Graphical Optimization

Example 1 Find (x_1, x_2) in order to maximize $f(x_1, x_2) = 400x_1 + 600x_2$, subject to

 $x_1 + x_2 \le 16$ g_1 :

 g_2 :

 $\frac{x_1}{28} + \frac{x_2}{14} \le 1$ $\frac{x_1}{14} + \frac{x_2}{24} \le 1$ g_3 :

 $x_1 \ge 0$ g_4 :

 $x_2 \ge 0$ g_5 :

Example 2 Find (x_1, x_2) in order to minimize $f(x_1, x_2) = 4x_1^2 - 5x_1x_2 + x_2^2$, subject to

 $g_1: x_1^2 - x_2 + 2 \le 0$ $h_1: x_1 + x_2 = 6$

Example 3 Find (x_1, x_2) in order to minimize $f(x_1, x_2) = e^{x_1} - x_1x_2 + x_2^2$, subject to

 $g_1: 2x_1 + x_2 \le 2$ $h_1: x_1^2 + x_2^2 = 4$

Example 4 (disjoint feasible region) Find (x, y) in order to minimize $f(x, y) = (x + 2)^2 + (y - 3)^2$, subject to

 $g: \quad 3x^2 + 4xy + 6y = 140$

Example 5 (problem with multiple solutions) Find (x, y) in order to minimize f(x, y) = -x - 0.5y, subject to

 $g_1: \qquad 2x + 3y \le 12$

 $g_2: \qquad 2x+y \le 8$

 $g_3: x \geq 0$

 $g_4: y \ge 0$

Example 6 (problem with unbounded solutions) Find (x, y) in order to minimize f(x, y) = -x + 2y, subject to

 $g_1: \qquad -2x+y \le 0$

 $g_2: \qquad -2x+3y \le 6$

 $g_3: \qquad x \ge 0$
 $g_4: \qquad y \ge 0$

Example 7 (infeasible problem) Find (x, y) in order to minimize f(x, y) = x + 2y, subject to

 $g_1: \quad 3x + 2y \le 6$

 $g_2: \qquad 2x + 3y \ge 12$

 $g_3: x \geq 0$

 $g_4: y \ge 0$

 $g_5: y \le 4$

