Math 43	553, Ex	am II,	Mar.	30,	2009
---------	---------	--------	------	-----	------

Name:	

Score:

Each problem is worth 10 points. The total is 50 points.

1. Consider the unconstrained problem: minimizing $f(x_1, x_2) = x_1^2 + 2x_2^2 + 2x_1 + 3$. Given an initial point $\mathbf{x}^0 = (0, 1)$ and a direction $\mathbf{d}^0 = (-1, 0)$, show that the given direction is a descent direction at \mathbf{x}^0 . Furthermore, compute the optimum step length using analytical line search, and write down the new point.

Solution. Clearly

$$\nabla f = \begin{pmatrix} 2x_1 + 2\\ 4x_2 \end{pmatrix} \quad \Rightarrow \quad \nabla f(\mathbf{x}^0) = \begin{pmatrix} 2\\ 4 \end{pmatrix}$$

Therefore

$$\nabla f(\mathbf{x}^0) \cdot \mathbf{d}^0 = \begin{pmatrix} 2\\ 4 \end{pmatrix} \cdot \begin{pmatrix} -1\\ 0 \end{pmatrix} = -2 < 0.$$

Hence d^0 is a descent direction at x^0 .

Then we have

$$\phi(\alpha) = f(\mathbf{x}^0 + \alpha \mathbf{d}^0) = f(\begin{pmatrix} 0\\1 \end{pmatrix} + \alpha \begin{pmatrix} -1\\0 \end{pmatrix}) = f(-\alpha, 1) = \alpha^2 - 2\alpha + 5.$$

Notice that

$$\phi'(\alpha) = 2\alpha - 2, \qquad \phi''(\alpha) = 2.$$

We can conclude that $\alpha = 1$ gives a local minimum of $\phi(\alpha)$. So the step size should be $\alpha = 1$, and the next point should be

$$\mathbf{x}^1 = \mathbf{x}^0 + \alpha \mathbf{d}^0 = \begin{pmatrix} -1\\ 1 \end{pmatrix}.$$

2. Write down the Lagrangian function of the following problem, and list all equations/inequalities in KKT(Karush-Kuhn-Tucker) conditions (you do NOT need to solve the system):

minimizing
$$f(x, y, z) = x^2 + 9y^2 + z^2$$

subject to $xy \ge 1$
 $x^2 + z^2 = 4$
 $z \ge 0$

Solution. The Lagrangian function is

$$L = (x^{2} + 9y^{2} + z^{2}) + u_{1}(1 - xy + s_{1}^{2}) + u_{2}(-z + s_{2}^{2}) + v(x^{2} + z^{2} - 4),$$

where $u_1, u_2 \ge 0$.

The KKT conditions are

$$2x - u_1y + 2vx = 0$$

$$18y - u_1x = 0$$

$$2z - u_2 + 2vz = 0$$

$$1 - xy + s_1^2 = 0$$

$$-z + s_2^2 = 0$$

$$x^2 + y^2 - 4 = 0$$

$$u_i s_i = 0, \text{ for } i = 1, 2$$

$$s_1^2 \ge 0, \text{ for } i = 1, 2$$

$$u_i \ge 0, \text{ for } i = 1, 2$$

3. Rewrite the following problem into a standard LP (linear programming) form, and find all basic feasible solutions.

minimizing
$$f(x_1, x_2) = -x_1 - x_2$$

subject to $x_1 + 2x_2 = 9$
 $x_1 + x_2 \ge -3$
 $x_1 \ge 1$

Solution. Define new variables

$$y_1 = x_1 - 1$$
 and $x_2 = y_2 - y_3$,

where $y_i \ge 0$ for i = 1, 2, 3. Then, substitute $x_1 = y_1 + 1$ and $x_2 = y_2 - y_3$ into the original problem, we have

$$\begin{array}{lll} \text{minimize} & f = -(y_1 + 1) - (y_2 - y_3) & \text{minimize} & f = -y_1 - y_2 + y_3 \\ \text{with} & y_1 + 1 + 2(y_2 - y_3) = 9 & \text{with} & y_1 + 2y_2 - 2y_3 = 8 \\ & (y_1 + 1) + (y_2 - y_3) \ge -3 & & -y_1 - y_2 + y_3 \le 4 \\ & y_1, y_2, y_3 \ge 0 & & y_1, y_2, y_3 \ge 0 \end{array}$$

