
Quiz 8 – Math 2153, Calculus II – Nov. 4, 2011

1. Find the radius of convergence and the interval of convergence of
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Solution We use the ratio test to determine the radius of convergence.
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The series is convergent for all
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Therefore the radius of convergence is 1
4
.

Next, notice that
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| < 1/4 ⇒ −1/4 < x+ 1/4 < 1/4

⇒ − 1/4− 1/4 < x < 1/4− 1/4 ⇒ −1/2 < x < 0

We need to determine whether the series is convergent or not at x = −1/2 and
x = 0.

(a) For x = −1/2, the series becomes
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It is convergent by the alternating series test, because limn→∞
1
n2 = 0 and

1
n2 is decreasing when n increases.

(b) For x = 0, the series becomes
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It is a p-series with p = 2 and hence is convergent.

Combine the above, the interval of convergence is

[−1/2, 0]


