root of g, and such an expression is given
in Proposition 4.2. Next we define the operators ∇α, where α is a root in
n other than γ. Along with the partial derivative ∂γ in the direction of the
center of n, these operators generate a copy of U(n) inside the Weyl algebra;
this is what we denoted by C[∇] above. The operators ∇α are the fundamental
building blocks for our conformally invariant systems. We show in Proposition
4.3 that ∇α commutes with Πs(Y ) for Y ∈ n, and that the ∇α span a copy of
V + under the action of l via Πs. The crucial result in this section is Theorem
4.1, which gives an expression for the commutator [D(s)

−γ ,∇α]. Note that we
generally suppress the dependence on s in the notation; it is included here for
clarity.

Before describing the contents of Sections 5 and 6, we first explain our
general strategy for obtaining conformal invariance. As observed in Lemma
2.1, the subalgebras l and n, and the root space g−γ generate the algebra g.
Thus, in order to establish the relation (1.1) for all Y ∈ g, it suffices to establish
it for Y ∈ n, for Y ∈ l, and for Y = X−γ . The elements in our conformally
invariant systems lie in C[∇] and hence commute with Πs(Y ) for all Y ∈ n.
Moreover, it will be clear from our construction of each system that (1.1) holds
for Y ∈ l, with the coefficients cY

ij constant. This is simply another expression
of the L-equivariance that is built into everything we do. It therefore remains
to obtain a suitable formula for the commutator [D(s0)

−γ , Ω(Wi)], where Ω(Wi)
is a member of the system under consideration and s0 is the special s for that
system. In fact, we do more than this. In each case, we obtain an identity of
the form

(1.2) [D(s)
−γ , Ω(Wi)] =

n∑

j=1

cjiΩ(Wj) + (s− s0)Υi

valid for all s, where each Υi is itself a differential operator. This identity
simultaneously reveals the value of the special s and verifies the required con-
formality relation for the system Ω(W1), . . . , Ω(Wn) when s takes this special
value.

Section 5 is devoted to defining the systems Ω1 and Ω2 and obtaining
(1.2) for them. The main results are Theorems 5.1, 5.2, and 5.3. In Section
6, we continue by defining Ω3 (for the exceptional algebras) and Ω4 (for all
algebras) and obtaining (1.2) for them. The main results are Theorems 6.1,
6.2, and 6.3. We have a couple of further remarks on these sections. First, the
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reader should note that the the symbol X has a special meaning throughout
Sections 5 and 6. As explained in the introduction to Section 5, it denotes the
“generic element” of the vector space V +, and it is necessary to understand
this convention in order to interpret the statements of the above-cited theorems
correctly. Secondly, the computations leading up to the conformality of the
system Ω3 are disproportionately elaborate, but the theory of the Ω4 system
does not rely on the Ω3 result and may be read independently.

The brief Section 7 describes the determination of the polynomial b(s)
that was mentioned above. It is largely self-contained and may be read imme-
diately after Section 2. Finally, Section 8 is a compendium of data concerning
the simple complex Lie algebras, their Heisenberg parabolic subalgebras, the
polynomials b(s), and the systems Ω1, . . . , Ω4. By inspection of the data given
in this section, the reader may verify our assertion that the special s for the
systems we construct are precisely the numbers −r − 1, where r is any root of
the polynomial b(s).

§2. The Algebraic Setting

Let g be a finite-dimensional complex simple Lie algebra. Choose a Cartan
subalgebra h in g and let R be the set of roots of g with respect to h. Fix
a positive system R+ ⊂ R and let R0 ⊂ R+ be the corresponding set of
simple roots. Let Bg be a positive multiple of the Killing form of g and denote
by ( · , · ) the corresponding inner product induced on h∗. We shall specify a
normalization of Bg below. For α ∈ R we denote by gα the root space of g

corresponding to α. If U is any ad(h)-invariant subspace of g then we denote
by R(U) the subset of R consisting of those roots α such that gα ⊂ U .

If α, β ∈ R then define

pα,β = max{j ∈ N | β − jα ∈ R},
qα,β = max{j ∈ N | β + jα ∈ R}.

For any α, β ∈ R we have

2(α, β)
(α, α)

= pα,β − qα,β .

By Lemma 4.1.1 of [5], if α, β, α + β ∈ R then we have the relation

(2.1)
(α + β, α + β)

(β, β)
=

pα,β + 1
qα,β

.

It is known (see Chapter 4, Section 2 of [5] or Chapter 8, Section 4.4 of [4]) that
we may find a Chevalley system in g. That is, we may choose Xα ∈ gα and
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Hα ∈ h for each α ∈ R in such a way that the following conditions hold. The
reader should note that we are following the normalizations of [5], although our
notation is closer to that used in [4].

(C1) For each α ∈ R, Xα,Hα, X−α is an sl(2)-triple; in particular, [Xα, X−α] =
Hα.

(C2) For each α, β ∈ R, [Hα, Xβ ] = β(Hα)Xβ .

(C3) The inner product ( · , · ) is positive-definite on the real span of {Hα | α ∈
R}.

(C4) For α ∈ R we have Bg(Xα, X−α) = 2/(α, α).

(C5) For α, β ∈ R we have β(Hα) = 2(β, α)/(α, α).

(C6) If α, β, α+β ∈ R then there is a non-zero integer Nα,β such that [Xα, Xβ ] =
Nα,βXα+β .

(C7) If α, β, α + β ∈ R then Nα,βN−α,−β = −(pα,β + 1)2.

(C8) If α1, α2, α3 ∈ R and α1 + α2 + α3 = 0 then

Nα1,α2

(α3, α3)
=

Nα2,α3

(α1, α1)
=

Nα3,α1

(α2, α2)
.

(C9) The linear map ω : g → g that satisfies ω(H) = −H for all H ∈ h and
ω(Xα) = −X−α for all α ∈ R is an automorphism of g.

It will be convenient to extend the notation by defining Nα,β = 0 if α + β /∈ R.
Note that (C9) implies that N−α,−β = −Nα,β for all α, β ∈ R.

We shall call ω the Weyl automorphism of g; note that its square is the
identity. The only freedom that remains in the choice of the Xα once all these
conditions are in place is that we may multiply both Xα and X−α by −1 for
any α ∈ R+. Later on, we shall exploit this freedom to normalize the structure
constants still further. Denote by γ the highest root in R. We fix a choice of
Bg by requiring that Bg(Xγ , X−γ) = 1. By condition (C4), this is equivalent
to requiring that (γ, γ) = 2.

Assume now that the rank of g is greater than one. Let q ⊂ g be the
standard parabolic subalgebra corresponding to the subset {α ∈ R0 | (α, γ) =
0} of R0. Denote by l the standard Levi subalgebra of q and by n the radical of
q. Recall that n is a Heisenberg algebra; that is, a two-step nilpotent algebra
with one-dimensional center. In fact, z(n) = gγ and n has a unique ad(l)-
invariant subspace V + such that n = V + ⊕ gγ . Let G = Aut(g)◦ and L be the
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connected subgroup of G corresponding to the subalgebra l. The space V + is
stable under the adjoint action of L and, by Vinberg’s Theorem (Theorem 10.19
of [15]), the triple (L, Ad, V +) is a prehomogeneous vector space. Since gγ is
one-dimensional, there is a character χ : L → C× such that Ad(l)Y = χ(l)Y for
all l ∈ L and Y ∈ gγ . Note that, because Bg provides a non-zero L-invariant
pairing between gγ and g−γ , Ad(l)Y = χ(l)−1Y for all l ∈ L and Y ∈ g−γ .

Lemma 2.1. The algebra g is generated by l, n, and g−γ .

Proof. Let r be the algebra generated by l, n, and g−γ . Then r ⊃ q and
so r is itself a parabolic subalgebra of g. It is strictly larger than q because
g−γ 6⊂ q. If g is not of type Ar then q is a maximal parabolic subalgebra, and it
follows that r = g. If g = sl(n) (n ≥ 3) then one verifies directly that r = g.

Let n̄ be the radical of the parabolic opposite to q so that g = n̄⊕l⊕n. Then
n̄ is also a Heisenberg algebra and we have a unique decomposition n̄ = V −⊕g−γ

with V − an ad(l)-invariant subspace. It follows that

g = g−γ ⊕ V − ⊕ l⊕ V + ⊕ gγ

is the ad(Hγ)-weight space decomposition of g, where the weights, read from
left to right, are −2, −1, 0, 1, and 2. Because we have normalized ( · , · ) so
that (γ, γ) = 2, we have [Hγ , Xα] = (α, γ)Xα for all α ∈ R. Thus (α, γ) = 1 for
all α ∈ R(V +), (α, γ) = 0 for all α ∈ R(l), and (α, γ) = −1 for all α ∈ R(V −).
The non-degeneracy of the bracket on V + implies that R(V +) is stable under
the map α 7→ α′ = γ−α. This map is fixed-point-free because the root system
R is necessarily reduced. Note that (α′, α′) = (α, α) for all α ∈ R(V +). Let us
write ‖α‖2 = (α, α) for any α ∈ R. It is a consequence of (C8) and the fact
that α + α′ + (−γ) = 0 that

Nα,−γ = −(1/2)‖α‖2Nα,α′

for all α ∈ R(V +).

Lemma 2.2. For α ∈ R(V +) we have Nα,α′ = ±2/‖α‖2.

Proof. It follows from the properties of Chevalley bases that Nα,α′ =
±(pα,α′+1) (see [5], Section 4.2, for example). Now α′+α ∈ R and α′+2α /∈ R

and so qα,α′ = 1. Therefore

pα,α′ − 1 =
2(α, α′)
‖α‖2 =

2− 2‖α‖2
‖α‖2 ,
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which gives pα,α′ + 1 = 2/‖α‖2.

We now construct the covariant maps of V + that will be at the heart of
our work. For 0 ≤ k ≤ 4 and X ∈ n, define τk(X) ∈ g by

τk(X) =
1
k!

ad(X)k(X−γ).

We shall mostly consider τk(X) when X ∈ V +; if X satisfies this condition
then each application of ad(X) increases the Hγ-weight by 1 and so we obtain
maps

τ1 : V + → V −,

τ2 : V + → l,

τ3 : V + → V +,

τ4 : V + → gγ .

The constant map τ0 is defined for convenience only. Note that for 1 ≤ k ≤ 4
we have

τk(X) =
1
k

ad(X)
(
τk−1(X)

)
.

Lemma 2.3. For l ∈ L, X ∈ V +, and 0 ≤ k ≤ 4, we have

τk

(
Ad(l)X

)
= χ(l)Ad(l)τk(X).

Proof. For k = 0 the claim is that X−γ = χ(l)Ad(l)X−γ and we noted
above that this is true. If 1 ≤ k ≤ 4 and the equation holds of τk−1 then

τk

(
Ad(l)X

)
=

1
k

ad
(
Ad(l)X

)(
τk−1(Ad(l)X)

)

=
1
k

ad
(
Ad(l)X

)(
χ(l)Ad(l)τk−1(X)

)

=
1
k

χ(l)ad
(
Ad(l)X

)(
Ad(l)τk−1(X)

)

=
1
k

χ(l)Ad(l)ad(X)
(
τk−1(X)

)

= χ(l)Ad(l)τk(X).

Since gγ is one-dimensional, there is a quartic polynomial ∆ on V + such
that τ4(X) = ∆(X)Xγ for all X ∈ V +. Lemma 2.3 implies that ∆(Ad(l)X) =
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χ(l)2∆(X). That is, if ∆ is non-zero then it is a relatively invariant polynomial
on (L,Ad, V +) associated to the character χ2.

It is immediate that [Xγ , τj(X)] = 0 for j = 3, 4. The value of this
expression for j = 1, 2 is given in the next result, along with another useful
commutator.

Lemma 2.4. For X ∈ V + we have

[Xγ , τ1(X)] = −X,

[Xγ , τ2(X)] = [X−γ , τ2(X)] = 0.

Proof. Note that

[Xγ , τ1(X)] = [Xγ , [X, X−γ ]]

= [[Xγ , X], X−γ ] + [X, [Xγ , X−γ ]]

= [X, Hγ ]

= −X

and

[Xγ , τ2(X)] =
1
2
[Xγ , [X, τ1(X)]]

=
1
2
[[Xγ , X], τ1(X)] +

1
2
[X, [Xγ , τ1(X)]]

= −1
2
[X,X]

= 0.

A very similar computation shows that

[X−γ , τ2(X)] = −(1/2)[τ1(X), τ1(X)],

which is also equal to 0.

Lemma 2.5. For X ∈ V + and a scalar y, we have

τ1(X + yXγ) = τ1(X) + yHγ ,

τ2(X + yXγ) = τ2(X)− yX − y2Xγ ,

τ3(X + yXγ) = τ3(X),

τ4(X + yXγ) = τ4(X).
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Proof. The first identity is immediate from the definition. From Lemma
2.4 and the first identity it follows that

τ2(X + yXγ) =
1
2
[X + yXγ , τ1(X) + yHγ ]

= τ2(X)− 1
2
yX +

1
2
y[Xγ , τ1(X)]− y2Xγ

= τ2(X)− yX − y2Xγ .

From Lemma 2.4 again,

τ3(X + yXγ) =
1
3
[X + yXγ , τ2(X)− yX − y2Xγ ]

= τ3(X) +
1
3
y[Xγ , τ2(X)]

= τ3(X).

The last equation is immediate from this.

Lemma 2.5 may be given a more memorable form by using it to write an
expression for Ad

(
exp(X + yXγ)

)
(X−γ) as a sum of terms, one in each weight

space for ad(Hγ). The result is that, for X ∈ V + and a scalar y,

Ad
(
exp(X + yXγ)

)
(X−γ) =

X−γ + τ1(X) +
(
τ2(X) + yHγ

)
+

(
τ3(X)− yX

)
+ (∆(X)− y2)Xγ .

(2.2)

Lemma 2.6. For all X ∈ V + we have

∆(X) = −1
4
Bg

(
τ1(X), τ3(X)

)

and
∆(X) =

1
6
Bg

(
τ2(X), τ2(X)

)
.

Proof. We have

∆(X) = ∆(X)Bg(X−γ , Xγ)

= Bg

(
X−γ , τ4(X)

)

=
1
4
Bg

(
X−γ , ad(X)(τ3(X))

)

= −1
4
Bg

(
ad(X)(X−γ), τ3(X)

)

= −1
4
Bg

(
τ1(X), τ3(X)

)
.
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A similar computation, taking the first identity as its starting point, yields the
second identity.

Let P (X + yXγ) = y2 − ∆(X). Inspired by Gyoja [8], we shall refer to
P ∈ C[n] as the quasi-invariant of n. Note that P (Ad(l)Y ) = χ2(l)P (Y ) for all
Y ∈ n and l ∈ L, so that P is indeed a quasi-invariant. Also, from (2.2),

P (Y ) = −Bg

(
Ad(exp(Y ))(X−γ), X−γ

)
,

which serves to distinguish P in the two-dimensional space of polynomials on
n that share the same transformation law under L. We do not refer to P

as a relatively invariant polynomial, because we wish to reserve this term for
suitable polynomials on prehomogeneous vector spaces.

We now study the L action on V + in greater detail. In particular, we shall
obtain several identities that will be needed later, as well as introducing some
further notation. For X1, X2 ∈ n we define 〈X1, X2〉 by

[X1, X2] = 〈X1, X2〉Xγ .

Note that 〈 · , · 〉 is a degenerate alternating form on n. Its kernel is gγ and so
its restriction to V + is non-degenerate. We have

〈Ad(l)X1, Ad(l)X2〉 = χ(l)〈X1, X2〉

for all l ∈ L and X1, X2 ∈ n. For α ∈ R(V +), we define X∗
α ∈ V + by X∗

α =
N−1

α,α′Xα′ . The characteristic property of these elements is that 〈Xα, X∗
β〉 =

κα,β for all α, β ∈ R(V +); here we are using κα,β for the so-called Kronecker
delta. In addition, we let {ξα}α∈R(V +) ⊂ (V +)∗ be the dual basis to the basis
{Xα}α∈R(V +) ⊂ V +.

Define the functional λχ : l → C to be the derivative of χ; that is,

λχ(Z) =
d

dt

∣∣
t=0

χ
(
exp(tZ)

)
.

By substituting l = exp(tZ) into the expression Ad(l)Xγ = χ(l)Xγ , differenti-
ating, and setting t = 0, we obtain [Z, Xγ ] = λχ(Z)Xγ .

For l ∈ L, Z ∈ l and α ∈ R(V +), define scalars mαµ(l) and Mαµ(Z) by

Ad(l)Xα =
∑

µ∈R(V +)

mαµ(l)Xµ

and
[Z, Xα] =

∑

µ∈R(V +)

Mαµ(Z)Xµ.
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Let m(l) = [mαβ(l)] and M(Z) = [Mαβ(Z)] be the matrices with these matrix
coefficients as entries. The numbers Mαβ(Z) may be expressed in terms of the
structure constants of g, but it will be convenient to have this general notation
available in addition. It is an immediate consequence of the definitions that

M(Ad(l)Z) = m(l−1)M(Z)m(l)

for all l ∈ L and Z ∈ l. This in turn implies that

M([Z, W ]) = M(W )M(Z)−M(Z)M(W )

for all Z, W ∈ l; that is, M provides a representation of the algebra lop.

Lemma 2.7. Let α, β ∈ R(V +), l ∈ L and Z ∈ l. Then

χ(l)Nα,α′mβα′(l−1) = −Nβ,β′mαβ′(l)

and
Nα,α′Mβα′(Z)−Nβ,β′Mαβ′(Z) = καβ′Nα,βλχ(Z).

Proof. We have

χ(l)〈Xα, Ad(l−1)Xβ〉 = 〈Ad(l)Xα, Xβ〉

and the first identity follows. The second is obtained by differentiating the
first.

Lemma 2.8. For all Z ∈ l we have
∑

α∈R(V +)

Mαα(Z) = (1/2) dim(V +)λχ(Z).

Proof. Taking α = β′ in Lemma 2.7 gives λχ(Z) = Mαα(Z) + Mα′α′(Z)
for all Z ∈ l and α ∈ R(V +). By summing over α we obtain the stated
relation.

If W is a finite-dimensional vector space and F : V + → W is a map then
we define

(∂αF )(X) = lim
t→0

(
F (X + tXα)− F (X)

)
/t.

We shall sometimes write Fα for ∂αF . For higher derivatives, we shall write
∂αβF or Fαβ for ∂α(∂βF ) and so on.



Conformally Invariant Systems 17

Lemma 2.9. Let α, β ∈ R(V +) and l ∈ L. Then, for all X ∈ V +,

∆α(Ad(l)X) = χ(l)2
∑

µ∈R(V +)

mαµ(l−1)∆µ(X)

and

∆αβ(Ad(l)X) = χ(l)2
∑

µ,ν∈R(V +)

mαµ(l−1)mβν(l−1)∆µν(X).

Proof. The formulas follow on differentiating the identity ∆(Ad(l)X) =
χ(l)2∆(X).

For l ∈ L, Z ∈ l and α, µ ∈ R(V +), we define matrix coefficients m−
αµ(l)

and M−
αµ(Z) by

Ad(l)X−α =
∑

µ∈R(V +)

m−
αµ(l)X−µ

and

[Z, X−α] =
∑

µ∈R(V +)

M−
αµ(Z)X−µ.

Lemma 2.10. For l ∈ L, Z ∈ l and α, β ∈ R(V +) we have

m−
αβ(l) = (‖β‖2/‖α‖2)mβα(l−1)

and

M−
αβ(Z) = −(‖β‖2/‖α‖2)Mβα(Z).

Proof. We take the Bg-inner product with Xβ on both sides of the equa-
tion defining m−

αµ(l) and use the Ad(l) invariance of Bg. The first equation
follows. The second is obtained by differentiating the first.

Let D(g, h) be the Dynkin graph of g with respect to h and denote by
Dγ(g, h) the subgraph of D(g, h) obtained by deleting from D(g, h) those nodes
that are joined to −γ in the extended Dynkin diagram and the edges that
involve them. The graph Dγ(g, h) is connected except when g is of type Br or
Dr; in these cases, Dγ(g, h) has two or three components, with three occurring
only for D4. Let C be a component of Dγ(g, h) and let R(l, C) be the subset of
R(l) containing those roots that are linear combinations of simple roots whose
nodes lie in C. The sets R(l, C) form a partition of R(l).
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Proposition 2.1. Let C be a component of Dγ(g, h). Then there is a
constant c(g,C) such that

∑

β∈R(V +)

(α, β)(β, λ) = c(g, C)(α, λ)

for all α ∈ R(V +) and λ ∈ R(l, C).

Proof. In the real vector space h∗(R), define

E =
{ ∑

β∈R(V +)

aββ

∣∣∣∣ aβ ∈ R,
∑

β∈R(V +)

aβ = 1
}

and
v0 =

1
|R(V +)|

∑

β∈R(V +)

β ∈ E.

By pairing β and β′ in the sum defining v0, one sees that v0 = (1/2)γ. Thus
(v0, v) = 1/2 for all v ∈ E and (v0, λ) = 0 for all λ ∈ R(l). Define operations
¡ and ¢ by r ¡ v = rv + (1 − r)v0 and v1 ¢ v2 = v1 + v2 − v0 for r ∈ R and
v, v1, v2 ∈ E. With these operations, E is a real vector space with zero element
v0. Choose λ ∈ R(l) and define f1, f2 : E → R by f1(v) = (v, λ) and

f2(v) =
∑

β∈R(V +)

(v, β)(β, λ).

