Math 2163, Exam II, Mar. 12, 2013

Score:

Please read the instructions on each problem carefully, and indicate answers as directed. Show details in your work. If you simply give a solution without steps of how you derive this solution, you may not get credit for it.

The total is 50 points

1. (6 points) Use chain rule to compute

Solution

(a)
$$\frac{dz}{dt} = (2x+y)\cos t + (2y+x)e^t = (2\sin t + e^t)\cos t + (2e^t + \sin t)e^t$$

(b)
$$\frac{\partial t}{\partial s} = e^x \frac{1}{t} + 2(-\frac{t}{s^2}) = e^{s/t} \frac{1}{t} + 2(-\frac{t}{s^2})$$

 $\frac{\partial t}{\partial t} = e^x(-\frac{s}{t^2}) + 2\frac{1}{s} = e^{s/t}(-\frac{s}{t^2}) + 2\frac{1}{s}$

2. (5 points) Find $\frac{dy}{dx}$ where x, y satisfy

$$\cos(x-y) = xe^y$$

Solution Define implicit function $F(x, y) = \cos(x - y) - xe^y = 0$, then

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{-\sin(x-y) - e^y}{\sin(x-y) - xe^y}$$

3. (6 points) Find the directional derivative of $f(x, y) = \sqrt{6x - 5y}$ at point (5, 1) in the direction indicated by the angle $\theta = -\pi/6$.

Solution The unit vector indicated by angle θ is

$$\mathbf{v} = <\cos\theta, \,\sin\theta > = <\cos(-\pi/6), \,\sin(-\pi/6) > = <\frac{\sqrt{3}}{2}, \, -\frac{1}{2} >$$

The directional derivative is

$$D_{\mathbf{v}}f = \nabla f \cdot \mathbf{v} = <\frac{6}{2\sqrt{6x-5y}}, \ \frac{-5}{2\sqrt{6x-5y}} > \cdot <\frac{\sqrt{3}}{2}, \ -\frac{1}{2} >$$

Then, at point (5, 1),

$$D_{\mathbf{v}}f(5,1) = <\frac{6}{2\sqrt{25}}, \ \frac{-5}{2\sqrt{25}} > \cdot <\frac{\sqrt{3}}{2}, \ -\frac{1}{2} > =\frac{3\sqrt{3}}{10} + \frac{1}{4}$$

4. (5 points) Find the maximum rate of change of $f(x, y) = \sin(xy)$ at the point (0, 1), and also find the direction in which it occurs.

Solution $\nabla f = \langle y \cos(xy), x \cos(xy) \rangle$. At point (0, 1), we have

$$\nabla f(0,1) = <\cos 0, \, 0 > = <1, 0 >$$

Then, the maximum rate of change is $|\nabla f(0,1)| = | < 1, 0 > | = 1$, and it occurs in the same direction as $\nabla f(0,1) = <1, 0 >$.

5. (6 points) Find all critical points of (you do NOT need to classify them)

$$f(x,y) = 5 + 12xy + 6x^2 + 32y + \frac{y^3}{3}$$

Solution

$$\begin{cases} f_x = 12y + 12x = 0\\ f_y = 12x + 32 + y^2 = 0 \end{cases}$$

From 12y + 12x = 0, we have x = -y. Substitute this into the second equation gives:

$$-12y + 32 + y^2 = 0 \implies y^2 - 12y + 32 = 0 \implies (y - 4)(y - 8) = 0$$

Therefore, we have y = 4 or y = 8. Use the fact that x = -y, this gives two critical point:

$$(-4,4)$$
 and $(-8,8)$

6. (5 points) We known that (0,0) and (2,1) are two critical points of $f(x,y) = x^3 - 12xy + 8y^3$. Determine whether they are local maximums, local minimums, saddle points, or others.

Solution Note that

$$f_x = 3x^2 - 12y, \qquad f_y = 24y^2 - 12x$$

and

$$f_{xx} = 6x, \quad f_{xy} = -12, \qquad f_{yy} = 48y$$

We have

$$D = f_{xx}f_{yy} - f_{xy}^2 = 288xy - 144$$

- At point (0,0), we have D = -144 < 0. Therefore, (0,0) is a saddle point
- At point (2, 1), we have $D = 288 \times 2 144 > 0$ and $f_{xx} = 6 \times 2 > 0$. Therefore, (2, 1) is a local minimum.

7. (6 points) Use Lagrange multipliers to find the points whose coordinates are all positive at which the function f(x, y, z) = 5xyz has its maximum value, subject to the constraint $5x^2 + 15y^2 + 25z^2 = 6$.

Solution Use the Lagrange multipliers, we have

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = 6 \end{cases} \implies \begin{cases} 5yz = 10\lambda x \\ 5xz = 30\lambda y \\ 5xy = 50\lambda z \\ 5x^2 + 15y^2 + 25z^2 = 6 \end{cases}$$

Multiply the 1st, 2nd and 3rd equations by x, y, and z, respectively, we have

$$\begin{cases} 5xyz = 10\lambda x^2\\ 5xyz = 30\lambda y^2\\ 5xyz = 50\lambda z^2 \end{cases}$$

Hence $10\lambda x^2 = 30\lambda y^2 = 50\lambda z^2$, which implies either $\lambda = 0$ or $10x^2 = 30y^2 = 50z^2$.

If $\lambda = 0$, from the equation $5yz = 10\lambda x$, either y or z must be 0. This is not a solution we are seeking, since we want all coordinates to be positive. Now the only choice is $10x^2 = 30y^2 = 50z^2$, which is equivalent to $5x^2 = 15y^2 = 25z^2$. Combine this with $5x^2 + 15y^2 + 25z^2 = 6$, clearly

$$5x^2 = 15y^2 = 25z^2 = 2.$$

Note all coordinates should be positive, hence the solution is

$$x = \sqrt{2/5}, \quad y = \sqrt{2/15}, \quad z = \sqrt{2/25}.$$

8. (6 points) Find an approximation for the double integral

$$\iint_R (4x - 5y^2) \, dA$$

using a double Riemann sum with m = n = 2 and the sample point in the upper right corner. Here $R = \{(x, y) | 0 \le x \le 8, 0 \le y \le 4\}$.

Solution Using the Riemann sum, we have $\Delta A = 8$ and

$$\iint_{R} (4x - 5y^2) \, dA \approx 8f(4, 2) + 8f(4, 4) + 8f(8, 2) + 8f(8, 4)$$
$$= 8(-4 - 64 + 12 - 48) = -832$$

9. (5 points) Calculate the iterated integral

$$\int_1^4 \int_0^3 (1+2xy) \, dx dy$$

Solution

$$\int_{1}^{4} \int_{0}^{3} (1+2xy) \, dx \, dy = \int_{1}^{4} (x+x^2y) |_{x=0}^{x=3} \, dy$$
$$= \int_{1}^{4} (3+9y) \, dy$$
$$= (3y+\frac{9}{2}y^2) |_{y=1}^{y=4}$$
$$= (12+72) - (3+\frac{9}{2})$$
$$= 76.5$$