Formula:

• When using the simplex method for solving linear programming problems, we have

	x_N	1
x_B	$-A_B^{-1}A_N$	$A_B^{-1}b$
f	$p_N^t - p_B^t A_B^{-1} A_N$	$p_B^t A_B^{-1} b$

• Given a vector **v** and a matrix A, we have

$$proj_{null(A)}\mathbf{v} = \left(I - A^T (AA^T)^{-1}A\right)\mathbf{v}$$

- (PAS algorithm) Given the k-th interior point \mathbf{x}^k , compute the affine transformation $\mathbf{x}^k = T^k \mathbf{y}^k$, where $\mathbf{y}^k = (1, ..., 1)^t$. Use this affine transformation to rewrite the linear programming problem into *minimize* $f = \mathbf{p}^k \mathbf{y}$, subject to $A^k \mathbf{y} = \mathbf{b}$, $\mathbf{y} \ge 0$. For the transformed problem, compute the direction vector $d^k = proj_{null(A^k)}(-\nabla f)$ and the step length α^k . Use these to calculate $\mathbf{y}^{k+1} = \mathbf{y}^k + \beta \alpha^k \mathbf{d}^k$. Finally, transform it back to the original problem by using $\mathbf{x}^{k+1} = T^k \mathbf{y}^{k+1}$.
- (Primal-dual interior point method) Given \mathbf{x}^k , \mathbf{s}^k , \mathbf{u}^k , compute $\mu^k = \frac{\mathbf{x}^k \cdot \mathbf{s}^k}{n(k+1)}$, $D = XS^{-1}$, $\mathbf{r}_a = -A\mathbf{x}^k + \mathbf{b}$, $\mathbf{r}_b = -A^t\mathbf{u}^k - \mathbf{s}^k + \mathbf{p}$, $\mathbf{r}_c = -XS\mathbf{e} + \mu\mathbf{e}$. Then compute $\mathbf{d}_u = (ADA^T)^{-1}(\mathbf{r}_a + AD\mathbf{r}_b - AS^{-1}\mathbf{r}_c)$, $\mathbf{d}_s = \mathbf{r}_b - A^t\mathbf{d}_u$, $\mathbf{d}_x = S^{-1}\mathbf{r}_c - D\mathbf{d}_s$. Use the ratio test to compute α_x , α_s , and α_u . Finally, $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_x \mathbf{d}_x$, $\mathbf{s}^{k+1} = \mathbf{s}^k + \alpha_s \mathbf{d}_s$, $\mathbf{u}^{k+1} = \mathbf{u}^k + \alpha_u \mathbf{d}_u$.
- The Lagrange function for problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{subject to} & g_1(\mathbf{x}) \geq b_1 \\ & \cdots \\ & g_m(\mathbf{x}) \geq b_m \end{array}$$

is

$$L(\mathbf{x}, \mathbf{u}) = f(\mathbf{x}) - u_1(g_1(\mathbf{x}) - b_1) - \dots - u_m(g_m(\mathbf{x}) - b_m)$$

where $\mathbf{u} \geq 0$.

(Active set algorithm) Given x^k, use the Lagrange function to check whether it is an optimal solution or not. If x^k is not an optimal solution, remove the constraint that corresponds to to the most negative Lagrange multiplier from the active set. Then, compute y_k satisfying

 $\begin{array}{ll} \min & f(\mathbf{x}^k + \mathbf{y}^k) \\ \text{subject to} & (\mathbf{x}^k + \mathbf{y}^k \text{ satisfies all the rest of active constrains}) \end{array}$

Set $\mathbf{d}_k = \mathbf{y}_k$. Next, compute $\alpha^k = min(1, \bar{\alpha})$, where $\bar{\alpha}$ is the largest number which guarantees that $\mathbf{x}^k + \bar{\alpha} \mathbf{d}^k$ satisfies all inactive constraints. Set $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$.