By making use of the equations (v0, λ) = 0 and (v0, v) = 1/2 for all v ∈ E,
it is easy to check that both f1 and f2 are linear functionals. Moreover, f1 is
non-zero, for otherwise Hλ would centralize n. Suppose that v ∈ ker(f1) and
let sλ be the reflection corresponding to λ in the Weyl group of R. Note that
sλ(γ) = γ and so sλ leaves the set R(V +) stable. Since v ∈ ker(f1), sλ(v) = v.
Thus

f2(v) =
∑

β∈R(V +)

(v, β)(β, λ)

=
∑

β∈R(V +)

(sλ(v), β)(β, λ)

=
∑

β∈R(V +)

(v, sλ(β))(β, λ)

=
∑

β∈R(V +)

(v, β)(sλ(β), λ)
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=
∑

β∈R(V +)

(v, β)(β, sλ(λ))

=
∑

β∈R(V +)

(v, β)(β,−λ)

= −f2(v),

and so f2(v) = 0. That is, ker(f1) ⊂ ker(f2), and it follows that there is a
constant c(λ) such that f2 = c(λ)f1.

Now suppose that λ1, λ2 ∈ R(l) are such that λ1 + λ2 ∈ R(l). By using
the defining property of the constants c(λ), one obtains the equation

(
c(λ1 + λ2)− c(λ1)

)
λ1 =

(
c(λ2)− c(λ1 + λ2)

)
λ2.

However, λ1 and λ2 are necessarily linearly independent and so we conclude
that c(λ1) = c(λ2) = c(λ1 +λ2). A downward induction on the height of a root
in R(l,C) now suffices to show that the function λ 7→ c(λ) is constant on each
R(l,C). This is equivalent to our claim.

If C is a component of Dγ(g, h) then we let l(C) denote the ideal of l

generated by the set {Xλ | λ ∈ R(l, C)}. In every case, l(C) is a simple complex
Lie algebra. In particular, l(C) ⊂ ker(λχ) for all C. The ideal [l, l] of l is the
direct sum of the l(C) over all components. We let prC : l → l(C) be the
projection map associated with this direct sum.

Lemma 2.11. Suppose that g is not of type Ar, and let l0 = [l, l]. Then
the l0-module V + ⊗ V + is multiplicity-free.

Proof. The proof is by case-by-case consideration. We number the fun-
damental weights for each simple summand of l0 as in the tables in [3]. For
any l0-module W , we write $(W ) for the list of highest weights that occur in
W . Let us first consider the exceptional algebras. The following table gives the
decomposition data in these cases.

g l0 $(V +) $(V + ⊗ V +)

E6 A5 $3 0, $1 + $5, $2 + $4, 2$3

E7 D6 $6 0, $2, $4, 2$6

E8 E7 $7 0, $1, $6, 2$7

F4 C3 $3 0, 2$1, 2$2, 2$3

G2 A1 3$1 0, 2$1, 4$1, 6$1
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In each case, V + ⊗ V + is visibly multiplicity-free. To aid in obtaining these
facts, several observations are helpful. First, if V + has highest weight $ then
2$ must occur as a highest weight of V +⊗V +. Secondly, the trivial represen-
tation necessarily occurs precisely once, because V + ∼= (V +)∗ as an l0-module.
Thirdly, V − ∼= V + as an l0-module, and the existence of the bracket map
[ · , · ] : V + ⊗ V − → l forces the adjoint representation of l0 to appear at least
once in V +⊗V +. Finally, if α is a simple root such that ($, α) 6= 0 then 2$−α

is a highest weight of V + ⊗ V +. These observations and the Weyl dimension
formula are sufficient to complete the table.

The statement for the algebras of types Br, Cr, and Dr is substantially
simpler to obtain, since it requires nothing more than the decomposition of the
tensor square of the standard representation of a classical algebra.

Proposition 2.2. There is a constant p(g, C) associated to each com-
ponent C of Dγ(g, h) such that

∑

ε∈R(V +)

‖ε‖2[[X, X−ε], [Xε, Y ]] =
∑

C

p(g, C)prC([X, Y ])

for all X ∈ V + and Y ∈ V −.

Proof. When g has type Ar, the formula can be checked by direct compu-
tation, with the constant p(Ar) = 2(r−1) for the single component of Dγ(g, h).
We now assume that g is not of type Ar. Define f : V + ⊗ V − → l by sending
the simple tensor X ⊗ Y to the formula on the left-hand side of the proposed
identity. It is evident that the image of f lies in [l, l] and, since g does not have
type Ar, this is equal to

∑
C l(C). For l ∈ L, X ∈ V +, and Y ∈ V −, we have

f(Ad(l)X ⊗Ad(l)Y )

=
∑

ε

‖ε‖2[[Ad(l)X, X−ε], [Xε,Ad(l)Y ]]

= Ad(l)
∑

ε

‖ε‖2[[X, Ad(l−1)X−ε], [Ad(l−1)Xε, Y ]]

= Ad(l)
∑
ε,µ,ν

‖ε‖2m−
εµ(l−1)mεν(l−1)[[X,X−µ], [Xν , Y ]]

= Ad(l)
∑
ε,µ,ν

‖µ‖2mµε(l)mεν(l−1)[[X, X−µ], [Xν , Y ]]

= Ad(l)
∑
µ,ν

‖µ‖2mµν(e)[[X,X−µ], [Xν , Y ]]
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= Ad(l)
∑

µ

‖µ‖2[[X,X−µ], [Xµ, Y ]]

= Ad(l)f(X ⊗ Y ),

where we have used Lemma 2.10 from line four to line five. That is, f is
an L-homomorphism and, consequently, an l0-homomorphism. Since V + ⊗
V − ∼= V + ⊗ V + is multiplicity-free, any two homomorphisms from V + ⊗ V −

to l(C) are proportional. By applying this observation to the homomorphisms
prC ◦f and X⊗Y 7→ prC([X, Y ]) for each component C, we obtain the required
statement.

Proposition 2.3. For Z ∈ l0 we have
∑

α∈R(V +)

‖α‖2[[Z, Xα], X−α] = 2
∑

C

c(g,C)prC(Z).

Proof. We define a map f : l → l by

f(W ) =
∑

α∈R(V +)

‖α‖2[[W,Xα], X−α].

One checks that f is an L-homomorphism and hence an l0-homomorphism.
Since l0 does not contain the trivial representation of l0, it follows that f(l0) ⊂
l0. The ideals l(C) are non-isomorphic irreducible l0-modules and it follows that
there are constants k(C) such that

f(Z) =
∑

C

k(C)prC(Z)

for all Z ∈ l0. It remains to show that k(C) = 2c(g, C). Let λ ∈ R(l,C) and
take Z = Hλ. After some simplification, we obtain

2
‖λ‖2

∑
α

‖α‖2(λ, α)Hα = k(C)Hλ.

Let β ∈ R(V +) and apply β to both sides of the previous equality. The result
is

2
∑
α

(λ, α)(α, β) = k(C)(λ, β).

By comparing this with the result of Proposition 2.1, we obtain 2c(g, C)(λ, β) =
k(C)(λ, β) for all λ ∈ R(l, C) and all β ∈ R(V +). The fact that Hλ does not
centralize n implies that we may find some β ∈ R(V +) such that (λ, β) 6= 0
and so k(C) = 2c(g, C).
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Proposition 2.4. There is a constant q(g,C) associated to each com-
ponent C of Dγ(g, h) such that

∑

ε∈R(V +)

‖ε‖2[[Z, [X, X−ε]], Xε] =
∑

C

q(g, C)[prC(Z), X]

for all X ∈ V + and Z ∈ l.

Proof. The formula can be checked by direct computation when g is of
type Ar. In this case, the constant q(g, C) has the value 2(r− 1) for the unique
component C of Dγ(g, h). We now assume that g is not of this type. Define
f : l⊗V + → V + to be the linear map that sends the simple tensor Z⊗X to the
left-hand side of the proposed identity. By using Lemma 2.10, one checks that f

is an L-homomorphism and so an l0-homomorphism. Clearly f vanishes on the
center of l. By restriction, one obtains an l0-homomorphism l(C)⊗ V + → V +.
However,

Homl0(l(C)⊗ V +, V +) ∼= Homl0(l(C), V + ⊗ V +) ∼= C

by Lemma 2.11, and consequently this homomorphism is proportional to any
non-zero homomorphism l(C) ⊗ V + → V +. The linear map that satisfies Z ⊗
X 7→ [Z, X] is such a homomorphism. The claim follows.

In Section 3, we shall see that p(g, C) = q(g, C), and obtain a relationship
between this constant and c(g,C).

§3. Further Algebraic Properties

In Section 2 we did not consider the question of whether the maps τ1, . . . , τ4

are non-zero on V +, and nothing done there requires that they be so. It is easy
to see that τ1 is always a linear isomorphism between V + and V −, and that
τ2 cannot be identically zero. In contrast, τ3 and τ4 can be identically zero. In
fact, this occurs if and only if g is of type Cr (including C2 = B2). That τ3 and
τ4 are identically zero in this case may be verified directly. That they are not
in any other case will follow from the discussion below.

In this section, we place an additional condition on the algebra g. Namely,
we assume that there is a root δ ∈ R(V +) such that δ′ − δ = γ − 2δ /∈ R.
Reference to the data presented in Section 8 will show that this condition holds
for all g except for those of type Cr with r ≥ 2. In all cases, δ may be chosen
to be a simple root in R(V +) if desired. Our purpose in this section is to
investigate the consequences of the existence of δ.
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The δ-string through δ′ is δ′, γ and so pδ,δ′ = 0 and qδ,δ′ = 1. From (2.1),
it follows that (δ, δ) = (γ, γ) = 2. We know that (γ, δ) = 1 and so (δ, δ′) = −1.
Condition (C7) implies that Nδ,δ′N−δ,−δ′ = −1 and, since Nδ,δ′ and N−δ,−δ′

are both integers, we conclude that Nδ,δ′ = ±1. Recall that we are free to
multiply both Xγ and X−γ by −1 if we wish. Doing so while leaving all other
Xα unchanged will result in replacing Nδ,δ′ by −Nδ,δ′ . We may thus assume
that the Chevalley system has been normalized so that Nδ,δ′ = 1. Let m denote
the subalgebra of g generated by the set {X±δ, X±δ′}.

Lemma 3.1. We have

Nδ,δ′ = N−δ,γ = Nδ′,−γ = 1,

Nδ,−γ = N−δ,−δ′ = N−δ′,γ = −1.

The linear map m → sl(3) satisfying

Hδ 7→ E11 − E22, Xδ 7→ E12, X−δ 7→ E21,

Hδ′ 7→ E22 − E33, Xδ′ 7→ E23, X−δ′ 7→ E32,

Hγ 7→ E11 − E33, Xγ 7→ E13, X−γ 7→ E31

is an isomorphism of Lie algebras.

Proof. Since δ + δ′+(−γ) = 0, condition (C8) implies that Nδ,δ′ , Nδ′,−γ ,
and N−γ,δ are all equal. The constant Nδ,δ′ has been normalized to be 1 and this
confirms three of the six required values. We have seen that Nδ,δ′N−δ,−δ′ = −1
and so N−δ,−δ′ = −1. But (−δ) + (−δ′) + γ = 0 and hence, by (C8) again,
N−δ,−δ′ , N−δ′,γ , and Nγ,−δ are all equal. This confirms the other three values.

By hypothesis, δ−δ′ = γ−2δ /∈ R and so [Xδ, X−δ′ ] = 0 and [X−δ, Xδ′ ] =
0. Since δ + δ′ = γ and all three roots have the same length, Hδ + Hδ′ = Hγ .
It follows that the set {X±δ, X±δ′ , X±γ , Hδ,Hδ′} is a basis for the algebra m.
We now have enough information to determine all the structure constants of
m with respect to this basis and they match those of sl(3) with respect to its
standard basis. The second claim follows.

Lemma 3.2. Let α ∈ R(V +) − {δ, δ′}. Then exactly one of α − δ and
α− δ′ is a root, and α− 2δ and α− 2δ′ are not roots.

Proof. First note that α+δ and α+δ′ are not roots and so qδ,α = qδ′,α = 0.
Thus

pδ,α + pδ′,α =
2(α, δ)
(δ, δ)

+
2(α, δ′)
(δ′, δ′)

= (α, δ) + (α, δ′) = (α, γ) = 1,
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from which it follows that {pδ,α, pδ′,α} = {0, 1}. This is equivalent to the
required statements.

We define S(δ) by S(δ) = {α ∈ R(V +) | α − δ ∈ R} and S(δ′) similarly
with δ replaced by δ′. Equivalently, S(δ) consists of those α ∈ R(V +) such
that (α, δ) = 1 and S(δ′) consists of those such that (α, δ) = 0. It follows
from Lemma 3.2 that R(V +) is the disjoint union of {δ, δ′}, S(δ) and S(δ′).
Moreover, it is clear from the definition that S(δ)′ = S(δ′). For later use, we
note that if α, β ∈ R(V +) and α + β = 2δ then α = β = δ. This follows
on taking the inner product with δ on both sides of the equation α + β = 2δ

and using the above observations. A similar remark applies to the equation
α + β = 2δ′, which implies that α = β = δ′.

Lemma 3.3. Let C be a component of Dγ(g, h) and λ ∈ R(l, C). Then

(
c(g, C)− 3

)
(δ, λ) =

( ∑

β∈S(δ)

β, λ

)
.

Proof. This follows immediately from Proposition 2.1 on taking α = δ

and using the definition of the set S(δ).

Proposition 3.1. Let C be a component of Dγ(g, h). Then

c(g,C) + (1/2)p(g,C) = (1/2)(dim(V +) + 4).

Proof. If g has type Ar then the formula may be verified directly, since
in this case p(g, C) = 2(r − 1), c(g, C) = 2, and dim(V +) = 2(r − 1). We now
assume that g is not of type Ar.

Take X = Xδ and Y = X−δ in Proposition 2.2. After a little simplification,
the left-hand side of the formula becomes

∑

ε∈S(δ)

‖ε‖2Nδ,−εNε,−δHδ−ε

=
∑

ε∈S(δ)

‖ε‖2(pδ,−ε + 1)2Hδ−ε

=
∑

ε∈S(δ)

‖ε‖2Hδ−ε,

because pδ,−ε = 0. On the other hand, [Xδ, X−δ] = Hδ and so

(3.1)
∑

ε∈S(δ)

‖ε‖2Hδ−ε =
∑

C′
p(g, C′)prC′(Hδ),
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where the sum is over all components of Dγ(g, h). This formula is valid for any
choice of δ. Let us assume now that δ has been chosen to be a simple root, which
is always possible, and then choose a simple root λ in the component C such
that (λ, δ) 6= 0. We evaluate λ on both sides of (3.1). Note that sδ(ε) = ε − δ

and so ‖ε − δ‖ = ‖ε‖. Armed with this observation, the value of λ on the
left-hand side of (3.1) simplifies to

2
∑

ε∈S(δ)

(λ, δ − ε) = 2|S(δ)|(λ, δ)− 2
∑

ε∈S(δ)

(λ, ε)

= 2|S(δ)|(λ, δ)− 2(c(g, C)− 3)(λ, δ),

where the last equality follows from Lemma 3.3. Since g is not of type Ar,
∑

C′
prC′(Hδ) = Hδ − (1/2)Hγ .

The root λ vanishes identically on l(C′) ∩ h with C′ 6= C and λ(Hγ) = 0. Thus

λ(prC(Hδ)) = λ(Hδ) = (λ, δ).

By using this equation, the value of λ on the right-hand side of (3.1) is found
to be p(g, C)(λ, δ). Since (λ, δ) 6= 0, we conclude that

p(g, C) = 2|S(δ)| − 2c(g, C) + 6.

Finally, |S(δ)| = (1/2)(dim(V +)− 2) and the claim follows.

By using Lemma 3.3, it is easy to find c(g, C) in all cases but type Cr, to
which the lemma does not apply. In the remaining case, c(g, C) may be found
directly. Once c(g, C) is known, the value of p(g, C) follows from Proposition
3.1, again excepting type Cr.

Proposition 3.2. Let C be a component of Dγ(g, h). Then

c(g,C) + (1/2)q(g, C) = (1/2)(dim(V +) + 4).

In particular, p(g,C) = q(g, C).

Proof. If g is of type Ar then the formula follows from the fact that
q(g, C) = 2(r − 1) in this case. We now suppose that g is not of this type. Let
us choose δ to be a simple root and λ ∈ R(l, C) to be a simple root such that
(δ, λ) 6= 0. In Proposition 2.4 we take Z = Hλ and X = Xδ to obtain

∑

ε∈R(V +)

‖ε‖2[[Hλ, [Xδ, X−ε]], Xε] = q(g, C)[Hλ, Xδ].
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The right-hand side is equal to 2q(g,C)((λ, δ)/‖λ‖2)Xδ. The left-hand side
evaluates to

2
‖λ‖2

∑

ε∈S(δ)

‖ε‖2Nδ,−εNδ−ε,ε(λ, δ − ε)Xδ.

Now Nδ−ε,ε/‖δ‖2 = Nδ,−ε/‖ε‖2, N2
δ,−ε = 1, and ‖δ‖2 = 2, and so the previous

expression is equal to
4

‖λ‖2
∑

ε∈S(δ)

(λ, δ − ε)Xδ.

By equating this to the evaluation of the right-hand side, we obtain
∑

ε∈S(δ)

(λ, δ − ε) = (1/2)q(g,C)(λ, δ).

Lemma 3.3 gives the value of the sum on the left and we obtain

|S(δ)| − c(g, C) + 3 = (1/2)q(g,C).

Since |S(δ)| = (1/2)(dim(V +) − 2), this gives the required formula. The last
claim follows on comparing this formula with that given in Proposition 3.1.

Lemma 3.4. If α ∈ S(δ) then

Nδ′,−α′Nδ,−α

‖α− δ‖2 = −(1/2)Nα,α′ .

Proof. The roots δ′, −α′, δ, and −α sum to zero and no two are opposite.
By part (iv) of Theorem 4.1.2 of [5], we have the relation

Nδ′,−α′Nδ,−α

‖α− δ‖2 +
N−α′,δNδ′,−α

‖α′ − δ‖2 +
Nδ,δ′N−α′,−α

‖γ‖2 = 0.

Since α − δ′ is not a root, the middle term is zero. We have assumed that
Nδ,δ′ = 1 and so we obtain

Nδ′,−α′Nδ,−α

‖α− δ‖2 = −(1/2)N−α′,−α.

By using the properties of a Chevalley basis, we have

Nα,α′ = −N−α,−α′ = N−α′,−α

and the claim follows.

Lemma 3.5. For scalars x and y we have
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(1) τ1(xXδ + yXδ′) = yX−δ − xX−δ′ ,

(2) τ2(xXδ + yXδ′) = (xy/2)(Hδ −Hδ′),

(3) τ3(xXδ + yXδ′) = −(x2y/2)Xδ + (xy2/2)Xδ′ ,

(4) τ4(xXδ + yXδ′) = (x2y2/4)Xγ .

Proof. In light of Lemma 3.1, it is sufficient to carry out the calculations
in sl(3). This is easily done.

Continuing with the above notation, we define

X0 =
√

2(Xδ + Xδ′) ∈ V +.

This point has been chosen so that ∆(X0) = 1.

Proposition 3.3. The point X0 is a generic point of the prehomoge-
neous vector space (L,Ad, V +).

Proof. This follows, by the easy direction in Rubenthaler’s Criterion [17,
18], from the observation that

(
2Hγ ,

√
2(Xδ + Xδ′),

√
2(X−δ + X−δ′)

)

is an sl(2)-triple. We remark that this implication appears as Problem 7 in
Chapter X of [15], for which the proof of Theorem 10.10 in [15] may serve as a
hint.

Lemma 3.6. For ε, ν ∈ R(V +) we have

∂ετ2(X) = (1/2)〈Xε, X〉Hγ + Nε,−γ [X,X−ε′ ]

and
∂εντ2(X) = (1/2)κε,ν′Nε,νHγ + Nε,−γ [Xν , X−ε′ ].

Proof. The definition of τ2 implies that ∂ετ2(X) = (1/2)[Xε, τ1(X)] +
(1/2)[X, τ1(Xε)]. However,

〈Xε, X〉Hγ = [X−γ , 〈X, Xε〉Xγ ]

= [X−γ , [X,Xε]]

= [[X−γ , X], Xε] + [X, [X−γ , Xε]]
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= [Xε, τ1(X)]− [X, τ1(Xε)]

and so ∂ετ2(X) = (1/2)〈Xε, X〉Hγ + [X, τ1(Xε)]. The first formula follows
on noting that τ1(Xε) = Nε,−γX−ε′ . The second formula is an immediate
consequence of the first.

Lemma 3.7. We have ∆δ(X0) = ∆δ′(X0) =
√

2 and ∆α(X0) = 0 for
α ∈ R(V +)− {δ, δ′}.

Proof. The first two values follow directly from Lemma 3.5. From the
second formula of Lemma 2.6 we obtain

∆α(X) = (1/3)Bg

(
(∂ατ2)(X), τ2(X)

)
.

If α /∈ {δ, δ′} then it follows from Lemma 3.6 that (∂ατ2)(X0) lies in either gδ−α′

or gδ′−α′ and is therefore orthogonal to τ2(X0) = Hδ −Hδ′ . This observation
gives the remaining values.

