Homework 4 Due 12/3/2015

- 1. (6 points) Given $\xi^* \in \left(-\frac{\pi}{h}, \frac{\pi}{h}\right)$ and infinite dimensional vectors $\{v_m\}_{m=-\infty}^{\infty}$ and $\{u_m\}_{m=-\infty}^{\infty}$.
 - (a) Use the definition of discrete fourier transform from von Neumann analysis to show that $\hat{v}(\xi) = \sqrt{2\pi} \,\delta_{\xi^*}(\xi)$ implies that $v_m = e^{imh\xi^*}$.
 - (b) Denote $w_m = e^{imh\xi^*} u_m$ for all m. Prove that $\hat{w}(\xi) = \hat{u}(\xi \xi^*)$.
- 2. (6 points) Show that the Crank-Nicolson scheme for $u_t = bu_{xx}$, where b > 0, is unconditionally stable. For the refinement path $\mu = const$, find the order of dissipation of the scheme.
- 3. (8 points) (Problem 6.3.6, part (c)) Consider the following scheme for the parabolic equation $u_t = bu_{xx}$ with b > 0,

$$\begin{split} \tilde{v}_m^{n+1/2} &= v_m^n + \frac{1}{2} k b \, \delta^2 v_m^n \\ v_m^{n+1} &= v_m^n + k b \, \delta^2 \tilde{v}_m^{n+1/2} \end{split}$$

Show that this scheme is stable if $b\mu \leq 1/2$ and show that $1/2 \leq g \leq 1$.

(Hint: Recall that g is defined by $\hat{v}^{n+1} = g\hat{v}^n$. You can either (1) express v_m^{n+1} in terms of v_m^n and then compute g; or (2) compute $\hat{v}^{n+1} = G_1(\hat{v}^n, \hat{v}^{n+1/2})$ and $\hat{v}^{n+1/2} = G_2(\hat{v}^n)$, and then compute g from the composite function.)