Math 2163, Exam |11, Nov. 23, 2010

Name:

Score:

1. (6 points) Sketch the region on which the given doublegirsteis defined. Then
evaluate the integral:

4 4
/ / VT +ydrdy
rJy

Solution The graph is omitted.
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2. (6 points) The boundary of a thin plate consists of the seahésy = /1 — 22 and
y = v4 — 22 together with the portions aof-axis that join them. Find the center of
mass of the thin plate if the density functiorpie, y) = 5+/22 + y2.

Solution The domain can be written using the polar coordinates
D={(r0)0<0<m1<r<2}

The density function can be written into
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Hence we have the mass
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Then the center of mass (s, y) where
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3. (6 points) Compute
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whereF is the solid tetrahedron with verticés, 0, 0), (1,0, 0), (0, 1,0), and(0, 0, 1).
Solution The region can be written as

E={(z,9,2)|]0<2<1,0<y<1—2,0<zx<1—2—y}

Hence
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4. (6 points) Evaluate the triple integrg/ [, 3zdV whereE is the region lies above
the xy-plane, under the plane= 5 + y, bounded by the cylinder* + 3> = 4 and is
inside the first octant.

Solution The region can be written in cylindrical coordinates as

E={(r0 2)]0<0<7/2,0<r<2,0<z<5+rsinb}
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5. (6 points) Use spherical coordinates to find the voluméhefdolid that lies within
the sphere:? + 32 4 2% = 9, above thery-plane and below the cone= /2 + /2.

Solution The region can be written in spherical coordinates as

E={(p0,6)|0<0<2m, n/4<$<m/2,0<p<3}
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. (8 points) Use the transformatian= = — y, v = = + y to evaluate
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whereR is the square with vertice®, 2), (1, 1), (2,2) and(1,3). (The graph ofR
and the equation of its four edges are given in the figure below
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Solution Notice that
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Hence the Jacobian is
J =
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The boundaries of the rectangle becomes

Yy=2x = U=
y=4—=x = V=
y=x+2 = u=—-2
y=2—=x = V=

Hence
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7. (6 points) Find the Jacobian of the transformation

x:v+w2, y:w+u2, z=u+0v?

Solution
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8. (6 points) Find the gradient vector field ffz, y) = xy and sketch this vector field.

Solution V f =< y, x > and the vector field is
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