
Quiz 7 – Math 2153, Calculus II – Oct.21, 2011

1. Determine whether the series is absolutely convergent, conditionally convergent,
or divergent.

∞∑
n=1

(−1)n
n√

n3 + 2

Solution To determine whether a series is absolutely convergent or not, an easy
way is to use the ratio test or the root test. However, for this problem, unfortu-
nately, both the ratio test and the root test are inconclusive. So we have to find
other ways.

First, notice that the series
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is an alternating series and
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(b) When n increases,
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decreases, because it is

easy to see that n + 2
n2 increases as n increases.

Therefore, by the alternating series test,
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is convergent.

Next, we shall look at
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By using the limit comparison test and compare it with
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=
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we have
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Therefore, these two series either both converge or both diverge. The series∑∞
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is a p-series with p = 1/2 and it diverges. So the series
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also diverges.

Combine the above, we know that the series
∑∞
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is conditionally
convergent.


