Cylinders and quadric surfaces

Math 2163

Cylinders

A cylinder is a surface that consists of all lines (rulings) that are parallel to a given line and pass through a given plane curve.

$$
\text { e.g. } x^{2}+y^{2}=1
$$

Cylinders

$$
\text { e.g. } y^{2}+z^{2}=1
$$

Cylinders

$$
\text { e.g. } z=x^{2}
$$

Quadric surfaces

A quadric surface is the graph of a second-degree equation in three variables x, y and z. e.g.
$A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0$

$$
\begin{gathered}
A x^{2}+B y^{2}+C z^{2}+J=0 \\
A x^{2}+B y^{2}+I z=0
\end{gathered}
$$

We will study the following types of quadric surfaces: ellipsoid paraboloid hyperboloid cone

ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Paraboloid

Elliptic Paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Hyperbolic Paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

Hyperboloid

Hyperboloid of one sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
Hyperboloid of two sheets $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Cone

Cone $1 \quad \frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
Cone $2 \frac{y^{2}}{b^{2}}=\frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}$

