
Gaussian quadrature

To write a Matlab program using Gaussian quadrature (Gauss-Legendre rule), first you need to
know the weights ci and nodes xi. A typical table of Gauss-Legendre rule looks like the following:

n (# of points) xi ci
2 0.5773502691896257 1.0000000000000000

-0.5773502691896257 1.0000000000000000
3 0.7745966692414834 0.5555555555555556

0 0.8888888888888888
-0.7745966692414834 0.5555555555555556

4 0.8611363115940525 0.3478548451374544
0.3399810435848563 0.6521451548625460
-0.3399810435848563 0.6521451548625460
-0.8611363115940525 0.3478548451374544

· · · · · · · · ·

Then we can use the formula ∫ 1

−1

f(x) dx ≈
n∑

i=1

cif(xi),

which has the degree of accuracy 2n − 1. In other words, the above formula is exact for any
polynomial f(x) with degree up to 2n− 1.

If you need to integrate f(x) on the interval [a, b], simply use a change of variable∫ b

a

f(x) dx =

∫ 1

−1

b− a

2
f

(
(b− a)t+ (b+ a)

2

)
dt ≈

n∑
i=1

ci
b− a

2
f

(
(b− a)xi + (b+ a)

2

)
Indeed, we can define

c̃i = ci
b− a

2
, x̃i =

(b− a)xi + (b+ a)

2
,

then the formula can be written as ∫ b

a

f(x) dx ≈
n∑

i=1

c̃if(x̃i).

Next, let use look at three Matlab examples of using the Gauss-legendre rule.
Example 1 Compute

∫ 1

−1
ex cosx dx using a Gaussian quadrature with 3 points. We know that

its exact value is∫ 1

−1

ex cosx dx =

(
1

2
ex cosx+

1

2
ex sinx

)
|1−1 = 1.933421497 · · ·

>> format long e
>> x = [0.7745966692414834, 0, -0.7745966692414834];
>> c = [0.5555555555555556, 0.8888888888888888, 0.5555555555555556];

1



>> f = exp(x).*cos(x);
>> value = sum(c.*f)

value =

1.933390469264298e+00

Example 2 Compute
∫ 1.5

0.5
ex cosx dx using a Gaussian quadrature with 3 points. We know that

its exact value is∫ 1.5

0.5

ex cosx dx =

(
1

2
ex cosx+

1

2
ex sinx

)
|1−1 = 1.275078201 · · ·

>> x = [0.7745966692414834, 0, -0.7745966692414834];
>> c = [0.5555555555555556, 0.8888888888888888, 0.5555555555555556];
>> a = 0.5;
>> b = 1.5;
>>
>> tildec = (b-a)/2*c;
>> tildex = (b-a)/2*x + (b+a)/2;
>> f = exp(tildex).*cos(tildex);
>> value = sum(tildec.*f)

value =

1.275069036575852e+00

Example 3 From Example 2, we can see that it is convenient to compute c̃i and x̃i before we
apply the gaussian quadrature. These can be written in a Matlab function. One of such function is
available on the Matlab File Exchange Center. Simply go to

http://www.mathworks.com/matlabcentral/fileexchange/4540
and download the files. You will have a file named lgwt.m under the directory. The function

is defined as

[x, c] = lgwt(n, a, b)

Here n is the number of points, [a, b] is the interval, and the function returns x and c. For example, if
you want to know what are the values of x and c for a 2-point formula on [−1, 1], try the following:

>> [x, c] = lgwt(2,-1,1)

x =

5.773502691896257e-01
-5.773502691896257e-01

2



c =

9.999999999999998e-01
9.999999999999998e-01

For a 3-point formula on [−1, 1],

>> [x, c] = lgwt(3,-1,1)

x =

7.745966692414834e-01
0

-7.745966692414834e-01

c =

5.555555555555544e-01
8.888888888888888e-01
5.555555555555544e-01

And if you would like to know a 3-point formula on [0.5, 1.5],

>> [x, c] = lgwt(3,0.5,1.5)

x =

1.387298334620742e+00
1.000000000000000e+00
6.127016653792582e-01

c =

2.777777777777772e-01
4.444444444444444e-01
2.777777777777772e-01

Now, to comput
∫ 1.5

0.5
ex cosx dx, you can try the following:

>> [x, c] = lgwt(3,0.5,1.5);
>> f = exp(x).*cos(x);
>> value = sum(c.*f)

value =

1.275069036575850e+00

3


