Math 4513, Midterm Exam, 10/21/2011

1. (20 points) Find the rate of convergence in $O(h^n)$ for

$$\lim_{h \to 0} \frac{1 - e^h}{h} = -1$$

- 2. (20 points) Given $g(x) = \frac{1}{2}x + \frac{1}{x}$, consider the fixed point p = g(p) in the interval [1,2]. It has a unique fixed point $p = \sqrt{2} \approx 1.41421356$ in [1,2].
 - (a) Use the fixed point theorem to prove that the iteration

$$p_n = \frac{1}{2}p_{n-1} + \frac{1}{p_{n-1}}$$

with initial value $p_0 = 2$ converges to $\sqrt{2}$.

- (b) Compute p_1 , p_2 and p_3 .
- 3. (20 points) Starting with $p_0 = 1.5$, find the approximation p_2 to the root of the equation $2x^2 x 2 = 0$ using the Newton's method.
- 4. (20 points) Use the divided differences to compute the Hermite interpolation for

$$x_0 = -1,$$
 $x_1 = 0,$
 $f(x_0) = 1,$ $f(x_1) = 0,$
 $f'(x_0) = 1,$ $f'(x_1) = 1,$

- 5. (20 points) Let $f(x) = 2x^2 3x + 1$. Define $x_0 = 1$ and $M = f'(x_0)$. Consider the backward difference $N_1(h) = \frac{f(x_0) f(x_0 h)}{h}$.
 - (a) Compute the Taylor's expansion of $f(x_0 h)$ at x_0 , and then show that $M N_1(h) = O(h)$.
 - (b) Compute $N_1(1)$, $N_1(\frac{1}{2})$, $N_1(\frac{1}{4})$. Use these data and the Richardson's extrapolation to compute $N_3(1)$.