The proof of the next result will follow a pattern that we shall use again
several times. Thus it may be worth mentioning the simple general principle
behind it. It is this: If (L, ρ, W ) is a representation of L and F : V + → W is an
L-equivariant polynomial map such that F (X0) = 0 then F vanishes identically.
The proof is immediate from the fact that (L, Ad, V +) is prehomogeneous and
X0 ∈ V + is generic.

Proposition 3.4. For all X ∈ V + we have

τ3(X) =
∑

α∈R(V +)

N−1
α,α′(∂α∆)(X)Xα′ .

Proof. Lemma 3.5 and Lemma 3.7 imply that the two sides of the pro-
posed identity agree at X0. It therefore suffices to verify that they both trans-
form in the same way under L. Lemma 2.3 implies that the left-hand side
transforms by χ(l)Ad(l) when X is replaced by Ad(l)X. Lemmas 2.9 and 2.7
imply that the right-hand side transforms in the same way under this substi-
tution.

Lemma 3.8. We have

∆δδ(X0) = ∆δ′δ′(X0) = 1

∆δδ′(X0) = ∆δ′δ(X0) = 2.

If α ∈ S(δ) then ∆αα′(X0) = Nα,α′ . If α ∈ S(δ′) then ∆αα′(X0) = −Nα,α′ .
All other second derivatives of ∆ vanish at X0.
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Proof. The values of ∆δδ(X0), . . . , ∆δ′δ′(X0) follow from Lemma 3.5. From
the second formula of Lemma 2.6 we obtain

∆αβ(X) =

(1/3)Bg

(
(∂ατ2)(X), (∂βτ2)(X)

)
+ (1/3)Bg

(
(∂αβτ2)(X), τ2(X)

)
.

Let α, β ∈ R(V +)− {δ, δ′}. We have τ2(X0) = Hδ −Hδ′ and, by Lemma 3.6,

(∂ατ2)(X0) =
√

2Nα,−γ [Xδ + Xδ′ , X−α′ ],

(∂βτ2)(X0) =
√

2Nβ,−γ [Xδ + Xδ′ , X−β′ ],

(∂αβτ2)(X0) = (1/2)κα,β′Nα,βHγ + Nα,−γ [Xβ , X−α′ ].

It is easy to see that if α 6= β′ then (∂ατ2)(X0) and (∂βτ2)(X0) are orthogonal,
and (∂αβτ2)(X0) is orthogonal to τ2(X0). Thus ∆αβ(X0) = 0 in this case. Now
assume that β = α′ and α ∈ S(δ). Then

(∂ατ2)(X0) =
√

2Nα,−γNδ′,−α′Xα−δ,

(∂α′τ2)(X0) =
√

2Nα′,−γNδ,−αXδ−α,

(∂αα′τ2)(X0) = (1/2)Nα,α′Hγ + Nα,−γHα′ .

It follows that

Bg

(
(∂ατ2)(X0), (∂α′τ2)(X0)

)
= 4Nα,−γNα′,−γ

Nδ′,−α′Nδ,−α

‖α− δ‖2
= −2Nα,−γNα′,−γNα,α′

= (1/2)‖α‖4N3
α,α′ ,

where we have used Lemma 3.4 to get from the first line to the second, and
Nα,−γ = −(1/2)‖α‖2Nα,α′ and Nα′,−γ = (1/2)‖α‖2Nα,α′ to get from the sec-
ond line to the last. Now Bg(Hγ , τ2(X0)) = 0 and so

Bg

(
(∂αα′τ2)(X0), τ2(X0)

)
= Nα,−γBg

(
Hα′ ,Hδ −Hδ′

)

= −Nα,−γ
4(α′, δ′)
‖α‖2 ‖δ‖2

= −(2/‖α‖2)Nα,−γ

= Nα,α′ .

Thus

∆αα′(X0) = (1/6)
(
2Nα,α′ + ‖α‖4N3

α,α′
)

= (1/6)Nα,α′
(
2 + ‖α‖4N2

α,α′
)
.
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By Lemma 2.2, ‖α‖4N2
α,α′ = 4, and it follows that ∆αα′(X0) = Nα,α′ . This

completes the evaluation when α ∈ S(δ). Finally, if α ∈ S(δ′) then α′ ∈ S(δ)
and the required evaluation follows from the previous one and the equality of
mixed partials.

Proposition 3.5. For all X ∈ V +, we have

∆αβ(X) = (1/2)〈Xα, X〉〈Xβ , X〉 −Nβ,β′Mαβ′
(
τ2(X)

)
.

Proof. The proof is in two steps. First, we verify that the two sides agree
at X0. Secondly, we verify that they transform in the same way under L. By
Lemma 3.5, τ2(X0) = Hδ −Hδ′ , and using this we obtain the expression

(καδ − καδ′)(κβδ − κβδ′)−Nβ,β′
(
καβ′(α, δ)− καβ′(α, δ′)

)

for the value of the right-hand side at X0. It is routine to check that this agrees
with the values of ∆αβ(X0) given in Lemma 3.8. This completes the first step.

The transformation law for ∆αβ under the substitution X 7→ Ad(l)X
is given in Lemma 2.9, and it is easy to verify that the functions given by
X 7→ 〈Xα, X〉〈Xβ , X〉 share the same transformation law. We finish the proof
by determining the transformation law for the second term on the right-hand
side, since this is more difficult. For X ∈ V + and l ∈ L we have

Nβ,β′Mαβ′
(
τ2(Ad(l)X)

)

= Nβ,β′Mαβ′
(
χ(l)Ad(l)τ2(X)

)

= χ(l)Nβ,β′
[
m(l−1)M(τ2(X))m(l)

]
αβ′

= χ(l)
∑
µ,ν

mαµ(l−1)Mµν′(τ2(X))
(
Nβ,β′mν′β′(l)

)

= −χ(l)2
∑
µ,ν

mαµ(l−1)Mµν′(τ2(X))Nν′,νmβν(l−1)

= χ(l)2
∑
µ,ν

mαµ(l−1)mβν(l−1)
(
Nν,ν′Mµν′(τ2(X))

)
.

During this computation we have made use of the identity M(Ad(l)X) =
m(l−1)M(X)m(l) to get from the second line to the third, and Lemma 2.7
to get from the fourth line to the fifth. This is precisely the same transforma-
tion law that is enjoyed by the other terms in the proposed identity, and so the
proof is complete.

For later use, we note that the formula given in Proposition 3.5 remains
true when g has type Cr. In this case, ∆ is identically zero and the formula is
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equivalent to
〈Xα, X〉〈Xβ , X〉 = 2Nβ,β′Mαβ′

(
τ2(X)

)

for all X ∈ V +. This may be verified by direct computation in this case.

§4. The Fundamental Differential Operators

In this section we shall embed g into the algebra of differential operators
on n via the action derived from a suitable family of induced representations.
In addition, we shall construct other differential operators on n and study their
interaction with the image of g.

Let D[n] be the Weyl algebra of n; that is, the algebra of partial differential
operators on n with polynomial coefficients. This algebra may be regarded as
the quotient of the tensor algebra T •(n ⊕ n∗) by the ideal generated by the
expressions X1⊗X2−X2⊗X1 for X1, X2 ∈ n, λ1⊗λ2−λ2⊗λ1 for λ1, λ2 ∈ n∗,
and X ⊗ λ− λ⊗X − λ(X)1 for X ∈ n and λ ∈ n∗. The class of X ∈ n in D[n]
may be identified with the directional derivative ∂X . As above, if α ∈ R(V +)
or α = γ then we use ∂α as an abbreviation of ∂Xα , and let ξα ∈ n∗ be the
coordinate dual to Xα. We have previously used y and ∂y as synonyms for ξγ

and ∂γ , respectively. If θ : n → n is an invertible linear map then let θ̃ : n∗ → n∗

be the contragredient map; that is, the transpose of θ−1. It is easy to check
that any invertible linear map θ : n → n induces an automorphism of D[n] that
agrees with θ on n and with θ̃ on n∗. In particular, we obtain an action of L

on D[n] induced by the adjoint action of L on n. If D ∈ D[n] and l ∈ L then we
shall write l ·D for the result of applying l to D.

We shall have to consider several D[n]-modules of functions on n, notably
C[n] and C∞(n). If f lies in such a module then we adopt the convention,
common in the algebraic literature, of writing D•f for the result of acting on f

by D ∈ D[n]. This allows us to preserve Df for the product of D and f in D[n]
in the case that f happens to be a polynomial on n. Any module of functions
on n has an action of L given by (l · f)(X) = f(Ad(l−1)X). This action is
compatible with the L action on D[n] in the sense that l · (D•f) = (l ·D)•(l · f)
for all l ∈ L and D ∈ D[n]. The action of D[n] on C[n] and, a fortiori, on C∞(n)
is faithful. Thus we may regard D[n] as a subalgebra of the endomorphism
algebra of either of these modules. However, some care is required with the
natural L actions under this identification, since they do not agree. One would
normally define an L action on End(C∞(n)) by (l ∗ T )(f) = T (l−1 · f) for
T ∈ End(C∞(n)). This action does not leave the image of D[n] in End(C∞(n))
stable. In fact, the two actions are related by

(
(l ∗D)(f)

)
(X) =

(
(l ·D)•f

)
(Ad(l)X).
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Suppose that f ∈ C∞(n). Let N be the connected subgroup of G cor-
responding to n. Since exp : n → N is a diffeomorphism, there is a function
F ∈ C∞(N) that satisfies f(X) = F (exp(X)) for all X ∈ n. This allows us to
identify the spaces C∞(N) and C∞(n). We shall repeatedly use the fact that
the group structure on N is determined by the identity

exp(X1) exp(X2) = exp(X1 + X2 + (1/2)[X1, X2]).

The group N acts on itself on both the left and the right, and this gives rise
to two derived actions of n on C∞(N), and hence on C∞(n). These are given,
respectively, by

(
l(Y )F

)
(x) = dt=0

(
F (exp(−tY )x)

)
(
r(Y )F

)
(x) = dt=0

(
F (x exp(tY ))

)
,

where we use the symbol dt=0 as a shorthand for the operation of differentiating
with respect to t and then evaluating at t = 0. The operators l(Y ) and r(Y )
lie in the image of D[n] in End(C∞(n)) and we shall regard them henceforth
as elements of D[n]. Similar remarks will apply to the other operators that we
construct below.

Lemma 4.1. For Y, Y1, Y2 ∈ n and l ∈ L we have

(1) l(Y ) = −∂Y − (1/2)〈Y, · 〉∂γ ,

(2) r(Y ) = ∂Y − (1/2)〈Y, · 〉∂γ ,

(3) [l(Y1), r(Y2)] = 0,

(4) [l(Y1), l(Y2)] = l([Y1, Y2]),

(5) [r(Y1), r(Y2)] = r([Y1, Y2]),

(6) l · l(Y ) = l(Ad(l)Y ),

(7) l · r(Y ) = r(Ad(l)Y ).

Proof. Parts (1), (2), (4) and (5) are routine computations, and part (3)
follows from the fact that the underlying geometric actions from which l(Y1)
and r(Y2) derive themselves commute. For parts (6) and (7), note first that
by definition l · ∂Y = ∂Ad(l)Y and l · ∂γ = χ(l)∂γ . If we define p ∈ C[n] by
p(X) = 〈Y,X〉 then

(l · p)(X) = 〈Y, Ad(l−1)X〉 = χ(l)−1〈Ad(l)Y,X〉.
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These identities combine to give the last two parts.

We emphasize again that the L action referred to in (6) and (7) of the
lemma is the L action on D[n], not the L action on End(C∞(n)).

Next we wish to extend l to a family of homomorphisms from g into the
Lie algebra underlying D[n], parameterized by a complex number s. Let Q̄ be
the parabolic subgroup of G associated to the parabolic subalgebra q̄ = l ⊕ n̄

of g and N̄ be the connected subgroup of G corresponding to the subalgebra
n̄ of g. We have a Levi decomposition Q̄ = LN̄ and we may extend χ to
be a character of Q̄ by requiring that it be trivial on N̄ . Naively, the fam-
ily of homomorphisms that we require is the one derived from the family of
(unnormalized) induced representations C∞-Ind(G, Q̄; χ−s). This cannot be
taken literally, as there is no way to define the family χ−s of characters on
the complex group Q̄. More precisely, we consider the real structure on g that
corresponds to our chosen Chevalley basis and call the set of real points g0.
This is a split real Lie algebra with the same Dynkin diagram as g, and all
our preceding algebraic constructions carry over without change to g0, yielding
objects defined over R in all cases. Let us use the subscript 0 to denote real
points in general. The character χ is real-valued on L0 and we may consider
the family of homomorphisms from g0 to D[n0] that derives from the family
of induced representations C∞-Ind(G0, Q̄0; |χ|−s). Complexifying this family
leads to the family of homomorphisms from g to D[n] that we require.

Let s ∈ C and F ∈ C∞(N0). The Bruhat decomposition associated to the
parabolic subgroup Q̄0 implies that N0Q̄0 is a dense open subset of G0. Note
that this subset is stable under left multiplication by L0. For each x ∈ N0

there is an open set Ux ⊂ G0 containing L0 such that g ∈ Ux implies that
g−1x ∈ N0Q̄0. If g ∈ Ux then we may write

g−1x = ν(g, x)q̄(g, x)

with ν(g, x) ∈ N0 and q̄(g, x) ∈ Q̄0. In terms of this decomposition we define

(
πs(g)F

)
(x) = |χ(q̄(g, x))|sF (ν(g, x)),

thereby obtaining the germ of a representation of G0 on C∞(N0). If we added
appropriate growth conditions then this would simply be the so-called non-
compact model of the smooth induced representation C∞-Ind(G0, Q̄0; |χ|−s).
However, for our current purposes, the growth conditions are irrelevant. Let
Πs : g0 → End(C∞(N0)) be the derived representation of πs, which we may
also regard as mapping into End(C∞(n0)). We shall see that the image of
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Πs lies in D[n0]. Once we know this, we may complexify to obtain the map
Πs : g → D[n] that is our current goal.

It follows directly from the definitions that Πs(Y ) = l(Y ) for Y ∈ n0,
and this identity extends to Y ∈ n on complexification. Our next task is to
determine Πs(Z) for Z ∈ l.

Lemma 4.2. If Z ∈ l then Πs(Z) = −∂[Z, · ] − sλχ(Z).

Proof. If l ∈ L0 and x ∈ N0 then l−1x = (l−1xl)l−1 and so ν(l, x) =
l−1xl and q̄(l, x) = l−1. Thus for F ∈ C∞(N0) we have (πs(l)F )(x) =
|χ(l)|−sF (l−1xl). Let Z ∈ l0 and X ∈ n0 and put l = exp(tZ) and x = exp(X)
in the previous equation. If f ∈ C∞(n0) is the function corresponding to F

then the result may be written as

(
πs(exp(tZ))F

)
(exp(X)) = χ(exp(tZ))−sf

(
Ad(exp(−tZ))(X)

)
.

Differentiating this expression with respect to t and setting t = 0, we obtain

(
Πs(Z)•f

)
(X) = −sλχ(Z)f(X)− (

∂[Z,X]•f
)
(X),

which is the required expression when Z ∈ l0. The general identity follows at
once on complexification.

In order to understand Πs we still require a tractable expression for Πs(Y )
when Y ∈ n̄. Actually, by Lemma 2.1, it suffices to have such an expression for
Πs(X−γ). The next two results give these expressions. The first is a general, but
somewhat unwieldy, formula for Πs(Y ); the second is a much simpler formula
for Πs(X−γ). We have the direct decompositions

g = n⊕ q̄ = n⊕ l⊕ n̄

and we let prn, prq̄, and prl be the projection operators onto the indicated
subalgebras. On occasion, we write eX in place of exp(X) to save space.

Proposition 4.1. Let Y ∈ g, X ∈ n and f ∈ C∞(n). Then

(
Πs(Y )•f

)
(X) =

− (
r
(
prn(Ad(e−X)(Y ))

)
•f

)
(X)− sλχ

(
prl(Ad(e−X)(Y ))

)
f(X).

Proof. As usual we first work in the real setting, observe that the resulting
operator Πs(Y ) lies in D[n0] and is given by the correct expression, and finally
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obtain the expression in general on complexification. We have

exp(−tY ) exp(X)

= exp(X) exp(−X) exp(−tY ) exp(X)

= exp(X) exp(−tAd(e−X)(Y ))

= exp(X) exp
(− tprn(Ad(e−X)(Y ))− tprq̄(Ad(e−X)(Y ))

)
.

It follows from the Bruhat decomposition that there is some ε > 0 and a map
θn : (−ε, ε) → N0 such that

ν(exp(tY ), exp(X)) = exp(X) exp
(− tprn(Ad(e−X)(Y ))

)
θn(t)

for all t ∈ (−ε, ε). Comparing this expression and the previous one, we conclude
that θn(0) = e and θ′n(0) = 0. Similarly, after possibly decreasing ε, there is a
map θq̄ : (−ε, ε) → Q̄0 such that

q̄(exp(tY ), exp(X)) = exp
(− tprq̄(Ad(e−X)(Y ))

)
θq̄(t)

for all t ∈ (−ε, ε), and we have θq̄(0) = e and θ′̄q(0) = 0.
Let F ∈ C∞(N0) be the function that corresponds to f . Then

(
πs(exp(tY ))F

)
(exp(X)) =

χ
(
q̄(exp(tY ), exp(X))

)s
F

(
ν(exp(tY ), exp(X))

)

and
(
Πs(Y )•f

)
(X) is the result of applying dt=0 to this. Since χ has been

extended to be trivial on N̄0,

dt=0χ
(
q̄(exp(tY ), exp(X))

)s = −sλχ

(
prl(Ad(e−X)(Y ))

)
.

The definition of r implies that

dt=0F
(
ν(exp(tY ), exp(X))

)
= −(

r
(
prn(Ad(e−X)(Y ))

)
•f

)
(X).

Combining these two evaluations gives the required expression for real X and
Y . Notice that this expression implies that Πs(Y ) lies in D[n0], which is the
last ingredient required to complete the argument.

If f1, f2 ∈ C∞(n) then we define

{f1, f2} =
∑

α∈R(V +)

N−1
α,α′(∂α•f1)(∂α′•f2).
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This bilinear form is essentially the Poisson bracket associated to the degenerate
alternating form 〈 · , · 〉 on n. If f ∈ C[n] then

{f, · } =
∑

α∈R(V +)

N−1
α,α′(∂α•f)∂α′

is an element of D[n] having the property that {f, · }•φ = {f, φ} for all φ ∈
C∞(n). Define E ∈ D[n] by

E = 2ξγ∂γ +
∑

α∈R(V +)

ξα∂α.

This is the Euler operator associated to the grading of C[n] that assigns the Hγ-
eigenvalue as the weight. Explicitly, this weight function satisfies wt(ξα) = 1
for α ∈ R(V +) and wt(ξγ) = 2. If f ∈ C[n] is homogeneous with respect to
this weight function then [E, f ] = E•f = wt(f)f . We may extend wt to C[n∗]
by defining wt(∂α) = −1 for α ∈ R(V +) and wt(∂γ) = −2. If D ∈ C[n∗] is
homogeneous for wt then we have [E, D] = wt(D)D.

Proposition 4.2. In D[n] we have

Πs(X−γ) = −P∂γ + ξγE + {∆, · }+ 2sξγ ,

where P = ξ2
γ −∆.

Proof. Let X ∈ V +. From (2.2) we have the identity

Ad(e−(X+ξγXγ))(X−γ) =

X−γ − τ1(X) +
(
τ2(X)− ξγHγ

)− (
ξγX + τ3(X)

)
+

(
∆(X)− ξ2

γ

)
Xγ

from which it follows that

prl

(
Ad(e−(X+ξγXγ))(X−γ)

)
= τ2(X)− ξγHγ ,

prn

(
Ad(e−(X+ξγXγ))(X−γ)

)
= −ξγX − τ3(X) +

(
∆(X)− ξ2

γ

)
Xγ .

Now [Hγ , Xγ ] = 2Xγ and so λχ(Hγ) = 2. On the other hand, we have
[τ2(X), Xγ ] = 0 by Lemma 2.4 and so λχ(τ2(X)) = 0. These evaluations
imply that

λχ

(
prl(Ad(e−(X+ξγXγ))(X−γ))

)
= −2ξγ ,

which gives us the value of the second term in the expression from Proposition
4.1 with Y = X−γ . The first term in that expression is now revealed to be a sum
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of three terms, namely ξγr(X), r(τ3(X)) and −(∆(X)− ξ2
γ)r(Xγ). To evaluate

these terms, we begin with the formula for r given in part (2) of Lemma 4.1.
From this formula we obtain r(Xγ) = ∂γ and, since 〈X,X〉 = 0,

r(X) = ∂X =
∑

α∈R(V +)

ξα∂α = E − 2ξγ∂γ .

Moreover, r(τ3(X)) = ∂τ3(X) − (1/2)〈τ3(X), X〉∂γ . By definition,

〈τ3(X), X〉Xγ = [τ3(X), X]

= −4τ4(X)

= −4∆(X)Xγ ,

so that 〈τ3(X), X〉 = −4∆(X). By using the expression for τ3(X) given in
Proposition 3.4, we obtain

∂τ3(X) =
∑

α∈R(V +)

N−1
α,α′(∂α•∆)∂α′ = {∆, · }.

These evaluations combine to give r(τ3(X)) = {∆, · } + 2∆∂γ . By adding all
these terms and simplifying we obtain the expression in the statement.

