
Math 2163, Practice Exam II, Solution

1. (a) ∇f =< fs, ft >=< 2s et, s2et >, and v

|v| = <1,1>√
2

, so

D
v
f(2, 0) =< 2(2)e0, 22e0 > ·< 1, 1 >√

2
=< 4, 4 > ·< 1, 1 >√

2
= 4

√
2.

(b) ∇f =< 2xy3, 3x2y2 − 4y3 > andv =< cos π
4
, sin π

4
>=<

√
2

2
,
√

2
2

>, so

D
v
f(2, 1) =< 4, 8 > · <

√
2

2
,

√
2

2
>= 6

√
2.

(c) ∇f =< 1
y+z

, − x
(y+z)2

, − x
(y+z)2

> and v

|v| = <1,2,3>√
14

,

D
v
f(4, 1, 1) =<

1

2
, −1, −1 > ·< 1, 2, 3 >√

14
=

−9

2
√

14
.

2. (a) ∇f =< − y2

x2 ,
2y
x

>, then∇f(2, 4) =< −4, 4 >. Therefore the maximum
change of rate is|∇f(2, 4)| = 4

√
2 and it occurs in the same direction of

∇f(2, 4) =< −4, 4 >.

(b) ∇f =< 4x3y3z2, 3x4y2z2, 2x4y3z >, then∇f(1,−1, 1) =< −4, 3,−2 >.
Therefore the maximum change of rate is|∇f(1,−1, 1)| =

√
29 and it occurs

in the same direction of∇f(1,−1, 1) =< −4, 3,−2 >.

3. (a) By simplifying
{

fx = 2xey2−x2

+ (x2 + y2)(−2x)ey2−x2

= 0

fy = 2yey2−x2

+ (x2 + y2)(2y)ey2−x2

= 0

we have
{

2ey2−x2

x(1 − x2 − y2) = 0

2ey2−x2

y(1 + x2 + y2) = 0
⇒

{

x(1 − x2 − y2) = 0

y(1 + x2 + y2) = 0

⇒
{

x = 0 or 1 − x2 − y2 = 0

y = 0

So we have the following solutions

i. x = 0, y = 0

ii. Solve
{

1 − x2 − y2 = 0

y = 0

gives two points:(1, 0) and(−1, 0).
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Combine all together, there are three critical points(0, 0), (1, 0) and(−1, 0).

To classify the critical points, we need to calculate

D = fxxfyy − f 2
xy

Since
fxx = 2ey2−x2

((1 − x2 − y2)(1 − 2x2) − 2x2),

fxy = −4xyey2−x2

(x2 + y2),

fyy = 2ey2−x2

((1 + x2 + y2)(1 + 2y2) + 2y2).

It is easy to see that

D(0, 0) = 4 > 0, fxx(0, 0) = 2 > 0,

D(1, 0) = −16e−2 < 0,

D(−1, 0) = −16e−2 < 0.

Sof(0, 0) = 0 is a local minimum and(1, 0), (−1, 0) are saddle points.

(b) First, we have
{

fx = 6x2 + y2 + 10x = 0,

fy = 2xy + 2y = 0

By solvingfy = 2xy + 2y = 2y(x + 1) = 0, we have eithery = 0 or x = −1.

i. If y = 0, substituting it intofx = 6x2 + y2 + 10x = 0 givesx = 0 or
x = −5/3.

ii. If x = −1, substituting it intofx = 6x2 + y2 + 10x = 0 givesy = 2 or
y = −2.

Combine the above, there are four critical points:(0, 0), (−5/3, 0), (−1, 2),
(−1,−2). Next we need to calculateD. Since

fxx = 12x + 10,

fxy = 2x + 2,

fyy = 2y.

It is easy to see that

D(0, 0) = 20 > 0, fxx(0, 0) = 10 > 0,

D(−5/3, 0) > 0, fxx(−5/3, 0) < 0,

D(−1, 2) < 0,

D(−1,−2) < 0

Hencef(0, 0) = 0 is a local minimum,f(−5/3, 0) = 125/27 is a local maxi-
mum, and(−1, 2), (−1,−2) are saddle points.
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4. Step 1: Find the local minimums and maximums.
{

fx = 4 − 2x = 0

fy = 6 − 2y = 0
⇒

{

x = 2

y = 3

Thenf(2, 3) = 13 is a candidate for local minimums and maximums.

Step 2: find minimums and maximums on the boundary edges. On the bottom bound-
ary y = 0, we havef(x, 0) = 4x − x2 and it has minimum atf(0, 0) = f(4, 0) = 0
and maximum atf(2, 0) = 4. On the left boundaryx = 0, we havef(0, y) = 6y−y2

and it has minimum atf(0, 0) = 0 and maximum atf(0, 3) = 9. On the right bound-
ary x = 4, we havef(4, y) = 6y − y2 and it has minimum atf(4, 0) = 0 and
maximum atf(4, 3) = 9. On the top boundaryy = 5, we havef(x, 5) = 4x−x2 +5
and it has minimum atf(0, 5) = f(4, 5) = 5 and maximum atf(2, 5) = 9.

Compare step 1 and 2, we have the absolute minimum atf(0, 0) = f(4, 0) = 0 and
the absolute maximum atf(2, 3) = 13.

