Math 3013, Exam I, Feb. 10, 2011

Name:	
Score:	

The total is 50 points. Problem 1-3 are worth 4 points each.

1. ()	Wh	ich	one of the	foll	owing	is not a	ı rec	duce	ed row	echel	on f	rom	1:
(a)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	0 0 1	(b)	1 1 0 0		$(c) \begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{bmatrix} 1\\1 \end{bmatrix}$	(d)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	1 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
(e)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	0.9999 1.9999 2.9999										

2. () Find out the values for a, b and c that will make the following matrix symmetric:

$$\begin{bmatrix} 1 & 1 & a+1 \\ 1 & c & 2b \\ 2 & 4 & 1 \end{bmatrix}$$

- (a) a=1/2, b=2, c=1
- (b) a=1, b=2, c=any number
- (c) a=1/2, b=1, c=any number
- (d) a=1, b=2, c=1
- (e) a=1/2, b=1, c=1

3. () Let A be a 3×2 matrix, B be a 2×2 matrix and C be a 3×3 matrix, which one of the following does **not** exist:

(a) CAB^T (b) C^TAB (c) CAB (d) BA^TC (e) BAC

- 4. (6 points) Given point P = (0, 1, 0) and a vector v = [3, 2, 1].
 - (a) Write the equation of a line passing through P with direction vector \mathbf{v} .
 - (b) Write the equation of a plane passing through P with normal vector \mathbf{v} .
- 5. (8 points) Calculate the following:

(a) Let
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
, find A^4 ;
(b) Let $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, find B^3 .

- 6. (8 points) In the following system, determine all values of a for which the system has
 - (a) No solution;
 - (b) A unique solution;
 - (c) Infinitely many solutions.

$$\begin{cases} x + y = 3, \\ x + (a^2 - 8)y = a. \end{cases}$$

7. (8 points) Solve the following linear system:

$$\begin{cases} 2x_1 - x_2 = 1, \\ -x_1 + 2x_2 - x_3 = 1, \\ -x_2 + 2x_3 = 1. \end{cases}$$

8. (8 points) Determine whether the following vectors are linearly dependent or not. If they are linearly dependent, find a dependence relationship among the vectors.

$$\begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$