For α ∈ R(V +) define ∇α ∈ D[n] by

∇α = r(Xα) = ∂α − (1/2)Nα,α′ξα′∂γ .

For µ ∈ R define Dµ = Πs(Xµ). Although Dµ may depend on s, we suppress
this dependence in the notation. If f ∈ C∞(n) and α, β ∈ R(n) then let
fα = ∂α•f , fαβ = (∂β∂α)•f , and similarly for higher partial derivatives.

Proposition 4.3. Let α ∈ R(V +), β ∈ R(n), and Z ∈ l. Then we have
[Dβ ,∇α] = 0 and

[Πs(Z),∇α] =
∑

µ∈R(V +)

Mαµ(Z)∇µ.

Proof. The first claim follows at once from part (3) of Lemma 4.1. As an
element of D[n], we have

∂[Z, · ] = λχ(Z)ξγ∂γ +
∑

µ,ν∈R(V +)

Mµν(Z)ξµ∂ν
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and so

[Πs(Z),∇α]

= −[∂[Z, · ], ∂α − (1/2)Nα,α′ξα′∂γ ]

=
∑

ν∈R(V +)

Mαν(Z)∂ν − (1/2)Nα,α′λχ(Z)ξα′∂γ

+ (1/2)Nα,α′
∑

µ∈R(V +)

Mµα′(Z)ξµ∂γ

by direct calculation. On the other hand,
∑

µ∈R(V +)

Mαµ(Z)∇µ

=
∑

µ∈R(V +)

Mαµ(Z)
(
∂µ − (1/2)Nµ,µ′ξµ′∂γ

)

=
∑

µ∈R(V +)

Mαµ(Z)∂µ

− (1/2)
∑

µ∈R(V +)

(−Nα,α′Mµ′α′(Z)ξµ′ + καµNα,α′λχ(Z)ξµ′
)
∂γ

=
∑

µ∈R(V +)

Mαµ(Z)∂µ − (1/2)Nα,α′λχ(Z)ξα′∂γ

+ (1/2)Nα,α′
∑

µ∈R(V +)

Mµα′(Z)ξµ∂γ ,

where we have used Lemma 2.7 to get from the second line to the third. This
establishes the second claim.

Theorem 4.1. For α, µ ∈ R(V +) let

Λαµ = −καµξγ + Mαµ(τ2),

where Mαµ(τ2) denotes the polynomial X 7→ Mαµ(τ2(X)). Then

[D−γ ,∇α] =
∑

µ∈R(V +)

Λαµ∇µ + sNα,α′ξα′ .

Proof. Let

Λ̃αµ = −καµξγ + (1/2)Nα,α′ξα′ξµ + N−1
µ,µ′∆αµ′ .

We first establish the identity with Λ̃ in place of Λ and then show that Λ̃ = Λ.
Let us compute the left-hand side explicitly using the expression for D−γ given
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in Proposition 4.2. Most of the computations involved in finding the individual
commutators are routine, and for these we merely give the result. We have
[P∂γ , ∂α] = ∆α∂γ , [ξγE, ∂α] = −ξγ∂α, and

[{∆, · }, ∂α] = −{∆α, · }
= −

∑
µ

N−1
µ,µ′∆αµ∂µ′

=
∑

µ

N−1
µ,µ′∆αµ′∂µ,

where the sums are over µ ∈ R(V +) and we have replaced µ by µ′ and used
the skew-symmetry of N to obtain the last line. These evaluations combine to
give

[D−γ , ∂α] = −ξγ∂α +
∑

µ

N−1
µ,µ′∆αµ′∂µ −∆α∂γ .

Similarly, we have [P∂γ , ξα′∂γ ] = −2ξα′ξγ∂γ , [ξγE, ξα′∂γ ] = −ξα′ξγ∂γ − ξα′E,
[ξγ , ξα′∂γ ] = −ξα′ , and [{∆, · }, ξα′∂γ ] = {∆, ξα′}∂γ = N−1

α,α′∆α∂γ . These
evaluations yield

[D−γ , ξα′∂γ ] = ξα′ξγ∂γ − ξα′E + N−1
α,α′∆α∂γ − 2sξα′

and so

[D−γ ,∇α] = −ξγ∂α + (1/2)Nα,α′ξα′
∑

λ

ξλ∂λ +
∑

µ

N−1
µ,µ′∆αµ′∂µ

− (3/2)∆α∂γ + (1/2)Nα,α′ξα′ξγ∂γ + sNα,α′ξα′ .

Now Λ̃αµ is the coefficient of ∂µ on the right-hand side of this equation, and
the final term involving s is as stated. In order to verify the identity with Λ̃
in place of Λ, it remains to show that the coefficient of ∂γ is correct. This
amounts to the equation

−1
2

∑
µ

Nµ,µ′Λ̃αµξµ′ = −3
2
∆α +

1
2
Nα,α′ξα′ξγ .

The term in Λ̃αµ involving the Kronecker symbol gives the second term on the
right, and

∑
µ

Nµ,µ′
(
(1/2)Nα,α′ξα′ξµ + N−1

µ,µ′∆αµ′
)
ξµ′

= (1/2)Nα,α′ξα′
∑

µ

Nµ,µ′ξµξµ′ +
∑

µ

∆αµ′ξµ′

= 3∆α,
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since the first term on the second line is zero by the skew-symmetry of Nµ,µ′

and the second term is 3∆α by Euler’s identity. This completes the first step.
It remains to show that Λ̃ = Λ. Well, by Proposition 3.5,

∆αµ′ = (1/2)〈Xα, · 〉〈Xµ′ , · 〉 −Nµ′,µMαµ(τ2)

= (1/2)Nα,α′Nµ′,µξα′ξµ + Nµ,µ′Mαµ(τ2),

and substituting this into the definition of Λ̃αµ gives what is required.

§5. Conformally Invariant Systems I

In this section, we shall construct maps

Ω1 : V + → D[n],

Ω2 : l → D[n],

corresponding to the covariants τ1 and τ2, respectively. Each of these maps
will give one or more conformally invariant systems of differential equations for
a specific value of the parameter s. Note that the domain of Ωj is the dual
space with respect to Bg of the codomain of τj . By duality, each element of
the domain is thus made to correspond to a polynomial on V +. We then define
Ωj by a symbolic substitution process, chosen to respect the L action. The
variables ξα span a copy of (V +)∗ in D[n], whereas, by part (7) of Lemma 4.1,
the ∇α span a copy of V +. The isomorphism ϕ : V + → χ⊗ (V +)∗ that derives
from the existence of the bilinear form 〈 · , · 〉 satisfies ϕ(Xα) = Nα,α′ξα′ , and
so we replace ξα by −N−1

α,α′∇α′ . We also symmetrize whenever more than one
∇α is involved in a single term, to account for the fact that the ∇α do not
commute amongst themselves.

We first establish two useful conventions and recall some facts. Once a
map Ωj has been defined as above, we shall immediately extend it to be a left
C[n]-linear map from C[n] ⊗ Dom(Ωj) to D[n]. Throughout this section, we
shall write X =

∑
ν∈R(V +) ξνXν ∈ C[n] ⊗ n for the generic element of V +. If

Z ∈ l satisfies λχ(Z) = 0 then Lemma 2.7 implies that

(5.1) N−1
β,β′Mβ′α(Z) = N−1

α,α′Mα′β(Z)

for all α, β ∈ R(V +). We shall make repeated use of this identity below. From
Lemma 2.4, [τ2(X), Xγ ] = 0 and so λχ(τ2(X)) = 0. Thus (5.1) applies in
particular to Z = τ2(X).

The map Ω1 : V + → D[n] is to be modeled on the map

Y 7→ (
X 7→ Bg(τ1(X), Y )

)
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by the procedure described above. Now Bg(τ1(X), Y ) = −〈X, Y 〉 and this
leads us to define

Ω1(Y ) =
∑

α∈R(V +)

N−1
α,α′〈Y, Xα′〉∇α.

Note that Ω1(Xβ) = ∇β , so that Ω1 is simply the left C[n]-linear extension of
the map r : V + → D[n] defined in Section 4. The reason for introducing this
redundant notation is to emphasize the uniformity between the various Ωj .

Theorem 5.1. For all Y ∈ V + we have

[D−γ , Ω1(Y )] = −ξγΩ1(Y ) + Ω1

(
[τ2(X), Y ]

)
+ s〈Y,X〉.

Proof. For Y = Xα, the proposed identity follows from Theorem 4.1.
Since both sides are linear in Y , this is sufficient.

Next we define a map Ω2 : l → D[n] modeled on the map l → C[n] given
by

Z 7→ (
X 7→ Bg(τ2(X), Z)

)
.

A computation reveals that

Bg(τ2(X), Z) = −1
2

∑

α,β∈R(V +)

Nα,α′Mβα′(Z)ξαξβ ,

and this leads us to define

Ω2(Z) =
1
2

∑

α,β∈R(V +)

N−1
β,β′Mβ′α(Z)p∇α∇βq,

where p∇α∇βq = (1/2)(∇α∇β +∇β∇α). By using the transformation law for
τ2 and the invariance of Bg, one verifies that

Bg

(
τ2(X), Ad(l)Z

)
= χ(l)Bg

(
τ2(Ad(l−1)X), Z

)
.

It follows from this, on taking account of the dualization in passing from the
original map to Ω2, that Ω2(Ad(l)Z) = χ(l)−1l ·Ω2(Z) for all Z ∈ l and l ∈ L.

Observe that Ω2(Hγ) = 0. For this reason, we focus our attention on
those Z that lie in the kernel of λχ. For such Z, it a consequence of (5.1)
that the symmetrization in the definition of Ω2(Z) is unnecessary. Thus, for
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Z ∈ ker(λχ),

Ω2(Z) =
1
2

∑

α,β∈R(V +)

N−1
β,β′Mβ′α(Z)∇β∇α

=
1
2

∑

α,β∈R(V +)

N−1
β,β′Mβ′α(Z)Ω1(Xβ)Ω1(Xα)

=
1
2

∑

β∈R(V +)

N−1
β,β′Ω1(Xβ)Ω1([Z, Xβ′ ]).

For later use, we note the alternate expression

Ω2(Z) = −1
2

∑

α∈R(V +)

N−1
α,α′Ω1([Z, Xα])Ω1(Xα′),

which may be similarly obtained.

Theorem 5.2. Let C be a component of Dγ(g, h). For all Z ∈ l(C) we
have

[D−γ ,Ω2(Z)] = −2ξγΩ2(Z) + Ω2([τ2(X), Z]) + (s− s2)Ω1([Z, X]),

with s2 = (1/2)c(g, C)− 1.

Proof. Note that l(C) is contained in the kernel of λχ. The proposed
identity is linear in Z and one may verify, using the transformation laws that
have been given for the various objects involved, that

[D−γ , Ω2(Ad(l)Z)] = l · [D−γ , Ω2(Z)],

and that the right-hand side enjoys the same transformation law under L. The
set Ad(L)(h ∩ l(C)) is dense in l(C) and it follows that it suffices to establish
the identity for Z ∈ h∩ l(C). Since this set is spanned by {Hλ | λ ∈ R(l,C)}, it
in fact suffices to establish the identity with Z = Hλ. Under this assumption
we have

Ω2(Z) =
1
2

∑

β

N−1
β,β′β

′(Z)Ω1(Xβ)Ω1(Xβ′),

where the sum is understood to run over R(V +). We shall use Z and Hλ

interchangeably below, since the precise identity of Z is often irrelevant. It
follows that

(5.2) [D−γ , Ω2(Z)] =
1
2

∑

β

N−1
β,β′β

′(Z)[D−γ , Ω1(Xβ)Ω1(Xβ′)]
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and, by Theorem 5.1,

[D−γ , Ω1(Xβ)Ω1(Xβ′)]

= [D−γ , Ω1(Xβ)]Ω1(Xβ′) + Ω1(Xβ)[D−γ ,Ω1(Xβ′)]

=
(− ξγΩ1(Xβ) + Ω1([τ2(X), Xβ ]) + s〈Xβ , X〉)Ω1(Xβ′)

+ Ω1(Xβ)
(− ξγΩ1(Xβ′) + Ω1([τ2(X), Xβ′ ]) + s〈Xβ′ , X〉

)
.

Our task now is to determine the contribution made when each term in this
expression is substituted back into (5.2).

First,

Ω1(Xβ)ξγΩ1(Xβ′) = ξγΩ1(Xβ)Ω1(Xβ′) +
(
Ω1(Xβ)•ξγ

)
Ω1(Xβ′)

= ξγΩ1(Xβ)Ω1(Xβ′)− (1/2)Nβ,β′ξβ′Ω1(Xβ′)

and so the contribution from this term and −ξγΩ1(Xβ)Ω1(Xβ′) is

1
2

∑

β

N−1
β,β′β

′(Z)
(− 2ξγΩ1(Xβ)Ω1(Xβ′) + (1/2)Nβ,β′ξβ′Ω1(Xβ′)

)

= −2ξγΩ2(Z) +
1
4

∑

β

β′(Z)ξβ′Ω1(Xβ′)

= −2ξγΩ2(Z) + (1/4)Ω1([Z, X]).

Secondly, we consider the contribution from the terms containing s. It is

1
2
s
∑

β

N−1
β,β′β

′(Z)
(
Nβ,β′ξβ′Ω1(Xβ′) + Ω1(Xβ)Nβ′,βξβ

)

=
1
2
s
∑

β

β′(Z)
(
ξβ′Ω1(Xβ′)− Ω1(Xβ)ξβ

)

=
1
2
s
∑

β

β′(Z)
(
ξβ′Ω1(Xβ′)− ξβΩ1(Xβ)− 1

)

=
1
2
s
∑

β

β′(Z)ξβ′Ω1(Xβ′) +
1
2
s
∑

β

β(Z)ξβΩ1(Xβ)− 1
2
s
∑

β

β′(Z)

= sΩ1([Z, X]),

where we have used the facts that β(Z) = −β′(Z) and
∑

β β′(Z) = 0, both of
which are true because γ(Z) = 0.

Before determining the contribution from the remaining terms, we de-
rive an alternate expression for Ω2([τ2, Z]). It is easy to verify that we have
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Mαβ([τ2(X), Z]) = (α(Z) − β(Z))Mαβ(τ2(X)) for all α, β ∈ R(V +) and this
identity will be used in the derivation. Equation (5.1) will also be required,
and we choose to include the (optional) symmetrization in the definition of Ω2

in this case. We have

Ω2([τ2(X), Z]) =
1
2

∑
µ,ν

N−1
µ,µ′Mµ′ν([τ2(X), Z])pΩ1(Xµ)Ω1(Xν)q

=
1
2

∑
µ,ν

N−1
µ,µ′(µ

′(Z)− ν(Z))Mµ′ν(τ2(X))pΩ1(Xµ)Ω1(Xν)q

=
1
2

∑
µ,ν

N−1
µ,µ′µ

′(Z)Mµ′ν(τ2(X))pΩ1(Xµ)Ω1(Xν)q

+
1
2

∑
µ,ν

N−1
ν,ν′ν

′(Z)Mν′µ(τ2(X))pΩ1(Xµ)Ω1(Xν)q

=
∑
µ,ν

N−1
µ,µ′µ

′(Z)Mµ′ν(τ2(X))pΩ1(Xµ)Ω1(Xν)q.

We are now ready to tackle the contribution from the remaining terms,
which is

1
2

∑

β

N−1
β,β′β

′(Z)
(
Ω1([τ2(X), Xβ ])Ω1(Xβ′) + Ω1(Xβ)Ω1([τ2(X), Xβ′ ])

)

=
1
2

∑

β,µ

N−1
β,β′β

′(Z)Mβµ(τ2(X))Ω1(Xµ)Ω1(Xβ′)

+
1
2

∑

β,µ

N−1
β,β′β

′(Z)Ω1(Xβ)Mβ′µ(τ2(X))Ω1(Xµ)

=
1
2

∑

β,µ

N−1
β,β′β

′(Z)Mβµ(τ2(X))Ω1(Xµ)Ω1(Xβ′)

+
1
2

∑

β,µ

N−1
β,β′β

′(Z)Ω1(Xβ′)Mβµ(τ2(X))Ω1(Xµ)

=
∑

β,µ

N−1
β,β′β

′(Z)Mβµ(τ2(X))pΩ1(Xµ)Ω1(Xβ′)q

+
1
2

∑

β,µ

N−1
β,β′β

′(Z)
(
Ω1(Xβ′)•Mβµ(τ2(X))

)
Ω1(Xµ)

=
∑

β,µ

N−1
β,β′β

′(Z)Mβ′µ(τ2(X))pΩ1(Xµ)Ω1(Xβ)q

+
1
2

∑

β,µ

N−1
β,β′β

′(Z)
(
Ω1(Xβ)•Mβ′µ(τ2(X))

)
Ω1(Xµ)



Conformally Invariant Systems 45

= Ω2([τ2(X), Z]) +
1
2

∑

β,µ

N−1
β,β′β

′(Z)Mβ′µ(∂β•τ2(X))Ω1(Xµ)

= Ω2([τ2(X), Z]) +
1
2

∑

β

N−1
β,β′β

′(Z)Ω1

(
[∂β•τ2(X), Xβ′ ]

)
.

For brevity, let us refer to the second term above as T . Lemma 3.6 and the
Jacobi identity give

[∂β•τ2(X), Xβ′ ]

= (1/2)〈Xβ , X〉[Hγ , Xβ′ ] + Nβ,−γ [[X,X−β′ ], Xβ′ ]

= (1/2)〈Xβ , X〉Xβ′ + Nβ,−γ [[X,X−β′ ], Xβ′ ]

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [[X, X−β′ ], Xβ′ ]

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [X, [X−β′ , Xβ′ ]]−Nβ,−γ [X−β′ , [X, Xβ′ ]]

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [Hβ′ , X]−Nβ,−γNβ,β′ξβ [X−β′ , Xγ ]

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [Hβ′ , X]−Nβ,−γNβ,β′N−β′,γξβXβ

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [Hβ′ , X] + Nβ,β′Nβ,−γNβ′,−γξβXβ

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [Hβ′ , X]− (1/4)‖β‖4N3
β,β′ξβXβ

= (1/2)Nβ,β′ξβ′Xβ′ + Nβ,−γ [Hβ′ , X]−Nβ,β′ξβXβ .

By substituting this into the above expression for T we obtain

T = (3/4)Ω1([Z,X]) +
1
2

∑

β

N−1
β,β′β

′(Z)Nβ,−γΩ1([Hβ′ , X])

= (3/4)Ω1([Z,X])− 1
4

∑

β

‖β‖2β′(Z)Ω1([Hβ′ , X]).

In order to complete the proof, it remains to show that the second summand in
this expression is equal to −(1/2)c(g, C)Ω1([Z, X]). Recall that Z = Hλ with
λ ∈ R(l, C). We have

−1
4

∑

β

‖β‖2β′(Hλ)Ω1

(
[Hβ′ , X]

)

= −1
4

∑

β,ν

‖β‖2β′(Hλ)ξνΩ1

(
[Hβ′ , Xν ]

)

= −1
4

∑

β,ν

‖β‖2β′(Hλ)ν(Hβ′)ξνΩ1(Xν)

= − 1
‖λ‖2

∑
ν

( ∑

β

(ν, β′)(β′, λ)
)

ξνΩ1(Xν)
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= −c(g, C)
‖λ‖2

∑
ν

(ν, λ)ξνΩ1(Xν)

= −1
2
c(g, C)

∑
ν

ν(Hλ)ξνΩ1(Xν)

= −(1/2)c(g, C)Ω1([Hλ, X]).

The critical step, from line four to line five, was made with the aid of Proposition
2.1. This completes the proof.

Theorem 5.2 does not exhaust the conformally invariant systems that can
be derived from Ω2. When g is of type Ar, there is an additional conformally
invariant differential operator on n associated with Ω2. It appears because,
in this case, the span of Hγ does not exhaust the center of l. We shall now
complete our discussion of Ω2 by describing this operator.

For the remainder of this section, we shall assume that g = sl(r + 1) and
use the standard matrices Eij to describe elements of this algebra. We shall
take q to be the standard block-upper-triangular parabolic subalgebra of g

corresponding to the partition (1, r − 1, 1) of r + 1. The root system will be
described using the standard picture inside Rr+1 in which R+ = {ei − ej | 1 ≤
i < j ≤ r + 1}. Then γ = e1 − er+1 and R(V +) = {βj , β

′
j | 1 ≤ j ≤ (r − 1)}

with βj = e1 − ej+1. For brevity, we write Xj for Xβj = E1,j+1 and X ′
j for

Xβ′j = Ej+1,r+1. We take Xγ = E1,r+1 so that Nβj ,β′j = 1 for all j. Let

Z0 =
2

r + 1

(
E22 + · · ·+ Err − r − 1

2
(
E11 + Er+1,r+1

)) ∈ g.

This element lies in the center of l and λχ(Z0) = 0. The normalization has
been chosen so that [Z0, Xj ] = −Xj and [Z0, X

′
j ] = X ′

j for all 1 ≤ j ≤ (r − 1).
It follows that

Ω2(Z0) =
r−1∑

j=1

pΩ1(Xj)Ω1(X ′
j)q,

which may also be expressed as

Ω2(Z0) =
r−1∑

j=1

Ω1(Xj)Ω1(X ′
j)−

r − 1
2

∂γ .

