Quiz 2 – Math 2153, Calculus II – Sept. 2, 2011

1. Evaluate the integral

$$\int \frac{x}{\sqrt{x^2 - 7}} \, dx$$

Make sure your solution does NOT contain any inverse trigonometric function.

Solution 1 Use trigonometric substitution. Set $x = \sqrt{7} \sec \theta$, where $\theta \in [0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$, then $dx = \sqrt{7} \sec \theta \tan \theta \, d\theta$. The integral can be written as

$$\int \frac{x}{\sqrt{x^2 - 7}} dx = \int \frac{\sqrt{7} \sec \theta}{\sqrt{7} \sec^2 \theta - 7} \sqrt{7} \sec \theta \tan \theta d\theta$$
$$= \int \frac{\sqrt{7} \sec \theta}{\sqrt{7} \tan \theta} \sqrt{7} \sec \theta \tan \theta d\theta$$
$$= \int \sqrt{7} \sec^2 \theta d\theta$$
$$= \sqrt{7} \tan \theta + C$$

Now we need to substitute x back. Notice that $\sec \theta = x/\sqrt{7}$, we have

$$\tan \theta = \sqrt{\sec^2 \theta - 1} = \sqrt{x^2/7 - 1}.$$

Hence the integral is

$$\int \frac{x}{\sqrt{x^2 - 7}} dx = \sqrt{7} \tan \theta + C = \sqrt{7} \sqrt{x^2 / 7 - 1} + C = \sqrt{x^2 - 7} + C$$

Solution 2 Use substitution. Set $u = x^2 - 7$, then du = 2x dx The integral becomes

$$\int \frac{x}{\sqrt{x^2 - 7}} \, dx = \frac{1}{2\sqrt{u}} du = \sqrt{u} + C = \sqrt{x^2 - 7} + C$$