Math 2144, Practice Final Exam

Part I: Multiple choices. Each problem is worth 5 points. Please enter your solution in the parentheses in front of each problem.

- 1. (A) A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions $5in \times 28in$, by cutting out equal squares of sides x at each corner and then folding up the sides. Express the volume V of the box as a function of x
 - (A) $4x^3 66x^2 + 140x$;
 - (B) $x^3 33x^2 + 140x$;
 - (C) $x^3 65x^2 + 140x;$
 - (D) $x^3 66x^2 + 140x;$
 - (E) $x^3 + 66x^2 + 140x$.
- 2. (E) A rectangle has perimeter 10 m. Express the area of the rectangle as a function of the length l of one of its sides.
 - (A) $5l + l^2$;
 - (B) $10l l^2$;
 - (C) 5-l;
 - (D) $10l + l^2$;
 - (E) $5l l^2$.
- 3. (C) Which of the following function is an even function
 - (A) $f(x) = x^2 + 2x + 1;$
 - (B) $f(x) = \sin x;$
 - (C) $f(x) = e^{x^2};$
 - (D) $f(x) = \frac{\ln x}{x};$ (E) $f(x) = \sqrt{x+4}.$

4. (A) Find f + g where $f(x) = x^3 + 6x^2$ and $g(x) = 3x^2 - 5$

- (A) $x^3 + 9x^2 5;$
- (B) $x^3 + 3x^2 + 5;$
- (C) $x^3 + 9x 5;$
- (D) $x^2 + 9x 5;$
- (E) $x^2 + 9x$.

5. (B) Find $f \circ g$ if $f(x) = x^2 + 1$ and g(x) = 2x - 1.

- (A) $4x^2 4x$;
- (B) $4x^2 4x + 2;$
- (C) $2x^2 1;$
- (D) $2x^2 + 1;$
- (E) non of the above.

6. (D) Find the domain of the function $f(x) = \sqrt{4x - x^2}$

- (A) (0,4);
- **(B)** [0, 4);
- (C) $(-\infty, 4];$
- (D) [0,4];
- (E) $[4,\infty)$.

7. (A) Find the inverse function of $g(x) = \ln \frac{x-1}{x}$

(A) $g^{-1}(x) = \frac{1}{1 - e^x};$ (B) $g^{-1}(x) = \frac{1}{1 + e^x};$ (C) $g^{-1}(x) = \frac{e^x}{1 - e^x};$ (D) $g^{-1}(x) = \frac{e^x}{1 + e^x};$

(E)
$$g^{-1}(x) = e^{\frac{x-1}{x}}$$

8. (B) Find the limit

$$\lim_{x \to 0} \frac{x^2 - 1}{x + 6}$$

(A) 0; (B) $-\frac{1}{6}$; (C) -1; (D) ∞ ;

- (E) does not exist.
- 9. (E) Find the limit

$$\lim_{t \to 25} \frac{t - 25}{5 - \sqrt{t}}$$

(A) 0;

(B) ∞ ;

- (C) 5;
- (D) -5;
- (E) -10.

10. ($\ C$) Find the limit

$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

- (A) 0;
- (B) ∞ ;
- (C) $-\frac{1}{6};$
- (D) −1;
- (E) ∞ .

does not exist

11. (C) Find
$$f'(x)$$
 where $f(x) = \sqrt{3x+1}$

(B)
$$\frac{1}{\sqrt{3x+1}};$$

(C)
$$\frac{3}{2\sqrt{3x+1}}$$
;
(D) $\frac{1}{2\sqrt{3x+1}}$;

(E)
$$\frac{3}{\sqrt{3x+1}}$$
.

12. (B) Find the most general antiderivative of the function $f(x) = 3e^x + 7\sec^2 x$

- (A) $3e^x + 7\sec x + C$;
- (B) $3e^x + 7\tan x + C$;
- (C) $3e^x + 7\sin^2 x;$
- (D) $3e^x + 7\cos^2 x;$
- (E) none of the above.

Part II: Partial credit problems.

- 13. Find the horizontal, vertical and slant asymptotes of $f(x) = \frac{x^2+7}{x+1}$. Solution
 - Vertical asymptotes: x = -1
 - Horizontal asymptotes: None (because $\lim_{x\to\infty} \frac{x^2+7}{x+1} = \infty$ and $\lim_{x\to-\infty} \frac{x^2+7}{x+1} = -\infty$)
 - Slant asymptotes: by the long division, we can find

$$\frac{x^2+7}{x+1} = x - 1 + \frac{8}{x+1}$$

Therefore the slane asymptote is y = x - 1

14. Find an equation of the tangent line of $y = 5x - x^2$ at point (1, 1).

Solution Notice that y' = 5 - 2x, then $y'|_{x=1} = 3$. Therefore, the slope of tangent line is 3 and the tangent line passes through point (1, 1). It's equation can be written as y - 1 = 3(x - 1).