Theorem 5.3. We have

[D−γ ,Ω2(Z0)] = −2ξγΩ2(Z0) +
(

s− r − 1
2

)
Ω1([Z0, X]).
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Proof. The majority of the computations made in the proof of Theorem
5.2 remain valid here, and it is routine to modify the others to complete the
proof. However, it is perhaps easier to compute the commutator from scratch
using the special features of the current situation. If we let ξj and ξ′j be the
coordinates dual to Xj and X ′

j , respectively, and define

∆0 =
1
2

r−1∑

j=1

ξjξ
′
j

then

τ2(X) = ∆0(X)(E11 + Er+1,r+1)−
r−1∑

i,j=1

ξ′iξjEi+1,j+1.

This gives

[τ2(X), Xj ] = ∆0(X)Xj + ξ′j

r−1∑

i=1

ξiXi,

[τ2(X), X ′
j ] = −∆0(X)X ′

j − ξj

r−1∑

i=1

ξ′iX
′
i,

and makes it easy to obtain explicit expressions for both [D−γ , Ω1(Xj)] and
[D−γ ,Ω1(X ′

j)] from Theorem 5.1. The computation is easily completed from
this point.

§6. Conformally Invariant Systems II

In this section, we assume that the algebra g is not of type Cr, so that
the covariants τ3 and τ4 are not identically zero. Simply put, our aim is to
construct maps

Ω3 : V − → D[n],

Ω4 : g−γ → D[n],

corresponding to these covariants. However, two complications will arise, one
related to the fact that Dγ(g, h) may fail to be connected, and the other to the
need for “correction terms” to secure conformal invariance. Because of the first
complication, we shall only construct Ω3 when g is an exceptional algebra. In
the exceptional cases, Ω3 is essential to reach our overall goal, whereas in the
classical cases it is not. To specify Ω4 it suffices to give the element Ω4(X−γ)
and this is what we shall do.
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Let us first establish some further notation. We extend the symmetrization
operator used above by setting

pabcq = (1/6)(abc + acb + bac + bca + cab + cba)

and similarly for more than three factors. To determine which symmetrization
operator is meant, one looks at the number of factors at the topmost level:
thus, for example, p(ab)cq = (1/2)(abc + cab), since the expression (ab)c has
two factors at the topmost level.

The algebra l decomposes as l = CHγ ⊕ ker(λχ) and we write pr0 : l →
ker(λχ) for the projection onto the second summand. Explicitly, we have

pr0(Z) = Z − (1/2)λχ(Z)Hγ .

Because Ω2(Hγ) = 0, we have Ω2(Z) = Ω2(pr0(Z)) for all Z ∈ l. If g is
not of type Ar then ker(λχ) is the direct sum of l(C) over all components
C of Dγ(g, h). If g is of type Ar then Dγ(g, h) has a single component and
ker(λχ) = CZ0⊕ l(C), where Z0 is the element introduced at the end of Section
5. For these reasons, Theorems 5.2 and 5.3 between them serve to determine
all possible commutators [D−γ , Ω2(Z)] for Z ∈ l.

For Y ∈ V − we have

Bg(τ3(X), Y ) =
1
6

∑

α,β,ε∈R(V +)

Nα,α′Mβα′([Xε, Y ])ξαξβξε

and the yoga explained earlier leads us to define

Ω′3(Y ) = −1
6

∑

α,β,ε∈R(V +)

N−1
β,β′N

−1
ε,ε′Mβ′α([Xε′ , Y ])p∇α∇β∇εq.

As with Ω2, one verifies that Ω′3(Ad(l)Y ) = χ(l)−2l · Ω′3(Y ) for all l ∈ L and
Y ∈ V −. Our first task will be to obtain a more tractable expression for
Ω′3(Y ). We remark that the nature of the correction term mentioned above
will be revealed as a byproduct of doing this.

Lemma 6.1. For α, β, ε ∈ R(V +) we have

p∇α∇β∇εq = p(∇α∇β)∇εq− (1/2)καβ′Nα,α′∇ε∂γ .

Proof. For notational compactness, let us write ∇αβε for ∇α∇β∇ε. Note
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that [∇µ,∇ν ] = κµν′Nµ,µ′∂γ and that ∂γ commutes with all ∇α. Thus

p∇α∇β∇εq
= (1/6)

(∇αβε +∇αεβ +∇βαε +∇βεα +∇εαβ +∇εβα

)

= (1/6)
(∇αβε +∇αβε +∇α[∇ε,∇β ] +∇βαε

+∇εβα + [∇β ,∇ε]∇α +∇εαβ +∇εβα

)

= (1/6)
(
2∇αβε +∇βαε +∇εαβ + 2∇εβα

)

= (1/6)
(
3∇αβε + [∇β ,∇α]∇ε + 3∇εαβ + 2∇ε[∇β ,∇α]

)

= p(∇α∇β)∇εq− (1/2)[∇α,∇β ]∇ε

= p(∇α∇β)∇εq− (1/2)καβ′Nα,α′∇ε∂γ .

Lemma 6.2. We have
∑

α∈R(V +) N−1
α,α′∇α∇α′ = (1/2) dim(V +)∂γ .

Proof. Let the indicated sum be S. Then

S = −
∑
α

N−1
α,α′∇α′∇α

= −
∑
α

N−1
α,α′

(∇α∇α′ + [∇α′ ,∇α]
)

= −S +
∑
α

∂γ

= −S + dim(V +)∂γ

and the evaluation follows.

Lemma 6.3. For ε ∈ R(V +) and Y ∈ V − we have λχ([Xε, Y ]) =
〈Xε, [Y,Xγ ]〉.

Proof. Since [Xε, Xγ ] = 0,

λχ([Xε, Y ])Xγ = [[Xε, Y ], Xγ ] = [Xε, [Y,Xγ ]] = 〈Xε, [Y, Xγ ]〉Xγ .

Proposition 6.1. For all Y ∈ V − we have

Ω′3(Y ) = −1
6

∑

α,β,ε∈R(V +)

N−1
β,β′N

−1
ε,ε′Mβ′α(pr0[Xε′ , Y ])p∇α∇β∇εq.
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Proof. It suffices to show that

S =
∑

α,β,ε

N−1
β,β′N

−1
ε,ε′λχ([Xε′ , Y ])Mβ′α(Hγ)p∇α∇β∇εq

is zero. Now M(Hγ) is the identity matrix and so

S = −
∑
α,ε

N−1
α,α′N

−1
ε,ε′λχ([Xε′ , Y ])p∇α∇α′∇εq.

Lemma 6.1 gives p∇α∇α′∇εq = p(∇α∇α′)∇εq−(1/2)Nα,α′∇ε∂γ , and it follows
that

S = −
∑
α,ε

N−1
α,α′N

−1
ε,ε′λχ([Xε′ , Y ])p(∇α∇α′)∇εq +

1
2

∑
α,ε

N−1
ε,ε′λχ([Xε′ , Y ])∇ε∂γ

=
dim(V +)

2

[
−

∑
ε

N−1
ε,ε′λχ([Xε′ , Y ])p∂γ∇εq +

∑
ε

N−1
ε,ε′λχ([Xε′ , Y ])∇ε∂γ

]
,

by Lemma 6.2.

Proposition 6.2. For all Y ∈ V − we have

Ω′3(Y ) =
1
3

∑

ε∈R(V +)

N−1
ε,ε′pΩ2([Xε, Y ])Ω1(Xε′)q.

Proof. Throughout the proof, we write Zε = [Xε, Y ]. By Proposition 6.1
and Lemma 6.1, we have

Ω′3(Y ) = −1
6

∑

α,β,ε

N−1
β,β′N

−1
ε,ε′Mβ′α(pr0(Zε′))p∇α∇β∇εq

= −1
6

∑

α,β,ε

N−1
β,β′N

−1
ε,ε′Mβ′α(pr0(Zε′))p(∇α∇β)∇εq

− 1
12

∑
α,ε

N−1
ε,ε′Mαα(pr0(Zε′))∇ε∂γ .

By Lemma 2.8, the sum over α in the second term is given by the expression
(1/2) dim(V +)λχ(pr0(Zε′)) = 0 and so

Ω′3(Y ) = −1
6

∑

α,β,ε

N−1
β,β′N

−1
ε,ε′Mβ′α(pr0(Zε′))p(∇α∇β)∇εq.

We observed in Section 5 that

Ω2(Z) =
1
2

∑

α,β

N−1
β,β′Mβ′α(Z)∇α∇β
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provided that λχ(Z) = 0, and it follows that

Ω′3(Y ) = −1
3

∑
ε

N−1
ε,ε′pΩ2(pr0(Zε′))∇εq

=
1
3

∑
ε

N−1
ε,ε′pΩ2(Zε)Ω1(Xε′)q.

Lemma 6.4. If Z ∈ ker(λχ) and W ∈ V + then [Ω2(Z),Ω1(W )] =
Ω1([Z, W ])∂γ .

Proof. It suffices to assume that W = Xε for some ε ∈ R(V +). Then

[Ω2(Z),Ω1(Xε)] =
1
2

∑

α,β

N−1
β,β′Mβ′α(Z)[∇α∇β ,∇ε]

=
1
2

∑

α,β

N−1
β,β′Mβ′α(Z)

(∇α[∇β ,∇ε] + [∇α,∇ε]∇β

)

=
∑

α,β

N−1
β,β′Mβ′α(Z)κβε′Nβ,β′∇α∂γ

=
∑
α

Mεα(Z)Ω1(Xα)∂γ

= Ω1([Z, Xε])∂γ .

Lemma 6.5. For all Y ∈ V − we have
∑

ε

N−1
ε,ε′ [[Xε, Y ], Xε′ ] = −(1/2) dim(V +)[Y, Xγ ].

Proof. Denote the sum on the left-hand side of the proposed identity by
S. Then

S =
∑

ε

N−1
ε,ε′ [Xε, [Y, Xε′ ]]−

∑
ε

N−1
ε,ε′ [Y, [Xε, Xε′ ]]

= −
∑

ε

N−1
ε,ε′ [Xε′ , [Y, Xε]]−

∑
ε

[Y, Xγ ]

= −
∑

ε

N−1
ε,ε′ [[Xε, Y ], Xε′ ]− dim(V +)[Y,Xγ ]

= −S − dim(V +)[Y, Xγ ],

and the evaluation follows.
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Lemma 6.6. For all Z ∈ l we have
∑

ε

N−1
ε,ε′ [Xε′ , [Xε, Z]] = (1/2) dim(V +)λχ(Z)Xγ .

Proof. Denote the sum on the left-hand side of the proposed identity by
S. Then

S =
∑

ε

N−1
ε,ε′ [[Xε′ , Xε], Z] +

∑
ε

N−1
ε,ε′ [Xε, [Xε′ , Z]]

=
∑

ε

[Z,Xγ ]−
∑

ε

N−1
ε,ε′ [Xε′ , [Xε, Z]]

= dim(V +)λχ(Z)Xγ − S,

and the evaluation follows.

Lemma 6.7. For all W ∈ V + we have

W =
∑

ε∈R(V +)

N−1
ε,ε′〈W,Xε′〉Xε.

Proof. This follows at once from the non-degeneracy of 〈 · , · 〉.

Proposition 6.3. For all Y ∈ V − we have

Ω′3(Y ) =
1
3

∑

ε∈R(V +)

N−1
ε,ε′Ω1(Xε′)Ω2([Xε, Y ])− (1/12)

(
dim(V +) + 1

)
Ω1([Y, Xγ ])∂γ .

Proof. Let Zε = [Xε, Y ]. With this notation, Proposition 6.2 may be
rewritten as

Ω′3(Y ) =
1
3

∑
ε

N−1
ε,ε′Ω1(Xε′)Ω2(Zε) +

1
6

∑
ε

N−1
ε,ε′ [Ω2(Zε),Ω1(Xε′)].

All that remains is to evaluate the second term. By Lemma 6.4,

[Ω2(Zε), Ω1(Xε′)] = [Ω2(Zε − (1/2)λχ(Zε)Hγ),Ω1(Xε′)]

= Ω1([Zε − (1/2)λχ(Zε)Hγ , Xε′ ])∂γ

= Ω1([Zε, Xε′ ])∂γ − (1/2)λχ(Zε)Ω1(Xε′)∂γ .

Lemma 6.5 gives
∑

ε

N−1
ε,ε′Ω1([Zε, Xε′ ])∂γ = −(1/2) dim(V +)Ω1([Y, Xγ ])∂γ ,
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and, by Lemma 6.3,

∑
ε

N−1
ε,ε′λχ(Zε)Ω1(Xε′)∂γ = Ω1

( ∑
ε

N−1
ε,ε′〈Xε, [Y, Xγ ]〉Xε′

)
∂γ

= Ω1

( ∑
ε

N−1
ε,ε′〈[Y,Xγ ], Xε′〉Xε

)
∂γ

= Ω1([Y, Xγ ])∂γ ,

where we have used Lemma 6.7 at the last step.

For Y ∈ V −, let us define

Ω̃3(Y ) =
∑

ε∈R(V +)

N−1
ε,ε′Ω1(Xε′)Ω2([Xε, Y ])

and
C3(Y ) = Ω1([Y, Xγ ])∂γ ,

so that the result of Proposition 6.3 may be written as

Ω′3(Y ) = (1/3)Ω̃3(Y )− (1/12)(dim(V +) + 1)C3(Y ).

A routine computation gives C3(Ad(l)Y ) = χ(l)−2l · C3(Y ) for all l ∈ L and
Y ∈ V −; that is, C3 enjoys the same transformation law as Ω3. It follows that
Ω̃3 also has the same transformation law. As usual, we extend Ω̃3 and C3 to
be left C[n]-linear.

We shall evaluate the commutators of Ω̃3(Y ) and C3(Y ) with D−γ sep-
arately. It will emerge that it is not Ω′3 itself, but rather a different linear
combination of Ω̃3 and C3, that will yield a conformally invariant system for
a suitable value of s. Because Ω̃3 is substantially more complicated than C3,
we regard the multiple of C3 that must be added to Ω′3 to obtain conformal
invariance as a “correction term”; whence the notation chosen for it. It will
emerge that there is a unique line in the plane spanned by Ω̃3 and C3 on which
conformal invariance holds (for a suitable value of s). In this sense at least, the
construction is canonical.

In what follows, the notational conventions are those already employed in
Section 5. In particular, we shall write X =

∑
α∈R(V +) ξαXα for the generic

element of V +.

Lemma 6.8. For all W ∈ V + we have [Ω1(W ), ξγ ] = −(1/2)〈W,X〉.

Proof. It suffices to verify this for W = Xα. In this case, Ω1(W ) = ∇α

and the claim follows directly from the definition of ∇α.
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Lemma 6.9. For all Y ∈ V − we have

[
Ω1([Y, Xγ ]), Ω1(X)

]
= λχ([Y, X])∂γ + Ω1([Y, Xγ ]).

Proof. Well,

[
Ω1([Y,Xγ ]), Ω1(X)

]

=
∑

µ

[
Ω1([Y, Xγ ]), ξµΩ1(Xµ)

]

=
∑

µ

ξµ

[
Ω1([Y, Xγ ]), Ω1(Xµ)

]
+

∑
µ

[Ω1([Y, Xγ ]), ξµ]Ω1(Xµ)

=
∑

µ

ξµΩ1

(
[[Y, Xγ ], Xµ]

)
+

∑
µ

ξµ([Y, Xγ ])Ω1(Xµ)

= Ω1

(
[[Y, Xγ ], X]

)
+ Ω1([Y, Xγ ])

= Ω1

(
[[Y, X], Xγ ]

)
+ Ω1([Y, Xγ ])

= λχ([Y, X])∂γ + Ω1([Y,Xγ ]).

In the fourth line, ξµ([Y,Xγ ]) represents evaluation of the functional ξµ on
the vector [Y, Xγ ]; we mention this because the notation has not previously
occurred.

Proposition 6.4. For all Y ∈ V − we have

[D−γ , C3(Y )] = −3ξγC3(Y ) + C3([τ2(X), Y ]) + sλχ([Y, X])∂γ

− (2s + 1)Ω1([Y, Xγ ])− Ω1(X)Ω1([Y, Xγ ]).

Proof. Recall from Proposition 4.2 that

D−γ = −P∂γ + ξγE + {∆, · }+ 2sξγ ,

where E = 2ξγ∂γ +
∑

α ξα∂α. A computation using this formula gives that
[D−γ , ∂γ ] = −(E + 2s). By substituting the identity

∂α = Ω1(Xα) + (1/2)Nα,α′ξα′∂γ

into the definition of E and simplifying, we obtain E = Ω1(X) + 2ξγ∂γ . Now

[D−γ , C3(Y )] = [D−γ ,Ω1([Y,Xγ ])]∂γ + Ω1([Y, Xγ ])[D−γ , ∂γ ]
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and, using the above observations and Lemmas 6.8 and 6.9,

Ω1([Y, Xγ ])[D−γ , ∂γ ] = −Ω1([Y,Xγ ])
(
2ξγ∂γ + Ω1(X) + 2s

)

= −2ξγΩ1([Y, Xγ ])∂γ − 2[Ω1([Y,Xγ ]), ξγ ]∂γ

− 2sΩ1([Y, Xγ ])− Ω1([Y, Xγ ])Ω1(X)

= −2ξγC3(Y ) + 〈[Y, Xγ ], X〉∂γ − 2sΩ1([Y, Xγ ])

− Ω1(X)Ω1([Y, Xγ ])− λχ([Y, X])∂γ − Ω1([Y, Xγ ])

= −2ξγC3(Y ) + λχ([Y,X])∂γ − 2sΩ1([Y, Xγ ])

− Ω1(X)Ω1([Y, Xγ ])− λχ([Y, X])∂γ − Ω1([Y, Xγ ])

= −2ξγC3(Y )− (2s + 1)Ω1([Y, Xγ ])− Ω1(X)Ω1([Y, Xγ ]).

By Theorem 5.1,

[D−γ , Ω1([Y, Xγ ])] = −ξγΩ1([Y,Xγ ]) + Ω1

(
[τ2(X), [Y, Xγ ]]

)
+ s〈[Y,Xγ ], X〉

= −ξγΩ1([Y,Xγ ]) + Ω1

(
[[τ2(X), Y ], Xγ ]

)
+ sλχ([Y, X]),

because [τ2(X), Xγ ] = 0. Thus

[D−γ , Ω1([Y, Xγ ])]∂γ = −ξγC3(Y ) + C3([τ2(X), Y ]) + sλχ([Y, X])∂γ .

Adding these evaluations completes the proof.

Lemma 6.10. If Z ∈ l and λχ(Z) = 0 then

[Ω2(Z), ξγ ] = −(1/2)Ω1([Z, X])

and
[Ω2(Z), ξα] = N−1

α,α′Ω1([Z,Xα′ ]).

Proof. We have

[Ω2(Z), ξγ ] =
1
2

∑

β

N−1
β,β′

[
Ω1(Xβ)Ω1([Z, Xβ′ ]), ξγ

]

and [Ω1(Xα), ξγ ] = −(1/2)Nα,α′ξα′ . From this point, a routine computation
completes the proof. The second identity is similar.

Lemma 6.11. For all Z ∈ l we have
∑

ε

N−1
ε,ε′Ω1([Z, Xε])Ω1(Xε′) = −2Ω2(Z) + (1/4)λχ(Z) dim(V +)∂γ .
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Proof. Since Z = pr0(Z) + (1/2)λχ(Z)Hγ , the left-hand side is

∑
ε

N−1
ε,ε′Ω1([pr0(Z), Xε])Ω1(Xε′) +

1
2
λχ(Z)

∑
ε

N−1
ε,ε′Ω1(Xε)Ω1(Xε′).

We observed in Section 5 that the first term is equal to −2Ω2(pr0(Z)) =
−2Ω2(Z). By Lemma 6.2, the second term is (1/2)λχ(Z)·(1/2) dim(V +)∂γ .

Recall the constants c(g, C) and p(g,C) that were introduced in Section
2 for each algebra g and each component C of Dγ(g, h). When Dγ(g, h) has
a single component, we abbreviate the names of these constants to c(g) and
p(g). Note that, amongst the algebras considered in this section, Dγ(g, h) has
a single component for the exceptional algebras and for the algebras of type
Ar.

Theorem 6.1. Suppose that g is an exceptional algebra and define

Ω3(Y ) = (1/3)Ω̃3(Y ) + (1/12)(c(g)− p(g))C3(Y ).

For all Y ∈ V − we have

[D−γ , Ω3(Y )] = −3ξγΩ3(Y ) + Ω3([τ2(X), Y ])

+ (s− s3)
(
Ω2([Y,X]) + (1/4)(c(g)− 2)λχ([Y,X])∂γ

− (1/2)(c(g)− 1)Ω1([Y,Xγ ])− (1/2)Ω1(X)Ω1([Y, Xγ ])
)
,

where s3 = (dim(V +)− 2)/6.

Proof. We begin by computing the commutator of Ω̃3(Y ) and D−γ . As
usual, we shall express this commutator as the sum of a number of terms,
and evaluate each separately. Only some of these evaluations will require the
assumption that g is an exceptional algebra, and we shall point out this depen-
dence as we go. We shall obtain the identity

[D−γ , Ω̃3(Y )] = −3ξγΩ̃3(Y ) + Ω̃3([τ2(X), Y ]) + 3(s− s3)Ω2([Y, X])

+ (s− s2)
(
(1/4)(d− 2)λχ([Y,X])∂γ − (1/2)(d + 1)Ω1([Y, Xγ ])

− (3/2)Ω1(X)Ω1([Y, Xγ ])
)
,

where d = dim(V +), s3 is as in the statement, and s2 = (1/2)c(g) − 1, as in
Theorem 5.2.

