Math 3013, Exam III, Nov. 28, 2012

Name:

Score:

The total is 50 points. Problem 1-3 are worth 4 points each.
1. (b) Which of the following statements is NOT true?

(a) If 0 is an eigenvalue of matrix A, then A is not invertible.

(b) The reduced row echelon form of a square matrix A has the same eigenvalues
as A.

(c) If A and B are n x n orthogonal matrices, then AB is also orthogonal.
(d) If X is an eigenvalue of A, then A\? must be an eigenvalue of A2,

(e) If A is an orthogonal matrix, then its rows form an orthonormal set of vectors.
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3. (e) Which one of the following sets of vectors is NOT orthogonal?
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4. (6 points) Does there exist £ such that the following matrix is an orthogonal matrix?
If yes, find all values of k that makes A orthogonal.
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Solution By definition, the columns of an orthogonal matrix are orthonormal. So
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Therefore, when k& = ++/3, matrix A is orthogonal.
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5. (8 points) It is known that matrix A = [0 1 0] is diagonalizable. It has three

2 01
eigenvalues \; = 3, A\ = 1 and A3 = 0. We also know that the following vectors are
eigenvectors of A, but not sure which one corresponds to which eigenvalue:

0 ~1 1
~1], 01, 0
1 2 1

Find an invertible matrix P and a diagonal matrix D such that P~'AP = D.
Solution It is not hard to check that

0 211 0 0
Al-1{=10 1 0f |[-1]| =|-1
1 2 01 1 1
0
Therefore, | —1]| is an eigenvector corresponding to the eigenvalue Ao = 1. Sim-
1
-1
ilarly, one can show that | 0 | is an eigenvector corresponding to the eigenvalue
2
1
A3 =0,and [0] is an eigenvector corresponding to the eigenvalue \; = 3.
1
Thus we can write
300 1 0 -1
D=0 1 0], P=1{0 -1 O
0 00 11 2

Note the solution is not unique. There are other ways to write down D and P.



6. (8 points) Find the eigenvalues and corresponding eigenvectors of

2 1
=[5
Is this matrix diagonalizable?
Solution By det(A — A\I) = 0, we have
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which implies A\; = Ay = 3 is a repeated eigenvalue of A.

Next, using (A — AI)x = 0, we have

(A—3D)x = {j ﬂ m N m

Solve this homogeneous equation, we have
T1| 1
)=l

Matrix A is not diagonalizable, since the eigenvalue 3 has algebraic multiplicity 2
but geometric multiplicity 1.

This gives the eigenvector for A.



7. (8 points) Compute the determinant of

k. —k 3
A= |0 k+1 1
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For which values of & is matrix A invertible?

Solution Note that
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Clearly, detA = 0 if and only if £ = 0, 2. We know that a matrix A is invertible only
when det A # 0, therefore A is invertible when k& # 0, 2.



8. (8 points) Let IV be a subspace spanned by the given vectors. Find a basis for W+,
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Solution A vector x = ? isin W if
3
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w1 x =0, wy - x = 0,

that is,
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Solve this homogeneous equation, we get
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forms a basis for W=+,



