# **Shortest route problem**

Find the shortest route from the starting point (p1) to the ending point (p6).



#### 1. Set optimization variables

For each "link" in the graph, we set one variable. For example, there's a "link" from P1 to P2, so we set a variable x12. Notice that there are two variables associated with points P2 and P3, they are x23 and x32. If the value of a variable is 1, it means the "route" will pass through this link. Value 0 means this link will not be taken by the route.

```
ln[1]:= vars = {x12, x13, x23, x32, x24, x25, x35, x54, x46, x56};
```

## 2. Set the objective function

We would like to minimize the total "distance" (cost) of the chosen route :

```
 \ln[2] = f = 15 * x12 + 13 * x13 + 9 * x23 + 9 * x32 + \\ 11 * x24 + 12 * x25 + 16 * x35 + 4 * x54 + 17 * x46 + 14 * x56;
```

## 3. Set the constraints

To make sure the route is a connected path from the starting point to the ending point, we need to following constrains:

• (1) for each point other than the starting and the ending points, the total entering links (inflow)

should be equal to the total leaving links (outflow).

```
In[3]:= g2 = x12 + x32 == x24 + x25 + x23;
g3 = x13 + x23 == x32 + x35;
g4 = x24 + x54 == x46;
g5 = x35 + x25 == x54 + x56;
```

• (2) for the starting point, out flow - inflow = 1

```
In[7]:= g1 = x12 + x13 == 1;
```

(3) for the ending point, inflow - outflow = 1

ln[8]:= g6 = x46 + x56 == 1;

(4) we also need to set all variables greater than or equal to 0

```
ln[9]:= NonNegativeness = And @@ Thread[vars ≥ 0]
```

 $Out[9]= \begin{array}{c} x12 \geq 0 \ \& \& \ x13 \geq 0 \ \& \& \ x23 \geq 0 \ \& \& \ x32 \geq 0 \ \& \& \ x24 \geq 0 \ \& \& \ x25 \geq 0 \ \& \& \ x35 \geq 0 \ \& \& \ x54 \geq 0 \ \& \& \ x46 \geq 0 \ \& \& \ x56 \geq 0 \ \& \ x56 \otimes 0 \ \& \ x56 \geq 0 \ \& \ x56 \otimes 0 \ \& \ x56 \geq 0 \ \& \ x56 \otimes 0 \ \& \ x56 \geq 0 \ \& \ x56 \otimes 0 \ \& \ x56 \geq 0 \ \& \ x56 \otimes 0 \ \ x56 \otimes 0 \ \& \ x56 \otimes 0 \ \& \ x56 \otimes 0 \ \ x56 \otimes 0$ 

### 4. Solve the problem

• (1) First, we can use the command "Minimize", which accepts equations/inequalities as inputs

| In[10]:= | Minimize[{f, g1 && g2 && g3 && g4 && g5 && g6 && NonNegativeness}, vars]                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Out[10]= | $\{\texttt{41, } \{\texttt{x12} \rightarrow \texttt{1, } \texttt{x13} \rightarrow \texttt{0, } \texttt{x23} \rightarrow \texttt{0, } \texttt{x32} \rightarrow \texttt{0, } \texttt{x24} \rightarrow \texttt{0, } \texttt{x25} \rightarrow \texttt{1, } \texttt{x35} \rightarrow \texttt{0, } \texttt{x54} \rightarrow \texttt{0, } \texttt{x46} \rightarrow \texttt{0, } \texttt{x56} \rightarrow \texttt{1}\}\}$ |

The above solution tells us that the shortest route is P1 -> P2 -> P5 -> P6, and the total cost is 41.

• (2) *Mathematica* also provides a function "LinearProgramming", which is more efficient. However, it only accepts matrices/vectors in the standard LP form as inputs. Therefore, we first need to derive the coefficients in the standard form minimizing  $f = c^t x$ , subject to constraints  $Ax \ge b$ ,  $x \ge 0$ . Notice that *Mathematica* uses  $Ax \ge b$ , different from the Ax = b in the text book. Hence when we feed the command with inputs, we have to specify for each RHS value  $b_i$  that it is an exact "equal". This can be down by setting a matrix of the form { $b_1, 0$ }, { $b_2, 0$ }, ... { $b_k, 0$ }.

```
      In[11]:=
      c = Normal[CoefficientArrays[f, vars]] [[2]]

      Out[11]=
      {15, 13, 9, 9, 11, 12, 16, 4, 17, 14}
```

```
A = Normal[CoefficientArrays[{g1, g2, g3, g4, g5, g6}, vars]] [[2]];
In[12]:=
        MatrixForm[A]
Out[13]//MatrixForm=
          1 1 0
                    0
                        0
                             0
                                 0
                                     0
                                         0
                                              0
          1 0 -1 1
                        -1 -1 0
                                     0
                                         0
                                              0
          0 1 1
                    -1 0
                                 -1 0
                            0
                                         0
                                              0
          0 0 0
                    0
                        1
                            0
                                 0
                                     1
                                          -1 0
                    0
          0 0 0
                        0
                            1
                                 1
                                     -1 0
                                              -1
          0 0
               0
                        0
                                 0
                                         1
                    0
                             0
                                     0
                                              1
        b = \{\{1, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}, \{1, 0\}\}
In[14]:=
        \{\{1, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}, \{1, 0\}\}
Out[14]=
        LPSol = LinearProgramming[c, A, b]
In[15]:=
        \{1, 0, 0, 0, 0, 1, 0, 0, 0, 1\}
Out[15]=
In[16]:=
        LinearProgramming[c, A, b, Method → "Simplex"]
Out[16]=
        \{1, 0, 0, 0, 0, 1, 0, 0, 1\}
        LinearProgramming[c, A, b, Method → "RevisedSimplex"]
In[17]:=
Out[17]=
        \{1, 0, 0, 0, 0, 1, 0, 0, 1\}
        LinearProgramming[c, A, b, Method → "InteriorPoint"]
In[18]:=
      LinearProgramming::lpipp :
        Warning: Method -> InteriorPoint specified for non-machine-precision
          problem. A machine-precision result will be given. If a
          non-machine-precision result is needed, set the option to Method -> Simplex.
        \{1., 1.3007 \times 10^{-9}, 1.14458 \times 10^{-10}, 3.55423 \times 10^{-10},
Out[18]=
         7.64473 \times 10^{-9}, 1., 1.05973 \times 10^{-9}, 2.27364 \times 10^{-10}, 7.8721 \times 10^{-9}, 1.
```

Again, the above results indicate that the Shortest route is x12=1, x25=1, x56=1. The cost is