
Math 5553, Homework 3, Due on 3/13/2012

1. (12 points) Matlab command rand(m,n) generates an m×n random matrix. Here we always
assume m ≥ n. To get a random m × m unitary matrix, one can simply use [Q,R] =

qr(rand(m,n)), where qr is the Matlab built-in routine for QR factorization, or [Q, S, V]

= svd(rand(m,n)), where svd is the Matlab built-in routine for SVD. Then, Q returns an
m×m unitary matrix.

Now we can manually write an upper triangular matrix R and set A = QR. This gives us
control of the diagonal entries of R in the QR factorization of A. An easy way to write an
upper-triangular matrix is to use diag(a) * triu(ones(m,n)), where a = [a1, a2, . . . , am] is
an m-dim vector. This generates an m× n matrix which contains the first n columns of the
upper triangular matrix 

a1 a1 a1 · · · a1
0 a2 a2 · · · a2
0 0 a3 · · · a3

· · ·
0 0 0 · · · am


In the following experiment, we will set ai = 2−i, for i = 1, ...m.

Matrix A can be used to test the stability of different methods for computing the QR fac-
torization. We have covered three of them in class, the classical Gram-Schmidt, the modified
Gram-Schmidt, and the Householder triangulization algorithms. Implement these three al-
gorithms and test them on matrix A, with m = n = 48. For each algorithm, you get the
computed QR factorization Q̃ and R̃. Calculate and report the matrix 2-norm of I − Q̃∗Q̃,
using Matlab command norm. Notice that if Q̃ is exactly a unitary matrix, this norm should
be 0.

Draw the diagonal entries of R̃ using command semilogy. (Plot in discrete dots, circles,
x-marks or whatever instead of continuous curve. Type help plot to learn more about line
type options.) Compare the results with the diagonal entries of R. What do you observe for
these three algorithms?

2. (8 points) Suppose a quantity x(h) ≈ chr, where c and r are non-negative constants. In this
case we usually say x = O(hr). For example, when h takes the value of 1
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4 ,

1
8 ,

1
16 and x takes

the value 0.803, 0.197, 0.051, 0.0124, we can easily see that r should be around 2. Or in other
words, the given set of data satisfies x(h) = O(h2). The rule is obvious in this case since
every time we reduce h by a factor of 2, x will be reduced approximately by a factor of 4.

However, the value of r is much less obvious if we are given the following set of data:
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, and x = 0.185, 0.0853, 0.0486, 0.0313

Plotting this set of data using loglog(h,x). The result is almost a straight line, which
indicates that the lnh-lnx relation is linear. Indeed, by taking nature log of x ≈ chr, we
have lnx ≈ r lnh + ln c. Clearly, for any given set of data, we can then use the least squares
method (the line fitting) to find r and c. Compute r and c for the above given data.

Then, test you algorithm on another set of data:
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, and x = 0.12, 0.0672, 0.044, 0.0316
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