5. The distance is given byf(x, y, z) =
√

(x − 8)2 + (y − 10)2 + (z − 8)2 and the
constraint is given byg(x, y, z) = 8x − 10y + 4z = 16. To avoid long notations, we
denoted =

√

(x − 8)2 + (y − 10)2 + (z − 8)2, then

∇f =<
x − 8

d
,
y − 10

d
,
z − 8

d
>,

∇g =< 8,−10, 4 >

Using the Lagrange multiplier method, we have


















x−8
d

= 8λ
y−10

d
= −10λ

z−8
d

= 4λ

8x − 10y + 4z = 16

Noticing that

(
x − 8

d
)2 + (

y − 10

d
)2 + (

z − 8

d
)2 = 1,

Therefore(8λ)2 + (−10λ)2 + (4λ)2 = 1, which impliesλ = ±1/
√

180. Now, we
have

x = 8λd + 8, y = −10λd + 10, z = 4λd + 8

substitute them into the constraintg(x, y, z) = 8x − 10y + 4z = 16, we have

64λd + 64 + 100λd − 100 + 16λd + 32 = 16

and hence180λd = 20. Since we know thatλ = ±1/
√

180, it is easy to see that
d = ±20/

√
180.

Finally, recall that we definedd =
√

(x − 8)2 + (y − 10)2 + (z − 8)2, which is ex-
actly the distance. So at this point we already have the answer that the shortest
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distance isd = 20/
√

180. Of course one can solve for(x, y, z) by plug in values of
λ andd back into

x = 8λd + 8, y = −10λd + 10, z = 4λd + 8

6. Let x, y, z be the length of three sides. The volume is given byf(x, y, z) = xyz
and the constraint is surface areag(x, y, z) = 2xy + 2yz + 2xz = 150. Using the
Lagrange multiplier we have



















yz = λ(2y + 2z)

xz = λ(2x + 2z)

xy = λ(2x + 2y)

2xy + 2yz + 2xz = 150

Multiplying the first equation byx, the second equation byy and the third equation
by z, we have











xyz = λ(2xy + 2xz)

xyz = λ(2xy + 2yz)

xyz = λ(2xz + 2yz)

⇒ λ(2xy + 2xz) = λ(2xy + 2yz) = λ(2xz + 2yz)

⇒ λ = 0 or (2xy + 2xz) = (2xy + 2yz) = (2xz + 2yz)

It is not hard to see thatλ can not be0 since otherwise one ofx, y, z has to be zero.
Now solving

(2xy + 2xz) = (2xy + 2yz) = (2xz + 2yz)

givesx = y = z. Substitute it into the constraint2xy + 2yz + 2xz = 150 gives
x = y = z = 5.

7. The approximation is

2
∑

i=1

2
∑

j=1

f(xi, yj)∆A = 8f(4, 2) + 8f(8, 2) + 8f(4, 4) + 8f(8, 4) = −816

8. (a)

∫ 6

0

2

3
(x+y)3/2|x=10

x=0 dy =

∫ 6

0

[
2

3
(y+10)3/2−2

3
y3/2] dy =

4

15
165/2− 4

15
65/2− 4

15
105/2.

(b)
∫ 9

0

∫

√
x

0

3y

x2 + 1
dy dx =

∫ 9

0

3y2/2

x2 + 1
|y=

√
x

y=0 dx =

∫ 9

0

3x/2

x2 + 1
dx

=
3

4
ln(x2 + 1)|90 =

3

4
ln 82
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(c) first change the order of the integral:

∫ 1

0

∫ 2

1

x

x2 + y2
dx dy =

∫ 1

0

1

2
ln(x2 + y2)|x=2

x=1dy

=

∫ 1

0

[
1

2
ln(y2 + 4) − 1

2
ln(y2 + 1)]dy

Using integration by parts, we have

∫ 1

0

1

2
ln(y2 + 4)dy =

1

2
y ln(y2 + 4)|10 −

∫ 1

0

1

2
y

2y

y2 + 4
dy

=
ln 5

2
−

∫ 1

0

y2

y2 + 4
dy

=
ln 5

2
−

∫ 1

0

(1 − 4

y2 + 4
)dy

=
ln 5

2
− [y − 2 tan−1 y

2
]|10

=
ln 5

2
− [1 − 2 tan−1 1

2
] =

ln 5

2
− 1 + 2 tan−1 1

2

Similarly, one can calculate that

∫ 1

0

1

2
ln(y2 + 1)dy =

ln 2

2
− 1 + tan−1 1 =

ln 2

2
− 1 +

π

4

Combine the above, we have the final result
∫ 2

1

∫ 1

0

x

x2 + y2
dy dx =

ln 5

2
+ 2 tan−1 1

2
− ln 2

2
− π

4
.

(d) We would like to first shange the order of the integral. Since

D = {(x, y) | 0 ≤ y ≤ 1,
√

y ≤ x ≤ 1}
= {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}

so we have
∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy =

∫ 1

0

∫ x2

0

√
x3 + 1 dy dx =

∫ 1

0

(
√

x3 + 1)y|y=x2

y=0 dx

=

∫ 1

0

x2
√

x3 + 1 dx =
2

9
(x3 + 1)3/2|10 =

2

9
(
√

8 − 1).
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