15. Find the first and second derivative of $y = \frac{\sin x}{\cos x + 7}$. Solution

$$y' = \frac{(\sin x)'(\cos x + 7) - (\sin x)(\cos x + 7)'}{(\cos x + 7)^2} = \frac{\cos x(\cos x + 7) - (\sin x)(-\sin x)}{\cos^2 x + 14\cos x + 49}$$
$$= \frac{\cos^2 x + 7\cos x + \sin^2 x}{\cos^2 x + 14\cos x + 49} = \frac{7\cos x + 1}{\cos^2 x + 14\cos x + 49}$$
$$y'' = \frac{(7\cos x + 1)'(\cos^2 x + 14\cos x + 49) - (7\cos x + 1)(\cos^2 x + 14\cos x + 49)'}{(\cos^2 x + 14\cos x + 49)^2}$$
$$= \frac{(-7\sin x)(\cos^2 x + 14\cos x + 49) - (7\cos x + 1)(-2\cos x\sin x - 14\sin x)}{(\cos^2 x + 14\cos x + 49)^2}$$

16. Use implicit differentiation to compute y' where $\sqrt{x+y} = 1 + x^2y^2$. Solution Taking derivative with respect to x on both sides of the equation, we have

$$\frac{1+\frac{dy}{dx}}{2\sqrt{x+y}} = 2xy^2 + 2x^2y\frac{dy}{dx}$$

$$\Rightarrow \qquad \frac{1}{2\sqrt{x+y}} + \frac{1}{2\sqrt{x+y}} \cdot \frac{dy}{dx} = 2xy^2 + 2x^2y\frac{dy}{dx}$$

$$\Rightarrow \qquad \left(\frac{1}{2\sqrt{x+y}} - 2x^2y\right)\frac{dy}{dx} = 2xy^2 - \frac{1}{2\sqrt{x+y}}$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{2xy^2 - \frac{1}{2\sqrt{x+y}}}{\frac{1}{2\sqrt{x+y}} - 2x^2y}$$

17. Use logarithmic differentiation to compute y' where $y = (2x + 1)^5(x^4 - 3)^6$ Solution Notice that $\ln y = \ln(2x + 1)^5(x^4 - 3)^6 = 5\ln(2x + 1) + 6\ln(x^4 - 3)$, by implicit differentiation, we have

$$\begin{aligned} &\frac{1}{y} \cdot \frac{dy}{dx} = 5\frac{2}{2x+1} + 6\frac{4x^3}{x^4 - 3} \\ \Rightarrow & \frac{dy}{dx} = y\left(5\frac{2}{2x+1} + 6\frac{4x^3}{x^4 - 3}\right) = (2x+1)^5(x^4 - 3)^6\left(5\frac{2}{2x+1} + 6\frac{4x^3}{x^4 - 3}\right) \end{aligned}$$

18. A cylindrical tank of radius 10 m is being filled with water at a 5 m³ per minute. how fast is the height of the water increasing?

Solution Let t be the time, h be the height of the water and V be the total volume of water in the tank. Then

$$V = \pi (10)^2 \cdot h = 100\pi h$$

Taking derivative with respect to time t, we have

$$\frac{dV}{dt} = 100\pi \frac{dh}{dt}$$

Since $\frac{dV}{dt} = 5$, we can see that $\frac{dh}{dt} = \frac{5}{100\pi}$.

19. Find the critical numbers of $f(x) = x^2 e^{-3x}$ Solution Notice that

$$f'(x) = 2xe^{-3x} + x^2(-3e^{-3x}) = (2x - 3x^2)e^{-3x} = 0$$

implies $2x - 3x^2 = 0$. So x = 0 and x = 2/3 are two critical points.

20. Find the absolute maximum and absolute minimum of the function $f(x) = \frac{x}{x^2+1}$ on the given interval [0, 2].

Solution Notice that

$$f'(x) = \frac{1 \cdot (x^2 + 1) - x \cdot (2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} = 0$$

implies that $1 - x^2 = 0$. So x = 1 and x = -1 are two critical points. In the interval [0, 2], we only need to consider x = 1.

$$f(1) = \frac{1}{2}$$
$$f(0) = 0$$
$$f(2) = \frac{2}{5}$$

Hence the abs. max. is 1/2 located at x = 1 and the abs. min. is 0 located at x = 0.