For all l ∈ L we have

[D−γ , Ω̃3(Ad(l)Y )] = χ(l)−1l · [D−γ , Ω̃3(Y )]
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and the right-hand side of the proposed identity satisfies the same transforma-
tion law under L. Now the prehomogeneous vector space (L,Ad, V −) is equiv-
alent to (L,Ad, V +) via the map τ−1

1 . By Proposition 3.3, X0 =
√

2(Xδ +Xδ′)
is a generic point of (L,Ad, V +), and it follows that τ1(X0) =

√
2(X−δ−X−δ′)

is a generic point of (L,Ad, V −). Thus it suffices to establish the identity for
Y = τ1(X0). But the identity is linear in Y , and so it suffices to prove it for
Y = X−δ and Y = X−δ′ separately. We could, to begin with, have chosen δ′ to
play the role of δ, and so the identity for Y = X−δ′ follows from the identity
for Y = X−δ. Thus we are reduced to proving the identity for Y = X−δ. We
shall assume this equality henceforth, and use Y and X−δ interchangeably. As
in the proof of Theorem 5.2, the majority of the calculations are valid for any
Y , and it would be distracting to replace Y by X−δ in these.

For ε ∈ R(V +), we write Zε = [Xε, Y ]. From the definition, we have

[D−γ , Ω̃3(Y )] =
∑

ε

N−1
ε,ε′ [D−γ ,Ω1(Xε′)]Ω2(Zε)(6.1)

+
∑

ε

N−1
ε,ε′Ω1(Xε′)[D−γ , Ω2(Zε)].

Both [D−γ ,Ω1(Xε′)] and [D−γ , Ω2(Zε)] may be expressed as a sum of three
terms. We consider the contribution to (6.1) from these terms in turn. The
contribution from the first terms is

T1 =
∑

ε

N−1
ε,ε′

(− ξγΩ1(Xε′)
)
Ω2(Zε) +

∑
ε

N−1
ε,ε′Ω1(Xε′)

(− 2ξγΩ2(Zε)
)

= −3ξγ

∑
ε

N−1
ε,ε′Ω1(Xε′)Ω2(Zε)− 2

∑
ε

N−1
ε,ε′ [Ω1(Xε′), ξγ ]Ω2(Zε)

= −3ξγΩ̃3(Y ) +
∑

ε

N−1
ε,ε′〈Xε′ , X〉Ω2(Zε)

= −3ξγΩ̃3(Y ) +
∑

ε

N−1
ε,ε′Nε′,εξεΩ2([Xε, Y ])

= −3ξγΩ̃3(Y )− Ω2([X, Y ])

= −3ξγΩ̃3(Y ) + Ω2([Y, X]).

Note that this evaluation is independent of any assumption on the type of g.
We now consider the contribution from the second terms. It is

T2 =
∑

ε

N−1
ε,ε′Ω1([τ2(X), Xε′ ])Ω2(Zε) +

∑
ε

N−1
ε,ε′Ω1(Xε′)Ω2([τ2(X), Zε]).

Note that we do not have to concern ourselves with the difference between Zε

and pr0(Zε) here, because Zε−pr0(Zε) lies in the center of l and, in particular,
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commutes with τ2(X). Throughout the proof, we shall use a hierarchical num-
bering scheme for terms. For example, the first term in the previous identity
will be called T21 and the second term T22. With this notation,

T22 =
∑

ε

N−1
ε,ε′Ω1(Xε′)Ω2([τ2(X), [Xε, Y ]])

=
∑

ε

N−1
ε,ε′Ω1(Xε′)

(
Ω2([[τ2(X), Xε], Y ]) + Ω2([Xε, [τ2(X), Y ]])

)

=
∑
ε,µ

N−1
ε,ε′Ω1(Xε′)

(
Mεµ(τ2(X))Ω2([Xµ, Y ]) + M−

δµ(τ2(X))Ω2([Xε, X−µ])
)

=
∑
ε,µ

N−1
ε,ε′Mεµ(τ2(X))Ω1(Xε′)Ω2([Xµ, Y ])

+
∑
ε,µ

N−1
ε,ε′

[
Ω1(Xε′),Mεµ(τ2(X))

]
Ω2([Xµ, Y ])

+
∑
ε,µ

N−1
ε,ε′M

−
δµ(τ2(X))Ω1(Xε′)Ω2([Xε, X−µ])

+
∑
ε,µ

N−1
ε,ε′

[
Ω1(Xε′),M−

δµ(τ2(X))
]
Ω2([Xε, X−µ])

= −
∑
ε,µ

N−1
ε,ε′Mε′µ(τ2(X))Ω1(Xε)Ω2([Xµ, Y ])

+
∑
ε,µ

N−1
ε,ε′Mεµ(∂ε′•τ2(X))Ω2([Xµ, Y ]) +

∑
µ

M−
δµ(τ2(X))Ω̃3(X−µ)

+
∑
ε,µ

N−1
ε,ε′M

−
δµ(∂ε′•τ2(X))Ω2([Xε, X−µ])

= −
∑
ε,µ

N−1
µ,µ′Mµ′ε(τ2(X))Ω1(Xε)Ω2([Xµ, Y ])

+
∑

ε

N−1
ε,ε′Ω2

(
[[∂ε′•τ2(X), Xε], Y ]

)
+ Ω̃3([τ2(X), Y ])

+
∑

ε

N−1
ε,ε′Ω2

(
[Xε, [∂ε′•τ2(X), Y ]]

)

= −
∑

µ

N−1
µ,µ′Ω1([τ2(X), Xµ′ ])Ω2([Xµ, Y ]) + Ω̃3([τ2(X), Y ])

+
∑

ε

N−1
ε,ε′Ω2([∂ε′•τ2(X), [Xε, Y ]]).

Note that the first term here is the negative of T21, and so we arrive at

T2 = Ω̃3([τ2(X), Y ]) +
∑

ε

N−1
ε,ε′Ω2([∂ε′•τ2(X), [Xε, Y ]]).

By Lemma 3.6, ∂ε′•τ2(X) = (1/2)〈Xε′ , X〉Hγ + Nε′,−γ [X, X−ε]. Note that
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[Xε, Y ] ∈ l and so [Hγ , [Xε, Y ]] = 0. From these observations, we obtain

T2 = Ω̃3([τ2(X), Y ]) +
∑

ε

N−1
ε,ε′Nε′,−γΩ2([[X, X−ε], [Xε, Y ]]).

We have seen that Nε′,−γ = −(1/2)‖ε‖2Nε′,ε and so Nε′,−γN−1
ε,ε′ = (1/2)‖ε‖2.

Therefore

T2 = Ω̃3([τ2(X), Y ]) +
1
2
Ω2

( ∑
ε

‖ε‖2[[X, X−ε], [Xε, Y ]])
)

= Ω̃3([τ2(X), Y ])− 1
2

∑

C

p(g, C)Ω2(prC([Y, X])),

by Proposition 2.2. Recall that the sum on the right-hand side is over all
components C of Dγ(g, h). Expressed in this form, the evaluation does not
depend on any assumption about the type of g. When g is exceptional, it may
be simplified to

T2 = Ω̃3([τ2(X), Y ])− (1/2)p(g)Ω2([Y,X]).

It remains to consider the contribution to (6.1) made by the third terms
in the formulas for [D−γ , Ω1(Xε′)] and [D−γ , Ω2(Zε)]. We shall evaluate these
separately. For the former, we obtain

T3 = s
∑

ε

N−1
ε,ε′〈Xε′ , X〉Ω2([Xε, Y ])

= −s
∑

ε

ξεΩ2([Xε, Y ])

= sΩ2([Y, X]).

Again, this evaluation is independent of the type of g.
The remainder of the evaluation does rely on the assumption that g is

exceptional, which implies that Dγ(g, h) has a single component, C, and that
pr0(Zε) ∈ l(C). The contribution to (6.1) from the remaining term is thus
(s− s2) times

T4 =
∑

ε

N−1
ε,ε′Ω1(Xε′)Ω1([pr0(Zε), X])

=
∑

ε

N−1
ε,ε′Ω1([pr0(Zε), X])Ω1(Xε′) +

∑
ε

N−1
ε,ε′

[
Ω1(Xε′), Ω1([pr0(Zε), X])

]
.

Now

T41 =
∑

ε

N−1
ε,ε′Ω1([pr0(Zε), X])Ω1(Xε′)
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=
∑

ε

N−1
ε,ε′Ω1([Zε, X])Ω1(Xε′)− 1

2

∑
ε

N−1
ε,ε′λχ(Zε)Ω1(X)Ω1(Xε′)

=
∑

ε

N−1
ε,ε′Ω1([Xε, [Y,X]])Ω1(Xε′)−

∑
ε

N−1
ε,ε′Ω1([Y, [Xε, X]])Ω1(Xε′)

− 1
2

∑
ε

N−1
ε,ε′〈Xε, [Y, Xγ ]〉Ω1(X)Ω1(Xε′)

= 2Ω2([Y,X])− (1/4)dλχ([Y, X])∂γ −
∑

ε

ξε′Ω1([Y, Xγ ])Ω1(Xε′)

− (1/2)Ω1(X)Ω1([Y,Xγ ])

= 2Ω2([Y,X])− (1/4)dλχ([Y, X])∂γ − Ω1(X)Ω1([Y, Xγ ])

−
∑

ε

ξε′Ω1([[Y, Xγ ], Xε′ ])− (1/2)Ω1(X)Ω1([Y,Xγ ])

= 2Ω2([Y,X])− (1/4)dλχ([Y, X])∂γ − (3/2)Ω1(X)Ω1([Y,Xγ ])

+
∑

ε

ξε′Ω1([Xγ , [Y, Xε′ ]])

= 2Ω2([Y,X])− (1/4)dλχ([Y, X])∂γ − (3/2)Ω1(X)Ω1([Y,Xγ ])

− Ω1([[Y,X], Xγ ])

= 2Ω2([Y,X])− (1/4)dλχ([Y, X])∂γ − (3/2)Ω1(X)Ω1([Y,Xγ ])

− λχ([Y, X])∂γ

= 2Ω2([Y,X])− (1/4)(d + 4)λχ([Y, X])∂γ − (3/2)Ω1(X)Ω1([Y,Xγ ]),

where we used Lemma 6.11 from the third line to the fourth. Also,

T42 =
∑

ε

N−1
ε,ε′

[
Ω1(Xε′),Ω1([pr0(Zε), X])

]

=
∑
ε,µ

N−1
ε,ε′

[
Ω1(Xε′), ξµΩ1([pr0(Zε), Xµ])

]

=
∑
ε,µ

N−1
ε,ε′ξµ

[
Ω1(Xε′),Ω1([pr0(Zε), Xµ])

]

+
∑
ε,µ

N−1
ε,ε′ [Ω1(Xε′), ξµ]Ω1([pr0(Zε), Xµ])

=
∑
ε,µ

N−1
ε,ε′ξµΩ1([Xε′ , [pr0(Zε), Xµ]]) +

∑
ε

N−1
ε,ε′Ω1([pr0(Zε), Xε′ ])

=
∑

ε

N−1
ε,ε′Ω1([Xε′ , [pr0(Zε), X]]) +

∑
ε

N−1
ε,ε′Ω1([pr0(Zε), Xε′ ]).
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We shall consider these terms separately. The first is

T421 =
∑

ε

N−1
ε,ε′Ω1([Xε′ , [Zε, X]])− 1

2

∑
ε

N−1
ε,ε′λχ(Zε)Ω1([Xε′ , X])

=
∑

ε

N−1
ε,ε′Ω1([Xε′ , [Xε, [Y, X]]])−

∑
ε

N−1
ε,ε′Ω1([Xε′ , [Y, [Xε, X]]])

− 1
2

∑
ε

N−1
ε,ε′〈Xε, [Y, Xγ ]〉Ω1([Xε′ , X])

= (1/2)dλχ([Y, X])∂γ −
∑

ε

ξε′Ω1([Xε′ , [Y, Xγ ]])

− (1/2)Ω1([[Y, Xγ ], X])

= (1/2)dλχ([Y, X])∂γ − Ω1([X, [Y, Xγ ]])− (1/2)Ω1([[Y, Xγ ], X])

= (1/2)dλχ([Y, X])∂γ − (1/2)Ω1([X, [Y, Xγ ]])

= (1/2)dλχ([Y, X])∂γ − (1/2)Ω1([[X,Y ], Xγ ])

= (1/2)dλχ([Y, X])∂γ + (1/2)λχ([Y, X])∂γ

= (1/2)(d + 1)λχ([Y, X])∂γ ,

where we have used Lemma 6.6 from the second line to the third. This com-
pletes the evaluation of the first term in T42. The second term is

T422 =
∑

ε

N−1
ε,ε′Ω1([pr0(Zε), Xε′ ])

=
∑

ε

N−1
ε,ε′Ω1([[Xε, Y ], Xε′ ])− 1

2

∑
ε

N−1
ε,ε′λχ(Zε)Ω1(Xε′)

= −(1/2)dΩ1([Y, Xγ ])− 1
2

∑
ε

N−1
ε,ε′〈Xε, [Y, Xγ ]〉Ω1(Xε′)

= −(1/2)dΩ1([Y, Xγ ])− (1/2)Ω1([Y,Xγ ])

= −(1/2)(d + 1)Ω1([Y, Xγ ]),

where we used Lemma 6.5 from the second line to the third. We conclude that

T42 = (1/2)(d + 1)
(
λχ([Y, X])∂γ − Ω1([Y, Xγ ])

)
.

By adding the evaluations of T41 and T42 we obtain

T4 = 2Ω2([Y,X]) + (1/4)(d− 2)λχ([Y, X])∂γ − (1/2)(d + 1)Ω1([Y,Xγ ])

− (3/2)Ω1(X)Ω1([Y,Xγ ]).

All that remains to obtain the proposed formula for [D−γ , Ω̃3(Y )] is to add T1,
T2, T3, and s − s2 times T4, and to simplify the coefficient of Ω2([Y, X]) that
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results. This coefficient is

1− (1/2)p(g) + s + 2(s− s2)

= 3s− (1/2)p(g)− c(g) + 3

= 3s− (1/2)(d + 4) + 3

= 3s− (1/2)(d− 2)

= 3(s− s3).

In this computation, we used the fact that, by Proposition 3.1, c(g)+(1/2)p(g) =
(1/2)(d + 4), as well as the definition s2 = (1/2)c(g) − 1. This completes the
proof of the formula for [D−γ , Ω̃3(Y )].

The last step in the proof is to use the result of Proposition 6.4 and the
above evaluation to determine [D−γ , Ω3(Y )]. Recall that

[D−γ , C3(Y )] = −3ξγC3(Y ) + C3([τ2(X), Y ]) + sλχ([Y, X])∂γ

− (2s + 1)Ω1([Y, Xγ ])− Ω1(X)Ω1([Y, Xγ ])

so that only the coefficients of λχ([Y, X])∂γ , Ω1([Y, Xγ ]), and Ω1(X)Ω1([Y,Xγ ])
in [D−γ ,Ω3(Y )] require further attention. We first note that 2c(g)+p(g) = d+4,
so that c(g)− p(g) = 3c(g)− d− 4. Thus we may write

Ω3(Y ) = (1/3)Ω̃3(Y ) + (1/12)(3c(g)− d− 4)C3(Y ).

The coefficient of λχ([Y, X])∂γ in [D−γ , Ω3(Y )] is therefore

(1/12)(s− s2)(d− 2) + (1/12)(3c(g)− d− 4)s

= (1/12)((3c(g)− 6)s− s2(d− 2))

= (1/12)(3(c(g)− 2)s− (1/2)(c(g)− 2)(d− 2))

= (1/12)(c(g)− 2)(3s− (1/2)(d− 2))

= (1/4)(c(g)− 2)(s− s3).

The coefficient of Ω1([Y, Xγ ]) in the same commutator is

− (1/6)(s− s2)(d + 1)− (1/12)(3c(g)− d− 4)(2s + 1)

= −(1/12)(2(d + 1)(s− s2) + (3c(g)− d− 4)(2s + 1))

= −(1/12)((6c(g)− 6)s− (d + 1)(c(g)− 2) + 3c(g)− d− 4)

= −(1/12)(6(c(g)− 1)s− c(g)d + 2c(g) + d− 2)

= −(1/12)(6(c(g)− 1)s− (c(g)− 1)(d− 2))

= −(1/2)(c(g)− 1)(s− s3).
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Finally, the coefficient of Ω1(X)Ω1([Y,Xγ ]) in the commutator is

− (1/2)(s− s2)− (1/12)(3c(g)− d− 4)

= −(1/12)(6s− 6s2 + 3c(g)− d− 4)

= −(1/12)(6s− 3c(g) + 6 + 3c(g)− d− 4)

= −(1/12)(6s− (d− 2))

= −(1/2)(s− s3).

This completes the proof.

We now begin the construction of Ω4. Let l0 = [l, l] and recall that there is
a decomposition l0 = ⊕Cl(C), where the sum is over the components of Dγ(g, h).
Each l(C) is a simple Lie algebra and also an ideal of l. Moreover, the restriction
of Bg to l0 is non-degenerate and the various l(C) are orthogonal to one another
with respect to this form. We choose ordered bases of each l(C) and concatenate
them to obtain an ordered basis Z1, . . . , Zd of l0. Let I(C) = {i | Zi ∈ l(C)} for
each C. Define bij = Bg(Zi, Zj). The matrix [bij ] is non-singular and block-
diagonal with blocks indexed by the C. We let its inverse be [bij ] and define
Zi =

∑d
j=1 bijZj , so that Z1, . . . , Zd is dual to Z1, . . . , Zd with respect to Bg.

Note that if i ∈ I(C) then Zi ∈ l(C).
Suppose that F ( · , · ) is a bilinear function on l0 with values in any C-vector

space. Then we may consider the sum
∑

i∈I(C)

F (Zi, Z
i).

If we replace Zi, i ∈ I(C), by a different ordered basis of l(C) then there is a
compensating change in the dual basis which leaves the sum unchanged. In
particular, since duality between bases is a symmetric relation, we have

∑

i∈I(C)

F (Zi, Z
i) =

∑

i∈I(C)

F (Zi, Zi).

We shall have recourse to this observation on several occasions below.
For Z ∈ l we introduce structure constants cj

i (Z) by requiring that

[Z, Zi] =
d∑

j=1

cj
i (Z)Zj .

Observe that if i ∈ I(C) then cj
i (Z) = 0 unless j ∈ I(C) also; this is another

expression of the fact that l(C) is an ideal of l. Thus the definition may also be
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written as
[Z, Zi] =

∑

j∈I(Ci)

cj
i (Z)Zj ,

where Ci denotes the component such that Zi ∈ l(Ci). The invariance of Bg

implies the relation
[Z, Zi] = −

∑

j∈I(Ci)

ci
j(Z)Zj

for all Z ∈ l.

Lemma 6.12. If C is a component of Dγ(g, h) then
∑

i∈I(C)

[Zi, Z
i] = 0.

Proof. It follows from the discussion of bilinear sums that
∑

i∈I(C)

[Zi, Z
i] =

∑

i∈I(C)

[Zi, Zi] = −
∑

i∈I(C)

[Zi, Z
i].

This implies the claim.

Proposition 6.5. Let C be a component of Dγ(g, h). Then there is a
constant Λ(C) such that

∑

i∈I(C)

[Zi, [Zi, Y ]] = Λ(C)Y

for all Y ∈ V +.

Proof. Suppose first that g is not of type Ar. Then V + is an irreducible
representation of l and hence of l0. From the decomposition l0 = ⊕Cl(C) of
l0 into ideals, we conclude that the restriction of V + to l(C) is isotypic. The
constant Λ(C) is simply the value of the infinitesimal character of this type on
the Casimir element

∑
i∈I(C) ZiZ

i ∈ U(l(C)).
Now suppose that g is of type Ar. The representation V + is the direct

sum of an irreducible representation of l0 and the dual of that representation.
By repeating the argument of the previous paragraph we conclude that the
restriction of V + to l(C) is the sum of two isotypic representations, with dual
types. Since the Casimir element in question is of even degree, the infinitesimal
characters of an irreducible representation and of its dual take the same value
on this element. That common value is Λ(C) in this case.
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Corollary 6.1. Let C be a component of Dγ(g, h). Then for all ε, τ ∈
R(V +) we have

∑

i∈I(C)

∑

µ∈R(V +)

Mεµ(Zi)Mµτ (Zi) = Λ(C)κετ .

Proof. This follows immediately by taking Y = Xε in Proposition 6.5,
expanding the resulting brackets using the matrix coefficients M , and then
comparing the members of the resulting identity.

For the next result, recall that we are assuming that g is not of type Cr,
so that a simple root δ ∈ R(V +) having the property described in Section 3
exists. We use the notation from that section in the proof.

Proposition 6.6. Let C be a component of Dγ(g, h) and 〈C〉 ⊂ h∗(R)
denote the R-span of the simple roots whose nodes in the Dynkin diagram lie
in C. Then

Λ(C) = ‖pr〈C〉(δ)‖2 + (1/2)(dim(V +)− 2),

where pr〈C〉 denotes the orthogonal projection onto the subspace 〈C〉.

