
Lagrange interpolation

1. An example with n = 2. It is easy to check that quadratic polynomials

L2,0(x) =
1

2
x2

−

3

2
x+ 1 goes through 3 points(0, 1), (1, 0), (2, 0),

L2,1(x) = −x2 + 2x goes through 3 points(0, 0), (1, 1), (2, 0),

L2,2(x) =
1

2
x2

−

1

2
x goes through 3 points(0, 0), (1, 0), (2, 1).

Their graphs look like the following:
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Now, if we would like to find a quadratic polynomial that goes throught points

(0, 5), (1,−3), (2, 4),

all we need to do is to compute the linear combination

5L2,0(x)− 3L2,1(x) + 4L2,2(x) = 5

(

1

2
x2

−

3

2
x+ 1

)

− 3
(

−x2 + 2x
)

+ 4

(

1

2
x2

−

1

2
x

)

It is not hard to check the above quadratic polynomial goes through(0, 5), (1,−3), (2, 4).
Its graph is given below:
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In general,

f0L2,0(x) + f1L2,1(x) + f2L2,2(x) goes through 3 points(0, f0), (1, f1), (2, f2).
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2. An example with n = 3. Now let’s look at the case of cubic polynomials. Clearly,

L3,0(x) = −

1

6
x3 + x2

−

11

6
x+ 1 goes through 4 points(0, 1), (1, 0), (2, 0), (3, 0),

L3,1(x) =
1

2
x3

−

5

2
x2 + 3x goes through 4 points(0, 0), (1, 1), (2, 0), (3, 0),

L3,2(x) = −

1

2
x3 + 2x2

−

3

2
x goes through 4 points(0, 0), (1, 0), (2, 1), (3, 0),

L3,3(x) =
1

6
x3

−

1

2
x2 +

1

3
x goes through 4 points(0, 0), (1, 0), (2, 0), (3, 1),

Their graphs look like the following:
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and the linear combination

f0L3,0(x)+f1L3,1(x)+f2L3,2(x)+f3L3,3 goes through 4 points(0, f0), (1, f1), (2, f2), (3, f3).
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