Math 4513, Introduction

1. Contents

We will cover the following chapters in the textbook:
Numerical Analysis By Burden and Faires

Ch 1 Mathematical Preliminaries and Error Analysis
Ch 2 Solutions of Equations in One variable
Ch 3 Interpolation and Polynomial Approximation
Ch 4 Numerical Differentiation and Integration
Ch 5 Initial-Value Problems for Ordinary Differential Equations
Ch 6 Direct Methods for Solving Linear Systems
Ch 7 Iterative Techniques in Matrix Algebra (if time allows)

2. Review of Calculus (Section 1.1 in the textbook)

- Limits and Continuity
- Differentiability (and theorems)
- Integration
- Taylor Polynomials and Series

Limits and Continuity

Definition 1.1 A function f defined on a set X of real numbers has the limit L at x_{0}, written $\lim _{x \rightarrow x_{0}} f(x)=L$, if, given any real number $\varepsilon>0$, there exists a real number $\delta>0$ such that $|f(x)-L|<\varepsilon$, whenever $x \in X$ and $0<\left|x-x_{0}\right|<\delta$.

Definition 1.2 Let f be a function defined on a set x of real numbers and $x_{0} \in X$. Then f is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Furthermore, f is continuous on the set X if it is continuous at each number in X.

Limits and Continuity

Definition 1.3 Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real numbers. This sequence has the limit x (converges to x) if, for any $\varepsilon>0$ there exists a positive integer N such that $\left|x_{n}-x\right|<\varepsilon$, whenever $n>N$. We denote it by

$$
\lim _{n \rightarrow \infty} x_{n}=x \quad \text { or } \quad x_{n} \rightarrow x \text { as } n \rightarrow \infty
$$

Theorem 1.4 If f is a function defined on a set X of real numbers and $x_{0} \in X$, then the following statements are equivalent:
(1) f is continuous at x_{0}.
(2) If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is any sequence in X converging to x_{0}, then $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Differentiability

Definition 1.5 let f be a function in an open interval containing x_{0}. The function f is differentiable at x_{0} if

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists. The number $f^{\prime}\left(x_{0}\right)$ is called the derivative of f at x_{0}. A function that has a derivative at each number in a set X is differentiable on X.

Theorem 1.6 If a function f is differentiable at x_{0}, then f is continuous at x_{0}.

Differentiability

Theorem 1.7 (Rolle's Theorem) Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If $f(a)=f(b)$, then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

Theorem 1.8 (Mean Value Theorem) If $f \in C[a, b]$ and f is differentiable on (a, b), then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 1.9 (Extreme Value Theorem) If $f \in C[a, b]$, then there exist $c_{1}, c_{2} \in[a, b]$ such that $f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)$ for all $x \in[a, b]$. In addition, if f is differentiable on (a, b), then th numbers c_{1} and c_{2} occur either at the endpoints of $[a, b]$ or where f^{\prime} is zero.

Differentiability

Theorem 1.10 (Generalized Rolle's Theorem) Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If $f(x)=0$ at $n+1$ distinct numbers $a \leq x_{0}<x_{1} \cdots<x_{n} \leq b$, then there exists a number c in (x_{0}, x_{n}), and hence also in (a, b) such that $f^{(n)}(c)=0$.

Theorem 1.11 (Intermediate Value Theorem) If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number $c \in(a, b)$ such that $f(c)=K$.

Integration
Definition 1.12 The Riemann integral of the function f on the interval $[a, b]$ is the following limit, provided it exists:

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(z_{i}\right) \Delta x_{i}
$$

where the numbers $x_{0}, x_{1}, \ldots, x_{n}$ satisfy $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, where $\Delta x_{i}=x_{i}-x_{i-1}$ for each $i=1,2, \ldots, n$, and z_{i} is arbitarily chosen in the interval $\left[x_{i-1}, x_{i}\right]$.

Theorem 1.13 (Weighted Mean Value Theorem for Integrals) Suppose $f \in C[a, b]$, the Riemann integral of g exists on $[a, b]$, and $g(x)$ does not change sign on $[a, b]$. Then there exists a number $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

Taylor Polynomials and Series
Theorem 1.14 (Taylor's Theorem) Suppose $f \in C^{n}[a, b], f^{(n+1)}$ exists, and $x_{0} \in[a, b]$. For every $x \in[a, b]$, there exists a number ξ between x_{0} and x with

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

where

$$
\begin{aligned}
P_{n}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots \frac{f^{n}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
\end{aligned}
$$

and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Here $P_{n}(x)$ is called the nth Taylor polynomial for f about x_{0}, and $R_{n}(x)$ is called the remainder term (or truncation error) associated with $P_{n}(x)$.

The infinite series obtained by taking the limit of $P_{n}(x)$ as $n \rightarrow \infty$ is called the Taylor series for f about x_{0}.

In the case $x_{0}=0$, the Taylor polynomial is often called a Maclaurin polynomial, and the Taylor series is often called a Maclaurin series.