Add a slack variable y_4 to the less than type constraint, we get the standard form

minimize
$$\tilde{f} = (-1, -1, 1, 0)\mathbf{y}$$

with $\begin{pmatrix} 1 & 2 & -2 & 0 \\ -1 & -1 & 1 & 1 \end{pmatrix} \mathbf{y} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$
 $\mathbf{y} \ge 0$

where $\mathbf{y} = (y_1, y_2, y_3, y_4)^t$. There are $\binom{4}{2} = \frac{4!}{2!2!} = 6$ combinations of basic variables: Basic Solution (-16, 12, 0,0) $[y_1, y_2]$ -(-16, 0, -12,0) $[y_1, y_3]$ - $[y_1, y_4]$ (8, 0, 0, 12)BFS $[y_2, y_3]$ -_ (0,4,0,8)BFS $[y_2, y_4]$ (0,0,-4,8) $[y_3, y_4]$ -

4. By adding artificial variables and then eliminating them, find a basic feasible solution to the problem:

minimizing
$$f(x_1, x_2, x_3) = -3x_1 - x_3$$

subject to $2x_2 + 2x_3 = 15$
 $x_1 - 2x_2 + x_3 = 6$
 $x_1, x_2, x_3 \ge 0$

Note: You only need to complete phase I of the two-phase method.

Solution. For each equation type constraint, we add one artificial variable. The artificial function is defined to be $g = a_1 + a_2$.

Initial Tableau

	x_1	x_2	x_3	a_1	a_2	rhs
Art.	0	0	0	1	1	g
a_1	0	2	2	1	0	15
a_2	1	-2	1	0	1	6

First, we need to make artificial function depend only on non-basic variables. This is done by performing Row1 - Row2 - Row3:

	x_1	x_2	x_3	a_1	a_2	rhs
Art.	-1	0	-3	0	0	g - 21
a_1	0	2	2	1	0	15
a_2	1	-2	1	0	1	6

Next, we perform the pivoting steps. The first pivot column is column 3 and the pivot row is row 3. It has been denoted by the framed number in the above tableau. After the pivoting, x_3 replaces a_2 in the set of basic variables, and we have

	x_1	x_2	x_3	a_1	a_2	rhs
Art.	2	-6	0	0	3	g-3
a_1	-2	6	0	1	-2	3
x_3	1	-2	1	0	1	6

The next pivot column and row are indicated again by the framed number in the above tableau. After that, we have

	x_1	x_2	x_3	a_1	a_2	rhs
Art.	0	0	0	1	1	g
x_2	$-\frac{1}{3}$	1	0	$\frac{1}{6}$	$-\frac{1}{3}$	$\frac{1}{2}$
x_3	$\frac{1}{3}$	0	1	$\frac{1}{3}$	$\frac{1}{3}$	7

Notice that a_1 and a_2 are now both non-basic. We can stop here and the BFS is:

$$x_1 = 0, \quad x_2 = \frac{1}{2}, \quad x_3 = 7.$$

5. Solve following problem using the simplex method:

maximizing
$$f(x_1, x_2, x_3) = -3x_1 + 2x_2 + 4x_3$$

subject to $4x_1 + 5x_2 - 2x_3 \le 22$
 $x_1 - 2x_2 + x_3 \le 30$
 $x_1, x_2, x_3 \ge 0$

In each step of the simplex algorithm, also compute the current basic feasible solution and the value of function f at this point.

Solution. First, we need to change the objective function into

maximizing
$$\tilde{f} = 3x_1 - 2x_2 - 4x_3$$
.

For each less than type constraint, a slack variable will be added to transform them into the standard form.

Initial Tableau: BFS = (0, 0, 0, 22, 30), $\tilde{f} = 0$, f = 0

	x_1	x_2	x_3	x_4	x_5	rhs
Obj.	3	-2	-4	0	0	\tilde{f}
x_4	4	5	-2	1	0	22
x_5	1	-2	1	0	1	30

Second tableau: BFS = (0, 0, 30, 82, 0), $\tilde{f} = -120$, f = 120

	x_1	x_2	x_3	x_4	x_5	rhs
Obj.	7	-10	0	0	4	$\tilde{f} + 120$
x_4	6	1	0	1	2	82
x_3	1	-2	1	0	1	30

Third tableau: BFS = (0, 82, 194, 0, 0), $\tilde{f} = -940$, f = 940

	x_1	x_2	x_3	x_4	x_5	rhs
Obj.	67	0	0	10	24	$\tilde{f} + 940$
x_2	6	1	0	1	2	82
x_3	13	0	1	2	5	194

The final solution is:

$$x_1 = 0, \quad x_2 = 82, \quad x_3 = 194$$

and

$$f(0, 82, 194) = 940.$$