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1. Show that R3 = span
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Solution For any vector
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c1 + c2 − c3 = a

c1 + c2 + c3 = b

c1 − c2 + c3 = c

We only need to show that the above equation is always consistent, which means the vector
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can always be expressed as a linear combination of
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elimination1 1 −1 a
1 1 1 b
1 −1 1 c

 r2−r1, r3−r1−→

1 1 −1 a
0 0 2 b− a
0 −2 2 c− a

 switch r2&r3−→

1 1 −1 a
0 −2 2 c− a
0 0 2 b− a



Note the resulting system is always consistent since rank(A) = rank(A|b) = 3. This means
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2. Is the following set of vectors linearly dependent or linearly independent? If they are linearly
dependent, find a dependence relationship among them.01
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Solution Consider the following system
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 ⇒


2c2 + 2c3 = 0

c1 + c2 = 0

2c1 + 3c2 + c3 = 0



If the above system has only trivial solution, then these three vectors are linearly independent.
Otherwise, they are linearly dependent. By the Gaussian elimination,0 2 2 0

1 1 0 0
2 3 1 0

 switch r1&r2−→

1 1 0 0
0 2 2 0
2 3 1 0

 r3−2r1−→

1 1 0 0
0 2 2 0
0 1 1 0

 r3− 1
2
r2

−→

1 1 0 0
0 2 2 0
0 0 0 0


Notice c3 is a free variable, which means there are nontrivial solutions. Hence the three vectors are
linearly dependent. To find a dependence relationship, we need to write out the general solution for
the above system. Let c3 = t, then we have

c1 + c2 = 0

2c2 + 2c3 = 0

0 = 0

⇒


c1 = t

c2 = −t
c3 = t

For example, when t = 1, we have 01
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