Math 4553, Homework 1, Due on 1/27/2012

1. (4 points) A company can produce three different types of concrete blocks, identified as A, B, and C. The production process is constrained by facilities available for mixing, vibration, and inspection/drying. Using the data given in the following table, formulate the production problem in order to maximize the profit.

	Α	В	С	available
Mixing (hours/batch)	1	3	9	900
Vibration (hours/batch)	2	3	6	1,200
Inspection/drying (hours/batch)	0.7	0.8	1	400
Profit (\$/batch)	7	17	30	

2. (4 points) A company requires open-top rectangular containers to transport material. Using the following data, formulate an optimum design problem to determine the container dimensions for minimum cost.

Construction costs	Sides = $\frac{565}{m^2}$, Bottom = $\frac{120}{m^2}$
Can be used for	10 years
Yearly maintenance cost	$12/m^2$ of the outside surface area
Minimum volume of the container	$1200 m^3$

3. (6 points) Use graphical methods to solve the following optimization problem:

Maximize
$$f(x, y) = -6x + 9y$$

Subject to $\begin{pmatrix} x - y \ge 2\\ 3x + y \ge 1\\ 2x - 3y \ge 3 \end{pmatrix}$

(Notice that x, y are not necessarily positive in this problem.)

4. (6 points) Rewrite the linear programming problem

max
$$f = 2x_1 - x_2 + 2x_3$$

subject to $2x_1 - x_2 + x_3 = 5$
 $x_1 + x_2 \ge 10$
 $x_1 \ge 0, x_2 \ge 0, \ 0 \le x_3 \le 6$

into the standard form

$$\begin{array}{ll} \min & f = \mathbf{p}^t \mathbf{x} \\ \text{subject to} & A \mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

Identify matrix A and vectors \mathbf{p} , \mathbf{b} .