Math 3013, Exam 2, Mar. 8, 2011

Score:

The total is 50 points. Problem 1-3 are worth 4 points each.

- 1. () Let A be an $n \times n$ invertible matrix, which of the following statement is **not** true:
 - (a) A^T is symmetric.
 - (b) A^{-1} exists.
 - (c) $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (d) $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
 - (e) A is row equivalent to I_n .
- 2. () Which one of the following is **not** true:
 - (a) If A is a symmetric matrix, then A^T is also a symmetric matrix.
 - (b) If A is an $n \times n$ matrix, then $A + A^T$ is symmetric.
 - (c) If A and B are $n \times n$ symmetric matrices, then AB is symmetric.
 - (d) If A and B are $n \times n$ invertible matrices, then AB is also invertible.
 - (e) If A is an $n \times n$ invertible matrix and c is a non-zero number, then cA is also invertible.

3. () Compute
$$det \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 4 \end{bmatrix}$$
.
(a) -2 (b) -1 (c) 4 (d) 5 (e) 6

4. (6 points) E is a 3×3 matrix of the form

$$E = \begin{bmatrix} 1 & 8 & 3 \\ x & y & z \\ -3 & 7 & 2 \end{bmatrix}.$$

Given det(E) = 5. Compute the determinant of

$$F = \begin{bmatrix} x & y & z \\ 1 & 8 & 3 \\ -3 + 4x & 7 + 4y & 2 + 4z \end{bmatrix}.$$

5. (8 points) Let $L : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation satisfying $L(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $L(\mathbf{e}_2) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $L(\mathbf{e}_3) = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$, where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are the standard basis for \mathbb{R}^3 . Calculate $L(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix})$. 6. (8 points) Find the eigenvalues and corresponding eigenvectors for

$$A = \begin{bmatrix} 0 & 2\\ 8 & 6 \end{bmatrix}$$

7. (8 points) Determine whether the following matrix is invertible or not. If it is invertible, find its inverse.

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 5 & 1 \\ 2 & 3 & 0 \end{bmatrix}$$

8. (8 points) Find basis for row(A), col(A) and null(A), where

$$A = \begin{bmatrix} 1 & 3 & 4 & 1 & 4 \\ 2 & 3 & 2 & 2 & 5 \\ 0 & 2 & 4 & 0 & 2 \\ 1 & 2 & 2 & 1 & 3 \end{bmatrix}$$