Math 3013, Exam 3, Apr. 19, 2011

Score:

The total is 50 points. Problem 1-3 are worth 4 points each. Calculators are NOT allowed.

1. () Which of the following is NOT a subspace of the vector space $M_{2\times 3}$, of all 2×3 matrices. The set of all matrices of the form:

(a) $\begin{bmatrix} a & a+c & c \\ b & 0 & 0 \end{bmatrix};$ (b) $\begin{bmatrix} a & b & c \\ b & 0 & 0 \end{bmatrix};$ (c) $\begin{bmatrix} a & b & c \\ d & e & 0 \end{bmatrix};$ (d) $\begin{bmatrix} a & a+c & c \\ 2c+1 & 0 & 0 \end{bmatrix};$ (e) $\begin{bmatrix} a & b & c \\ d & d-c & 0 \end{bmatrix}.$

- 2. () Let V be a vector space and u, v, w be vectors in V. Which of the following is NOT true.
 - (a) If $\mathbf{u} \perp \mathbf{v}$ and $\mathbf{u} \perp \mathbf{w}$, then $\mathbf{u} \perp (\mathbf{v} + \mathbf{w})$.
 - (b) If $\mathbf{u} \perp \mathbf{v}$ and $\mathbf{v} \perp \mathbf{w}$, then $\mathbf{u} \perp \mathbf{w}$.
 - (c) If $\mathbf{u} \perp \mathbf{v}$, then $proj_{\mathbf{u}}\mathbf{v} = \mathbf{0}$
 - (d) If $\mathbf{u} \perp \mathbf{v}$, then $perp_{\mathbf{u}}\mathbf{v} = \mathbf{v}$
 - (e) $\mathbf{0}$ is orthogonal to all other vectors in V.
- 3. () Let $\{\mathbf{u}, \mathbf{v}\}$ be an orthonormal set of vectors, calculate $(\mathbf{u} + 3\mathbf{v}) \cdot (5\mathbf{u} 2\mathbf{v})$. (a) 5 (b) -6 (c) -1 (d) -2 (e) 11

4. (8 points) Determine whether A is diagonalizable and, if so, find diagonal matrix D, and invertible matrix P such that $A = PDP^{-1}$. (You do not need to find P^{-1}).

$$A = \begin{bmatrix} 0 & 3\\ 1 & 2 \end{bmatrix}$$

- 5. (10 points) Let $S = \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\1\\1 \end{bmatrix} \right\}$ be a basis for a vector space W.
 - (1) Find an orthonormal basis for the space W.
 - (2) Find a basis for W^{\perp} .

6. (10 points) Find the QR factorization of

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix}$$

7. (10 points) Sketch the graph of $3x^2 - 2xy + 3y^2 = 8$.