L agrange interpolation

1. An examplewith n = 2. It is easy to check that quadratic polynomials

Loo(r) = %x2 — gx +1 goes through 3 point®), 1), (1,0), (2,0),

Loy (7) = —2% + 27 goes through 3 point®), 0), (1,1), (2,0),
1 1 .

Loo(7) = 5:1:2 -3 goes through 3 point®), 0), (1,0), (2,1).

Their graphs look like the following:
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Now, if we would like to find a quadratic polynomial that goasaught points
(075)7 (17__3)7 (274)7

all we need to do is to compute the linear combination

1 3 1 1
5[;270(1}) — 3L271(£L’> -+ 4L272({E) =5 (§$2 — 51’ + 1) -3 (—1’2 -+ 21}) +4 (51’2 — 51’)

It is not hard to check the above quadratic polynomial gossuhh (0,5), (1, —3), (2,4).
Its graph is given below:
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In general,

f0L27Q(I) + f1L271(Zlf) + f2L272($) goes through 3 pOint@), fo), (1, fl), (2, fg)



2. An examplewith n = 3. Now let’s look at the case of cubic polynomials. Clearly,

Lyo(r) = —éx?’ + 2% — %x +1 goes through 4 point®), 1), (1,0), (2,0), (3,0),

Lsi(z) = %m?’ — ng + 3z goes through 4 point®), 0), (1,1), (2,0), (3,0),

Lsyo(x) = —%x3 + 22 — gx goes through 4 point®), 0), (1,0), (2,1), (3,0),
1, 1, 1 .

Lss(z) = Ex — 5 + 5:10 goes through 4 point®), 0), (1,0), (2,0), (3,1),

Their graphs look like the following:
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and the linear combination

f0L370(l')+f1L371(I)+f2L372(fE)+f3L373 goes through 4 pOint(SJ, fo), (1, fl), (2, fg), (3, fg)