Proof. It will be convenient to think of C as being a set of simple roots,
by identifying simple roots with their nodes in the Dynkin diagram. Recall
that R(l, C) denotes the set of roots in R(l) that are combinations of simple
roots in C. Let R+(l,C) = R+ ∩R(l, C). The set

{Hα | α ∈ C} ∪ {Xα, X−α | α ∈ R+(l, C)}

is a Chevalley basis for the algebra l(C). The form Bg is normalized in such a
way that Bg(Xα, X−α) = 2/‖α‖2 and

gαβ = Bg(Hα,Hβ) =
4(α, β)
‖α‖2 ‖β‖2

for α, β ∈ C. Let [gαβ ] be the inverse of [gαβ ]. The element dual to Hα is then

Hα =
∑

β∈C

gαβHβ ,

the element dual to Xα is Xα = (‖α‖2/2)X−α, and the element dual to X−α

is X−α = (‖α‖2/2)Xα.
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In order to evaluate Λ(C), we take Y = Xδ in Proposition 6.5 and consider
the contribution to the sum from the three parts of the basis separately. From
{Hα}, we obtain

∑

α∈C

[Hα, [Hα, Xδ]] =
∑

α,β∈C

gαβ [Hα, [Hβ , Xδ]]

=
∑

α,β∈C

gαβδ(Hα)δ(Hβ)Xδ

=
∑

α,β∈C

gαβ 4(α, δ)(δ, β)
‖α‖2 ‖β‖2 Xδ.

Let us write α̌ = 2α/‖α‖2. Then gαβ = (α̌, β̌) and the coefficient of Xδ in the
above is ∑

α,β∈C

gαβ(α̌, δ)(δ, β̌),

which is precisely ‖pr〈C〉(δ)‖2.
Now let α ∈ R+(l,C) and suppose that τ = δ ± α is a root. We have

(γ, τ) = (γ, δ) = 1 and so τ ∈ R(V +). In particular, τ is a positive root. Since
τ − δ = ±α is a root, τ ∈ S(δ) and so (τ, δ) = 1. It follows from this that
sδ(τ) = τ − δ = ±α. Now τ 6= δ and δ is a simple root. Thus sδ(τ) is a positive
root. It follows from this discussion that δ−α is never a root and τ = δ + α is
a root precisely when τ ∈ S(δ), in which case α = τ − δ. Thus

∑

α∈R+(l,C)

[Xα, [Xα, Xδ]] = 0

and
∑

α∈R+(l,C)

[X−α, [X−α, Xδ]] =
∑

α∈R+(l,C)

(‖α‖2/2)[X−α, [Xα, Xδ]]

=
∑

τ∈S(δ)

(‖τ − δ‖2/2)[Xδ−τ , [Xτ−δ, Xδ]]

=
∑

τ∈S(δ)

(‖τ‖2/2)Nτ−δ,δNδ−τ,τXδ.

Now (δ − τ) + τ + (−δ) = 0 and applying (C8) and (C9) to this gives

Nδ−τ,τ

2
=

N−δ,δ−τ

‖τ‖2 =
Nτ−δ,δ

‖τ‖2 .

It follows that the coefficient of Xδ above is
∑

τ∈S(δ)

N2
τ−δ,δ =

∑

τ∈S(δ)

(pτ−δ,δ + 1)2
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=
∑

τ∈S(δ)

1

= |S(δ)|.
We have |S(δ)| = (1/2)(dim(V +) − 2), and this completes the evaluation of
Λ(C).

Lemma 6.13. Let C be a component of Dγ(g, h). Then we have
∑

i∈I(C)

∑

α∈R(V +)

N−1
α,α′Ω1([Zi, Xα′ ])Ω1([Zi, Xα]) = (1/2) dim(V +)Λ(C)∂γ .

Proof. Let S denote the left-hand side of the proposed identity. This
expression depends linearly on the Zi and the Zi and consequently

S =
∑

i∈I(C)

∑

α∈R(V +)

N−1
α,α′Ω1([Zi, Xα′ ])Ω1([Zi, Xα]).

For compactness, we suppress the domains of summation from now on. By
expanding the brackets in the previous expression for S we obtain

S =
∑

i,α,ε,τ

N−1
α,α′Mα′ε(Zi)Mατ (Zi)Ω1(Xε)Ω1(Xτ )

= −
∑

i,α,ε,τ

N−1
α,α′Mαε(Zi)Mα′τ (Zi)∇ε∇τ

= −
∑

i,α,ε,τ

N−1
α,α′Mατ (Zi)Mα′ε(Zi)∇τ∇ε

= −
∑

i,α,ε,τ

N−1
α,α′Mατ (Zi)Mα′ε(Zi)∇ε∇τ

−
∑

i,α,ε,τ

N−1
α,α′Mατ (Zi)Mα′ε(Zi)[∇τ ,∇ε]

= −
∑

i,α

N−1
α,α′Ω1([Zi, Xα′ ])Ω1([Zi, Xα])

−
∑

i,α,ε,τ

N−1
α,α′Mατ (Zi)Mα′ε(Zi)Nτ,τ ′κτε′∂γ

= −S −
∑

i,α,τ

N−1
α,α′Nτ,τ ′Mατ (Zi)Mα′τ ′(Zi)∂γ .

In this computation, we replaced α by α′, and then interchanged ε and τ . The
rest of the computation should be self-explanatory. Thus

S = −1
2

∑

i,α,τ

N−1
α,α′Nτ,τ ′Mατ (Zi)Mα′τ ′(Zi)∂γ
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= −1
2

∑

i,α,τ

N−1
τ ′,τNτ,τ ′Mατ (Zi)Mτα(Zi)∂γ

=
1
2

∑

i,α,τ

Mατ (Zi)Mτα(Zi)∂γ

=
1
2

∑
α

κααΛ(C)∂γ

= (1/2) dim(V +)Λ(C)∂γ .

In this computation, we used the symmetry N−1
α,α′Mα′τ ′(Zi) = N−1

τ ′,τMτα(Zi)
and then appealed to Corollary 6.1.

Let C be a component of Dγ(g, h). The polynomial

Y 7→
∑

i∈I(C)

Bg(τ2(Y ), Zi)Bg(τ2(Y ), Zi)

on V + is a relative invariant associated to the character χ2 and is hence pro-
portional to ∆. Recall that the operator Ω2(Z) is modeled on the polynomial
Y 7→ Bg(τ2(Y ), Z). This suggests that we define Ω′4(C) ∈ D[n] by

(6.2) Ω′4(C) =
∑

i∈I(C)

pΩ2(Zi)Ω2(Zi)q.

By the discussion of bilinear sums, we have
∑

i∈I(C)

Ω2(Zi)Ω2(Zi) =
∑

i∈I(C)

Ω2(Zi)Ω2(Zi).

It follows that the symmetrization in (6.2) is unnecessary.
Recall that l ·Ω2(Z) = χ(l)Ω2(Ad(l)Z) for l ∈ L and Z ∈ l. Therefore, for

l ∈ L,

l · Ω′4(C) =
∑

i∈I(C)

(l · Ω2(Zi))(l · Ω2(Zi))

= χ(l)2
∑

i∈I(C)

Ω2(Ad(l)Zi)Ω2(Ad(l)Zi)

= χ(l)2Ω′4(C),

since the ordered bases Ad(l)Zi and Ad(l)Zi, i ∈ I(C), are dual to one another.

Lemma 6.14. We have

[D−γ , ∂2
γ ] = −4ξγ∂2

γ − 2Ω1(X)∂γ − (4s + 2)∂γ .
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Proof. We have

[D−γ , ∂γ ] = −[Πs(X−γ), Πs(Xγ)] = Πs(Hγ).

From Lemma 4.2, Πs(Hγ) = −∂[Hγ , · ] − 2s. Since Hγ acts as 1 on V + and as
2 on gγ , this gives

[D−γ , ∂γ ] = −2ξγ∂γ − Ω1(X)− 2s.

The stated value of [D−γ , ∂2
γ ] follows easily from this.

We define

(6.3) Ω4(C) = Ω′4(C) + (1/2)(s− s2(C))Λ(C)∂2
γ ,

where s2(C) = (1/2)c(g, C)− 1. Note that l · ∂2
γ = χ(l)2∂2

γ for all l ∈ L, and so
Ω4(C) enjoys the same transformation law under L that Ω′4(C) does.

Theorem 6.2. Let C be a component of Dγ(g, h). Then we have

[D−γ , Ω4(C)] = −4ξγΩ4(C) + 2(s− s4)
∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi)

− 2Λ(C)(s− s2(C))(s− s4)∂γ ,

where s2(C) = (1/2)c(g,C)− 1 and s4 = (dim(V +)− 2)/4.

Proof. We begin by considering the commutator of D−γ and Ω′4(C). This
commutator is given by

(6.4) [D−γ , Ω′4(C)] =
∑

i∈I(C)

[D−γ , Ω2(Zi)]Ω2(Zi) +
∑

i∈I(C)

Ω2(Zi)[D−γ , Ω2(Zi)].

By Theorem 5.2,

[D−γ , Ω2(Z)] = −2ξγΩ2(Z) + Ω2([τ2(X), Z]) + (s− s2(C))Ω1([Z,X])

for all Z ∈ l(C). We shall consider in turn the contributions of each of the three
terms in this formula to (6.4).

The contribution to (6.4) of the first terms in the commutator formulas
for Ω2 is

T1 = −2ξγΩ′4(C)− 2
∑

i∈I(C)

Ω2(Zi)ξγΩ2(Zi)
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= −4ξγΩ′4(C)− 2
∑

i∈I(C)

[Ω2(Zi), ξγ ]Ω2(Zi)

= −4ξγΩ′4(C) +
∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi),

by Lemma 6.10.
The contribution from the second terms in the commutator formulas for

Ω2 is

T2 =
∑

i∈I(C)

Ω2([τ2(X), Zi])Ω2(Zi) +
∑

i∈I(C)

Ω2(Zi)Ω2([τ2(X), Zi])

=
∑

i,j∈I(C)

cj
i (τ2(X))Ω2(Zj)Ω2(Zi)−

∑

i,j∈I(C)

Ω2(Zi)ci
j(τ2(X))Ω2(Zj)

=
∑

i,j∈I(C)

ci
j(τ2(X))Ω2(Zi)Ω2(Zj)−

∑

i,j∈I(C)

Ω2(Zi)ci
j(τ2(X))Ω2(Zj)

= −
∑

i,j∈I(C)

[Ω2(Zi), ci
j(τ2(X))]Ω2(Zj).

In order to simplify this, we consider the coefficient of Ω2(Zj) separately. By
using the expression

Ω2(Zi) =
1
2

∑

α,β∈R(V +)

N−1
β,β′Mβ′α(Zi)Ω1(Xβ)Ω1(Xα)

we get

[Ω2(Zi), ci
j(τ2(X))] =

1
2

∑

α,β

N−1
β,β′Mβ′α(Zi)[Ω1(Xβ)Ω1(Xα), ci

j(τ2(X))]

=
1
2

∑

α,β

N−1
β,β′Mβ′α(Zi)Ω1(Xβ)ci

j(∂α•τ2(X))

+
1
2

∑

α,β

N−1
β,β′Mβ′α(Zi)ci

j(∂β•τ2(X))Ω1(Xα)

=
1
2

∑

α,β

N−1
α,α′Mα′β(Zi)ci

j(∂α•τ2(X))Ω1(Xβ)

+
1
2

∑

α,β

N−1
β,β′Mβ′α(Zi)ci

j(∂β•τ2(X))Ω1(Xα)

+
1
2

∑

α,β

N−1
α,α′Mα′β(Zi)ci

j(∂αβ•τ2(X))

=
∑

α,β

N−1
α,α′Mα′β(Zi)ci

j(∂α•τ2(X))Ω1(Xβ)
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+
1
2

∑

α,β

N−1
α,α′Mα′β(Zi)ci

j(∂αβ•τ2(X)),

where we have used the symmetry N−1
β,β′Mβ′α(Zi) = N−1

α,α′Mα′β(Zi) from the
second equality to the third, and then interchanged α and β in one term from
the third to the fourth. By Lemma 3.6 we have

∂α•τ2(X) = (1/2)〈Xα, X〉Hγ + Nα,−γ [X,X−α′ ]

and
∂αβ•τ2(X) = (1/2)〈Xα, Xβ〉Hγ + Nα,−γ [Xβ , X−α′ ].

Since ci
j vanishes on the center of l, this gives

[Ω2(Zi), ci
j(τ2(X))] =

∑

α,β

N−1
α,α′Mα′β(Zi)ci

j(Nα,−γ [X, X−α′ ])Ω1(Xβ)

+
1
2

∑

α,β

N−1
α,α′Mα′β(Zi)ci

j(Nα,−γ [Xβ , X−α′ ])

= −1
2

∑

α,β

‖α‖2Mα′β(Zi)ci
j([X, X−α′ ])Ω1(Xβ)

− 1
4

∑

α,β

‖α‖2Mα′β(Zi)ci
j([Xβ , X−α′ ])

= −1
2

∑
α

‖α‖2ci
j([X, X−α′ ])Ω1([Zi, Xα′ ])

− 1
4

∑
α

‖α‖2ci
j([[Zi, Xα′ ], X−α′ ])

= −1
2

∑
α

‖α‖2ci
j([X, X−α])Ω1([Zi, Xα])

− 1
4

∑
α

‖α‖2ci
j([[Zi, Xα], X−α]),

where we have used the identity Nα,−γN−1
α,α′ = −(1/2)‖α‖2 from the first equal-

ity to the second.
These equalities imply that T2 = T21 + T22 with

T21 =
1
2

∑

i,j∈I(C)

∑
α

‖α‖2ci
j([X, X−α])Ω1([Zi, Xα])Ω2(Zj)

and
T22 =

1
4

∑

i,j∈I(C)

∑
α

‖α‖2ci
j([[Zi, Xα], X−α])Ω2(Zj).
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By employing Proposition 2.3, we get

T22 = (1/2)c(g,C)
∑

i,j∈I(C)

ci
j(Zi)Ω2(Zj)

= −(1/2)c(g, C)
∑

i∈I(C)

Ω2([Zi, Z
i])

= 0,

from Lemma 6.12. Now observe that

∑

i∈I(C)

ci
j([X, X−α])Zi = [[X,X−α], Zj ]

and so

T2 = T21

=
1
2

∑

j∈I(C)

∑
α

‖α‖2Ω1([[[X, X−α], Zj ], Xα])Ω2(Zj)

= −1
2

∑

j∈I(C)

∑
α

‖α‖2Ω1([[Zj , [X,X−α]], Xα])Ω2(Zj)

= −(1/2)p(g,C)
∑

j∈I(C)

Ω1([Zj , X])Ω2(Zj),

where the last equality follows from Proposition 2.4.
We now consider the contribution of the third terms in the commutator

formula for Ω2. This contribution is s− s2(C) multiplied by

T3 =
∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi) +
∑

i∈I(C)

Ω2(Zi)Ω1([Zi, X]).

The first term, T31, is already in a suitable form, and so we consider the second
term, T32. It is

T32 =
∑

i∈I(C)

Ω2(Zi)Ω1([Zi, X])

=
∑

i∈I(C)

Ω2(Zi)Ω1([Zi, X])

=
∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi) +
∑

i∈I(C)

[Ω2(Zi), Ω1([Zi, X])].
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In this expression, the first term, T321, is in a suitable form, and so we consider
the second term, T322. It is

T322 =
∑

i∈I(C)

∑

α∈R(V +)

[Ω2(Zi), ξαΩ1([Zi, Xα])]

=
∑

i∈I(C)

∑

α∈R(V +)

[Ω2(Zi), ξα]Ω1([Zi, Xα])

+
∑

i∈I(C)

∑

α∈R(V +)

ξα[Ω2(Zi), Ω1([Zi, Xα])]

=
∑

i∈I(C)

∑

α∈R(V +)

N−1
α,α′Ω1([Zi, Xα′ ])Ω1([Zi, Xα])

+
∑

i∈I(C)

∑

α∈R(V +)

ξαΩ1([Zi, [Zi, Xα]])∂γ

=
∑

i∈I(C)

∑

α∈R(V +)

N−1
α,α′Ω1([Zi, Xα′ ])Ω1([Zi, Xα])

+
∑

i∈I(C)

∑

α∈R(V +)

ξαΩ1([Zi, [Zi, Xα]])∂γ

= (1/2) dim(V +)Λ(C)∂γ + Λ(C)
∑

α∈R(V +)

ξαΩ1(Xα)∂γ

= (1/2) dim(V +)Λ(C)∂γ + Λ(C)Ω1(X)∂γ .

In this computation, we have used Lemma 6.10 to evaluate [Ω2(Zi), ξα], Lemma
6.4 to evaluate [Ω2(Zi),Ω1([Zi, Xα])], the principle about expressions depend-
ing linearly on Zi and Zi, Lemma 6.13 to evaluate the first sum in the third-last
equality, and Proposition 6.5 to evaluate part of the second sum. From these
computations, we obtain the evaluation

T3 = 2
∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi) + (1/2) dim(V +)Λ(C)∂γ + Λ(C)Ω1(X)∂γ .

By adding T1, T2, and s− s2(C) times T3, we obtain the evaluation

[D−γ ,Ω′4(C)] =

− 4ξγΩ′4(C) +
(
2s + 1− (1/2)p(g,C)− 2s2(C)

) ∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi)

+ (1/2)(s− s2(C)) dim(V +)Λ(C)∂γ + (s− s2(C))Λ(C)Ω1(X)∂γ .

Now

1− (1/2)p(g, C)− 2s2(C) = 1− (1/2)p(g, C)− c(g, C) + 2
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= 3− (
(1/2)p(g,C) + c(g, C)

)

= 3− (1/2)(dim(V +) + 4)

= −(1/2)(dim(V +)− 2)

by Proposition 3.1 and so

[D−γ ,Ω′4(C)] = −4ξγΩ′4(C) + 2(s− s4)
∑

i∈I(C)

Ω1([Zi, X])Ω2(Zi)

+ (1/2)(s− s2(C)) dim(V +)Λ(C)∂γ + (s− s2(C))Λ(C)Ω1(X)∂γ .

By combining this evaluation with (6.3) and Lemma 6.14, and simplifying the
result, we finally obtain the formula in the statement. We remark that the
coefficient of ∂2

γ in the definition of Ω4(C) is fixed by the requirement that
the Ω1(X)∂γ term in the above formula for [D−γ ,Ω′4(C)] be canceled by the
corresponding term in [D−γ , ∂2

γ ].

The construction of Ω4 that has just been given yields zero for the algebra
of type A2, since in this case the diagram Dγ(g, h) is empty. For the algebra of
type Ar there is an alternate construction of Ω4 that makes use of the additional
central element Z0 that was defined at the end of Section 5. As well as defining
a non-zero operator Ω4 for the algebra A2, it gives a simpler expression than
the uniform construction. We finish this section by describing the alternate
construction.

Theorem 6.3. Let g be the algebra of type Ar and define

Ω0
4 = Ω2(Z0)2 + (1/2)(s− s2)∂2

γ ,

where s2 = (r − 1)/2. Then

[D−γ , Ω0
4] = −4ξγΩ0

4 + 2(s− s4)Ω1([Z0, X])Ω2(Z0)− 2(s− s4)(s− s2)∂γ ,

where s4 = (r − 2)/2.

Proof. We begin by considering [D−γ ,Ω2(Z0)2]. From Theorem 5.3 we
have

[D−γ , Ω2(Z0)] = −2ξγΩ2(Z0) + (s− s2)Ω1([Z0, X]).

By using this, we obtain

[D−γ , Ω2(Z0)2] = −4ξγΩ2(Z0)2 + (s− s2)Ω1([Z0, X])Ω2(Z0)

+ (s− s2)Ω2(Z0)Ω1([Z0, X])− 2[Ω2(Z0), ξγ ]Ω2(Z0).



Conformally Invariant Systems 75

Now

Ω2(Z0)Ω1([Z0, X]) =
∑
α

Ω2(Z0)ξαΩ1([Z0, Xα])

=
∑
α

ξαΩ2(Z0)Ω1([Z0, Xα]) +
∑
α

[Ω2(Z0), ξα]Ω1([Z0, Xα])

= Ω1([Z0, X])Ω2(Z0) +
∑
α

ξα

[
Ω2(Z0), Ω1([Z0, Xα])

]

+
∑
α

N−1
α,α′Ω1([Z0, Xα′ ])Ω1([Z0, Xα])

= Ω1([Z0, X])Ω2(Z0) +
∑
α

ξαΩ1([Z0, [Z0, Xα]])∂γ + S

= Ω1([Z0, X])Ω2(Z0) + Ω1(X)∂γ + S,

where
S =

∑
α

N−1
α,α′Ω1([Z0, Xα′ ])Ω1([Z0, Xα]).

In this computation, we have used Lemma 6.10 from the second line to the third,
Lemma 6.4 from the third line to the fourth, and the identity [Z0, [Z0, Y ]] = Y

for all Y ∈ V + from the fourth line to the fifth. The next task is to evaluate
S, which we do indirectly as follows:

S = −
∑
α

N−1
α,α′Ω1([Z0, Xα])Ω1([Z0, Xα′ ])

= −S −
∑
α

N−1
α,α′

[
Ω1([Z0, Xα]), Ω1([Z0, Xα′ ])

]

= −S −
∑
α

N−1
α,α′〈[Z0, Xα], [Z0, Xα′ ]〉∂γ

= −S +
∑
α

N−1
α,α′〈Xα, [Z0, [Z0, Xα′ ]]〉∂γ

= −S +
∑
α

N−1
α,α′〈Xα, Xα′〉∂γ

= −S +
∑
α

∂γ

= −S + dim(V +)∂γ .

