
Homework assignment 4

1. (Numerical Analysis Comprehensive Exam, August 2006, #2) Consider the following finite
difference scheme:
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where ∆t = 1/N and ∆x = 1/J . Derive the exact condition for the scheme to be stable in
the maximum norm.

2. Stability of the leapfrog scheme can also be examined by viewing it as a one-step scheme.
The leapfrog scheme for ut + aux = 0 is
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where λ = k/h. It can be written in the form:
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Hence we have
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, where I is the identity matrix (1)

The above scheme (1) can be viewed as a one-step scheme ~wn+1 = B ~wn.

(a) The Fourier transform of scheme (1) can be written as
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,

where G(hξ) is a 2 × 2 matrix. Compute this matrix.

(b) Compute the Jordan canonical form of G(hξ) = TΛT−1. Here Λ is a 2×2 matrix whose
diagonal components λ1,2 are eigenvalues of G(hξ), and T is a 2×2 matrix whose columns
are eigenvectors corresponding to λ1,2. You need to discuss for different situations. Be
careful when G(h, ξ) has a repeated eigenvalue.

(c) Use the Jordan form to find the exact condition for the leapfrog scheme to be stable.

3. Textbook 5.1.7, 5.2.2, 6.1.4.
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