MATH 6590, Homework 2

- 1. (5 points) Let $\Omega = (a, b) \times (c, d)$ be a rectangular domain.
 - (a) Prove that for all $v \in C_0^{\infty}(\Omega)$, there exists a constant c > 0 such that

$$(\nabla v, \nabla v) \ge c \|v\|_0^2,\tag{1}$$

by using $v(x,y) = \int_a^x \frac{\partial v}{\partial x}(\xi,y) d\xi$ or $v(x,y) = \int_c^y \frac{\partial v}{\partial y}(x,\eta) d\eta$, and the Schwarz inequality. Try to get the best estimation you can, that is, find the largest possible value of c.

- (b) Show that Inequality (1) is also true for all $v \in H_0^1(\Omega)$, by using the fact that $C_0^{\infty}(\Omega)$ is dense in $H_0^1(\Omega)$.
- (c) Use the above result to prove the coercivity

$$(\nabla v, \nabla v) \ge \alpha \|v\|_1^2$$
 for all $v \in H_0^1(\Omega)$.

- 2. (5 points) Textbook, 3.x.9.
- 3. (5 points) Textbook, 3.x.13.
- 4. (5 points) Given an arbitrary triangle K with vertices $v_i(x_i, y_i)$, i = 1, 2, 3. Write a Matlab function that computes the local stiffness matrix $\{(\nabla \phi_i, \nabla \phi_j)\}_{0 \le i,j \le 3}$ where ϕ_i is the linear basis function such that $\phi_i(v_j) = \delta_{ij}$. Your function should take the coordinates of v_i , i = 1, 2, 3, as inputs, and return the 3×3 local stiffness matrix. Test your function on the triangle with vertices $v_1(1, 2), v_2(2, 1), v_3(3, 3)$ and print out the results.