Thus S = (1/2) dim(V +)∂γ . By Lemma 6.10, [Ω2(Z0), ξγ ] = −(1/2)Ω1([Z0, X]).
These evaluations combine to give

[D−γ , Ω2(Z0)2] = −4ξγΩ2(Z0)2 + 2(s− s4)Ω1([Z0, X])Ω2(Z0)
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+ (s− s2)Ω1(X)∂γ + (1/2)(s− s2) dim(V +)∂γ .

According to Lemma 6.14, we have

[D−γ , ∂2
γ ] = −4ξγ∂2

γ − 2Ω1(X)∂γ − (4s + 2)∂γ .

These two expressions combine to give the required evaluation of [D−γ , Ω0
4]. To

check this, it is useful to recall that dim(V +) = 2(r − 1).

It appears that we have obtained several operators Ω4(C) in the cases where
Dγ(g, h) is not connected, and also when g is of type Ar with r ≥ 3. In fact,
the apparently different operators are proportional and so we have obtained
essentially only one operator in each case, although we do not prove this here.
The proportionality is most easily obtained in the context of the theory of
generalized Verma modules and will be considered elsewhere.

§7. The b-Function of the Quasi-Invariant

In this section we assume that the algebra g is not of type Cr, so that the
relative invariant ∆ on V + does not vanish identically. We wish to determine
the b-function of the quasi-invariant P ∈ C[n]. A first step is to find a poly-
nomial b(s) ∈ C[s] such that there is an identity of the form DP s+1 = b(s)P s

for some differential operator D on n whose coefficients are in C[s]⊗CC[n]. An
identity of this form implies that the b-function of P divides b(s). The complete
determination of the b-function requires additional arguments.

In [8], Gyoja explains how to find a polynomial b(s) having the required
property by using a sophisticated algorithm, and carries out the necessary cal-
culations in some cases. We shall instead use a completely elementary approach
that expresses a suitable polynomial b(s) directly in terms of the b-function of
the relative invariant. Since the latter has been computed in all our cases, this
will also solve the problem. As well as being elementary, our approach has two
advantages. First, it reveals that there is a simple relationship between the
roots of the b-functions of the relative invariant and the quasi-invariant. Sec-
ondly, it yields an explicit differential operator D to accompany the polynomial
b(s).

It may happen that there is a relative invariant ∆0 ∈ C[V +] associated to
the character χ. If so, and ∆0 is normalized so that ∆0(X0) = 1, then ∆ = ∆2

0.
By inspection of the list of possible prehomogeneous vector spaces (L,Ad, V +),
one finds that this happens if and only if the algebra g is of type Ar. For all
other types that we are considering, ∆ is irreducible. Our discussion will apply
just as well to either case.
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Let ∆∗ be the constant coefficient differential operator on V + correspond-
ing in the usual way to a relatively invariant polynomial on the dual space of
(L, Ad, V +) associated to the character χ−2 (see, for example, Proposition 2.22
of [14] and the discussion preceding it). Then there is a quartic polynomial
a(s) ∈ C[s] such that

∆∗∆s+1 = a(s)∆s.

As with all similar equations, this equation may be understood to hold on the
universal cover of the complement of the singular set in V + with s a complex
number, in a suitable D-module with s a formal parameter, or on V + with
s an integer. Note that we do not require the polynomial a(s) to be monic,
although this could be arranged by a suitable normalization of ∆∗ if desired.
The defining equation makes it clear that a(−1) = 0 and so we may write

a(s) = (a3s
3 + a2s

2 + a1s + a0)(s + 1).

Lemma 7.1. For all s ∈ Z we have

∆∗(y2 −∆(X))s+1 =(
A0(s)∆3(X) + A1(s)∆2(X)y2 + A2(s)∆(X)y4 + A3(s)y6

)
(y2 −∆(X))s−3,

where

A0(s) = (a3s
3 + a2s

2 + a1s + a0)(s + 1),

A1(s) = −(
(a2 + 3a3)s2 + (2a1 + a2 − a3)s + 3a0

)
(s + 1),

A2(s) =
(
(a1 + a2 + a3)s + 3a0

)
(s + 1),

A3(s) = −a0(s + 1).

Proof. We begin by introducing a new variable z, which will eventually
be identified with y2, and letting L act by automorphisms on C[z] in such a
way that l · z = χ(l)2z. Now ∆∗ is a constant coefficient differential operator of
order four such that ∆∗z = 0. From this and the product rule it follows that
there are polynomials F0, . . . , F3 ∈ C[V +] and A0, . . . , A3 ∈ C[s] such that

∆∗(z −∆(X))s+1 = F (s,X, z)(z −∆(X))s−3

with

F (s,X, z) = (A0(s)F0(X) + A1(s)F1(X)z + A2(s)F2(X)z2 + A3(s)F3(X)z3).

The transformation laws of ∆∗ and (z −∆(X)) under L imply that

F (s,Ad(l)X, l · z) = χ(l)6F (s,X, z).
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By setting z = 0 in this equation, we conclude that F0 is a relatively invariant
polynomial on V + associated to the character χ6 and so F0 is proportional to
∆3. We may assume that F0 = ∆3 by absorbing the constant of proportionality
into A0. By considering (F −A0F0)/z, we similarly conclude that F1 is propor-
tional to ∆2, and we may assume them equal after changing A1 if necessary.
Similarly, we may assume that F2 = ∆ and F3 = 1. This gives us an identity
of the form

∆∗(z −∆(X))s+1 =

(A0(s)∆3(X) + A1(s)∆2(X)z + A2(s)∆(X)z2 + A3(s)z3)(z −∆(X))s−3.

It remains to identify the polynomials A0, . . . , A3.
By setting z = 0 on both sides we obtain

(−1)s+1∆∗∆s+1 = (−1)s−3A0(s)∆s

and, since s + 1 and s− 3 are of the same parity, it follows that A0(s) = a(s).
Let ∂z denote the partial derivative with respect to z and write P = z−∆(X).
Then

∂zP
s+1 = (s + 1)P s

and the operator ∂z commutes with ∆∗. We have

∂z∆∗P s+1 = ∆∗∂zP
s+1

= (s + 1)∆∗P s

= (s + 1)
(
A0(s− 1)∆3(X) + · · ·+ A3(s− 1)z3

)
P s−4.

On the other hand,

∂z∆∗P s+1

= ∂z

(
(A0(s)∆3(X) + · · ·+ A3(s)z3)P s−3

)

=
(
A1(s)∆2(X) + 2A2(s)∆(X)z + 3A3(s)z2

)
P s−3

+
(
A0(s)∆3(X) + · · ·+ A3(s)z3

)
(s− 3)P s−4

=
(
(s− 3)A0(s)−A1(s))∆3(X) + ((s− 2)A1(s)− 2A2(s))∆2(X)z

+ ((s− 1)A2(s)− 3A3(s))∆(X)z2 + sA3(s)z3
)
P s−4.

By comparing coefficients in these two expressions, we obtain the recurrence
relations

A1(s) = (s− 3)A0(s)− (s + 1)A0(s− 1),

2A2(s) = (s− 2)A1(s)− (s + 1)A1(s− 1),

3A3(s) = (s− 1)A2(s)− (s + 1)A2(s− 1).
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A direct calculation using the known value of A0(s) now yields A1(s), A2(s),
and A3(s) as in the statement. The proof is completed by replacing z by y2.

We are now ready to describe the polynomial b(s). We may factor a(s) as

a(s) = a3(s + 1)(s− ρ1)(s− ρ2)(s− ρ3),

and we define b(s) ∈ C[s] by

b(s) = a3(s + 1)
(
s− (ρ1 − 1/2)

)(
s− (ρ2 − 1/2)

)(
s− (ρ3 − 1/2)

)
.

A calculation using Newton’s identities shows that b(s) may also be expressed
in terms of the coefficients a0, . . . , a3 as

b(s) =

(s+1)
(
a3s

3 +(a2 +3a3/2)s2 +(a1 +a2 +3a3/4)s+(a0 +a1/2+a2/4+a3/8)
)
.

In the following, we let ∂y denote the partial derivative with respect to y.

Theorem 7.1. With notation as above, define a differential operator
on n by

D = ∆∗ − c(s)∂2
y + r(s)y∂3

y − (a3/16)∆(X)∂4
y

with
r(s) = (a3/4)s + (a2/8 + a3/4)

and
c(s) = (3a3/4)s2 + (3a3/4 + a2/2)s + (a1/4 + a2/8 + a3/16).

Then we have
D(y2 −∆(X))s+1 = −b(s)(y2 −∆(X))s.

Proof. For notational compactness, let us write ∆ for ∆(X) and P for
y2 −∆(X) throughout the proof. By Lemma 7.1, we have

∆∗P s+1 =
(
A0(s)∆3 + A1(s)∆2y2 + A2(s)∆y4 + A3(s)y6

)
P s−3

with explicit polynomials A0(s), . . . , A3(s) as given in the lemma. By direct
calculation, we also have the identities

∂2
yP s+1

= −2(s + 1)
(
∆3 − (2s + 3)∆2y2 + (4s + 3)∆y4 − (2s + 1)y6

)
P s−3,

∂3
yP s+1

= 4s(s + 1)
(
3∆2y − 2(s + 2)∆y3 + (2s + 1)y5

)
P s−3,

∂4
yP s+1

= 4s(s + 1)
(
3∆2 − 6(2s− 1)∆y2 + (4s2 − 1)y4

)
P s−3.
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Since
−(y2 −∆)3 = ∆3 − 3∆2y2 + 3∆y4 − y6,

the identity DP s+1 = −b(s)P s amounts to the four polynomial identities

b(s) = A0(s) + 2(s + 1)c(s)− (3a3/4)s(s + 1),

−3b(s) = A1(s)− 2(s + 1)(2s + 3)c(s) + 12s(s + 1)r(s)

+ (3a3/2)s(s + 1)(2s− 1),

3b(s) = A2(s) + 2(s + 1)(4s + 3)c(s)− 8s(s + 1)(s + 2)r(s)

− (a3/4)s(s + 1)(4s2 − 1),

−b(s) = A3(s)− 2(s + 1)(2s + 1)c(s) + 4s(s + 1)(2s + 1)r(s).

Every quantity appearing in these proposed identities is known explicitly in
terms of a0, . . . , a3 and one now verifies by substitution that they do indeed
hold. Thus DP s+1 = −b(s)P s.

Let D0 be the differential operator on n defined by

D0 = 6s∂2
y + 2(s− 2)y∂3

y − (y2 −∆(X))∂4
y .

One verifies by direct computation that D0(y2 −∆(X))s+1 = 0 for all s ∈ Z.
Thus, for any constant λ ∈ C, the differential operator D + λD0 also satisfies
(D + λD0)P s+1 = −b(s)P s. A particularly convenient choice is λ = a3/16,
for then the operator D + λD0 is the sum of ∆∗ and an operator of the form
p1(s)∂2

y + p2(s)y∂3
y − λy2∂4

y for certain polynomials p1(s) and p2(s).
As was explained in the introduction to this section, Theorem 7.1 implies

that the Bernstein-Sato polynomial bP (s) of the quasi-invariant P divides the
polynomial b(s). In fact, it appears to be the case that bP (s) is a constant
multiple of b(s) for all the algebras under consideration, but we shall not prove
this here. The polynomial b(s) will be referred to as the conjectured Bernstein-
Sato polynomial below.

§8. A Compendium of Cases

In this section we present a case-by-case summary of data concerning the
Heisenberg parabolic in each of the simple Lie algebras. When applicable, we
give the extended Dynkin diagram; the highest root γ; half the sum of the roots
in n, which we denote by ρ(n); a choice of δ ∈ R(V +); the constants c(g,C)
and p(g, C) that were defined in Section 2; the constant Λ(C) that was defined
in Section 6; a prehomogeneous vector space equivalent to (L,Ad, V +); the
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Bernstein-Sato polynomial b∆(s) of its relative invariant; and the conjectured
Bernstein-Sato polynomial b(s) of the associated quasi-invariant.

Some remarks on notation and sources might be in order. We follow the
conventions of [3] for numbering the simple roots. We write c(Ar), c(Cr), and so
on for the constants c(g, C) in the case where the graph Dγ(g, h) is connected.
In the cases where it is not, we let C1 be the component containing α1 and
C2 be the component containing αr. For D4, there is a third component C3

consisting of α3 alone. Except for types Ar, B3 and Cr, the prehomogeneous
vector space (L,Ad, V +) is irreducible, reduced and regular, and so the b-
function can be found in the invaluable reference [13]. The remaining data
is easily verified. We say that prehomogeneous vector spaces (L1, π1, V1) and
(L2, π2, V2) are equivalent if there is a linear isomorphism θ : V1 → V2 such
that π2(L2) = θ ◦π1(L1) ◦ θ−1. Equivalent prehomogeneous vector spaces have
the same b-function.

§8.1. Ar, r ≥ 2

α1◦ α2◦ . . .
αr−1◦ αr◦

◦−γ

PPPPPPPPPPPPPP

nnnnnnnnnnnnnn

The highest root is γ = α1 + · · · + αr, ρ(n) = (r/2)γ and we may take
δ = α1. We have c(Ar) = 2 and p(Ar) = 2(r − 1) provided that r ≥ 3; if
r = 2 then Dγ(g, h) is empty and so c(A2) and p(A2) are undefined. A space
equivalent to (L,Ad, V +) is given by GL(1)×GL(r−1) acting on Cr−1⊕Cr−1

via
(λ, g)(v1, v2) = (λ det(g)gv1, λ

tg−1v2).

The relative invariant ∆0(v1, v2) = tv1v2 is associated to the character χ0(λ, g) =
λ2 det(g). Its b-function is a0(s) = (s+1)(s+(r−1)). The b-function of ∆ = ∆2

0

is
b∆(s) = (s + 1)(s + 1/2)(s + (r − 1)/2)(s + r/2)

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)2(s + r/2)(s + (r + 1)/2).

§8.2. Br, r ≥ 3
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α1◦ α2◦ . . .
αr−1◦ +3

αr◦
◦−γ

The highest root is γ = α1 + 2α2 + · · ·+ 2αr, ρ(n) = (r− 1)γ and we may
take δ = α2. We have c(Br, C1) = 2r − 3, p(Br,C1) = 4, Λ(C1) = 2r − 7/2,
c(Br, C2) = 4, p(Br,C2) = 2(2r − 5), and Λ(C2) = 2r − 3. A space equivalent
to (L,Ad, V +) is given by GL(2) × SO(2r − 3) acting naturally on the tensor
product C2 ⊗ C2r−3, which we may identify with the space of ordered pairs of
vectors in Cm with m = 2r − 3. The b-function of ∆ is

b∆(s) = (s + 1)(s + 3/2)(s + (r − 2))(s + (r − 3/2))

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)(s + 2)(s + (r − 3/2))(s + (r − 1)).

§8.3. Cr, r ≥ 2

α1◦ α2◦ . . .
αr−2◦ αr−1◦ks

αr◦
◦−γ

KS

The highest root is γ = 2α1 + · · · + 2αr−1 + αr, ρ(n) = (r/2)γ and no
choice of δ is possible. We have c(Cr) = 1. A space equivalent to (L,Ad, V +)
is given by GL(1)× Sp(2r− 2) acting naturally on C2r−2. There is no relative
invariant. The Bernstein-Sato polynomial of the quasi-invariant is

bP (s) = (s + 1)(s + 1/2).

§8.4. Dr, r ≥ 4

αr−1◦
α1◦ α2◦ . . . ◦ αr−2

¡¡¡¡¡¡¡¡

>>
>>

>>
>>

◦−γ
◦
αr
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The highest root is γ = α1 + 2α2 + · · · + 2αr−2 + αr−1 + αr, ρ(n) =
(r − 3/2)γ and we may take δ = α2. When r ≥ 5, we have c(Dr, C1) = 2r − 4,
p(Dr, C1) = 4, Λ(C1) = 2r − 9/2, c(Dr, C2) = 4, p(Dr, C2) = 4(r − 3), and
Λ(C2) = 2r−4. When r = 4, we have c(D4, Ci) = p(D4,Ci) = 4 and Λ(Ci) = 7/2
for 1 ≤ i ≤ 3. A space equivalent to (L,Ad, V +) is given by GL(2)×SO(2r−4)
acting naturally on the tensor product C2⊗C2r−4, which we may identify with
the space of ordered pairs of vectors in Cm with m = 2r− 4. The b-function of
∆ is

b∆(s) = (s + 1)(s + 3/2)(s + (r − 5/2))(s + (r − 2))

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)(s + 2)(s + (r − 2))(s + (r − 3/2)).

§8.5. E6

α1◦ α3◦ α4◦ α5◦ α6◦
◦−γ

◦
α2

The highest root is γ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6, ρ(n) = (11/2)γ
and we may take δ = α2. We have c(E6) = 6, p(E6) = 12, and Λ(E6) = 21/2.
A space equivalent to (L, Ad, V +) is given by GL(6) acting naturally on ∧3C6.
The b-function of ∆ is

b∆(s) = (s + 1)(s + 5/2)(s + 7/2)(s + 5)

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)(s + 3)(s + 4)(s + 11/2).

§8.6. E7

α1◦ α3◦ α4◦ α5◦ α6◦ α7◦
◦−γ

◦
α2



84 L. Barchini, Anthony C. Kable and Roger Zierau

The highest root is γ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7, ρ(n) =
(17/2)γ and we may take δ = α1. We have c(E7) = 8, p(E7) = 20, and
Λ(E7) = 33/2. A space equivalent to (L, Ad, V +) is obtained by taking GL(1)×
Spin(12) acting on either of its half-spin representations (which are equivalent
as prehomogeneous vector spaces, although not, of course, as representations).
The b-function of ∆ is

b∆(s) = (s + 1)(s + 7/2)(s + 11/2)(s + 8)

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)(s + 4)(s + 6)(s + 17/2).

§8.7. E8

α1◦ α3◦ α4◦ α5◦ α6◦ α7◦ α8◦
◦
α2

◦−γ

The highest root is γ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8,
ρ(n) = (29/2)γ and we may take δ = α8. We have c(E8) = 12, p(E8) = 36,
and Λ(E8) = 57/2. A space equivalent to (L,Ad, V +) is obtained by taking
GL(1) × E7 acting on its 56-dimensional irreducible representation. The b-
function of ∆ is

b∆(s) = (s + 1)(s + 11/2)(s + 19/2)(s + 14)

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)(s + 6)(s + 10)(s + 29/2).

§8.8. F4

α1◦ α2◦ +3
α3◦ α4◦

◦−γ

The highest root is γ = 2α1 +3α2 +4α3 +2α4, ρ(n) = 4γ and we may take
δ = α1. We have c(F4) = 5, p(F4) = 8, and Λ(F4) = 15/2. A space equivalent
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to (L,Ad, V +) is given by GL(1)×Sp(6) acting naturally on the 14-dimensional
subspace of ∧3C6 consisting of primitive forms. The b-function of ∆ is

b∆(s) = (s + 1)(s + 2)(s + 5/2)(s + 7/2)

and the conjectured Bernstein-Sato polynomial of the quasi-invariant is

b(s) = (s + 1)(s + 5/2)(s + 3)(s + 4).

§8.9. G2

α1◦_jt
α2◦
◦−γ

The highest root is γ = 3α1 +2α2, ρ(n) = (3/2)γ and we may take δ = α2.
We have c(G2) = 10/3, p(G2) = 4/3, and Λ(G2) = 5/2. A space equivalent to
(L, Ad, V +) is given by GL(2) acting naturally on ∨3C2. The b-function of ∆
is

b∆(s) = (s + 1)2(s + 5/6)(s + 7/6)

and the Bernstein-Sato polynomial of the quasi-invariant is

bP (s) = (s + 1)(s + 3/2)(s + 4/3)(s + 5/3).

§8.10. The Special Values of s

In the following table, we display the special values of the parameter s for
each of the conformally invariant systems that we have constructed. For types
other than Ar, we use Ωbig

2 to stand for the Ω2 system associated to the larger
component of Dγ(g, h), and Ωsmall

2 to stand for that associated to the singleton
component. For type Ar, we use Ωbig

2 to stand for the Ω2 system constructed
by the normal means, and Ωsmall

2 to stand for Ω2(Z0). A dash indicates that no
such system exists in that type. A question mark indicates that the existence
is presently unknown; the authors hope to resolve this uncertainty in future
work.
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Type Ω1 Ωbig
2 Ωsmall

2 Ω3 Ω4

Ar (r ≥ 2) 0 0 r−1
2 ? r−2

2

Br (r ≥ 3) 0 r − 5
2 1 ? r − 2

Cr (r ≥ 2) 0 − 1
2 – – –

Dr (r ≥ 5) 0 r − 3 1 ? r − 5
2

E6 0 2 – 3 9
2

E7 0 3 – 5 15
2

E8 0 5 – 9 27
2

F4 0 3
2 – 2 3

G2 0 2
3 – 1

3
1
2

In type A2, the system Ωbig
2 is zero. Type D4 is excluded from the above

table, since in this case Dγ(g, h) has three singleton components, each with an
associated Ω2 system. The special s values for D4 are as follows.

Type Ω1 Ω2(1) Ω2(2) Ω2(3) Ω3 Ω4

D4 0 1 1 1 ? 3
2
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