21. For the given function f(x), (a) find the intervals where f is increasing or decreasing; (b) find the local maximum and minimum values of f; (c) find the intervals of concavity and the inflection points

$$f(x) = x^2 \ln x$$

Solution

(a) First, notice that the domain of this function is $(0, \infty)$. Next, $f'(x) = 2x \ln x + x^2 \frac{1}{x} = 2x \ln x + x = x(2 \ln x + 1) = 0$, implies x = 0 and $x = e^{-1/2}$ are two critical points. However, we can not count 0 since it is not in the domain of the function. This leaves only one critical point $x = e^{-1/2}$. Clearly

$0 < x < e^{-1/2}$	f'(x) < 0	f(x) is decreasing
$x > e^{-1/2}$	f'(x) > 0	f(x) is increasing

- (b) We only have one critical point $x = e^{-1/2}$. By the first derivative test, it is a local minimum.
- (c) $f''(x) = 2 \ln x + 3 = 0$ implies $x = e^{-3/2}$. Clearly

$0 < x < e^{-3/2}$	f''(x) < 0	f(x) is concave downward
$x > e^{-3/2}$	f''(x) > 0	f(x) is concave upward

 $x = e^{-3/2}$ is the inflection point.

22. Find a positive number such that the sum of this number and its reciprocal is as small as possible.

Solution Let x > 0 and $f(x) = x + \frac{1}{x}$. We wish to minimize f(x). Notice that $f'(x) = 1 - \frac{1}{x^2} = 0$ implies $\frac{1}{x^2} = 1$. Hence $x^2 = 1$. We have two critical points, x = 1 and x = -1. However, since we only consider positive numbers x > 0, here we only take on critical point x = 1. Use the first derivative test, notice that f'(x) < 0 for 0 < x < 1 and f'(x) > 0 for x > 1, so f has an absolute minimum at x = 1. At this point, f(1) = 2.

23. Find the point on the line 6x + y = 9 that is closest to the point (-3,1).

Solution The square of distance from a point (x, y) on the line 6x + y = 9 to the point (-3, 1) is $D(x) = (x + 3)^2 + (y - 1)^2$. From the line equation, we have y = 9 - 6x, hence $D(x) = (x + 3)^2 + (9 - 6x - 1)^2 = 37x^2 - 90x + 73$. Then D'(x) = 74x - 90 = 0 only when x = 45/37. Since D''(x) = 74 > 0, so D is concave upward for all x. Thus D has an absolute minimum at x = 45/37. The point on the line closest to (-3, 1) is (45/37, 63/37).

24. Find f if f'(x) = 1 - 6x and f(0) = 8

Solution The general antiderivative is $f(x) = x - 3x^2 + C$. Since f(0) = 8, the particular antiderivative is $f(x) = x - 3x^2 + 8$.

25. Express the area under f as a limit where $f(x) = \sqrt[4]{x}$, $1 \le x \le 16$, use R_n . Solution

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=1}^n \sqrt[4]{1 + \frac{15i}{n}} \cdot \frac{15}{n}$$

- 26. Find the derivative of the function $y = \int_{e^x}^0 \sin^3 t \, dt$ Solution By the Fundamental Theorem of Calculus, part 1, $y' = -e^x \sin^3(e^x)$.
- 27. Evaluate the integral $\int \frac{e^{1/x}}{x^2} dx$ Solution Set u = 1/x, then $du = -\frac{1}{x^2} dx$ and the integral becomes

$$\int \frac{e^{1/x}}{x^2} \, dx = \int (-e^u) \, du = -e^u + C = -e^{1/x} + C$$

28. Evaluate the integral $\int_0^{\pi/4} \sin 4t \, dt$

Solution Set u = 4t, then du = 4dt, or equivalently, $dt = \frac{1}{4}du$. This is a definite integral, so we also need to find the correct upper and lower limits. Notice that u = 0 when t = 0 and $u = \pi$ when $t = \pi/4$. Then

$$\int_0^{\pi/4} \sin 4t \, dt = \int_0^\pi \sin u \, \left(\frac{1}{4}du\right) = \frac{1}{4}(-\cos u)|_0^\pi = \frac{1}{2}$$

29. Sketch the region between two curves $x = 1 - y^2$ and $x = y^2 - 1$, and find its area.

Solution The graph is omitted. Notice that the two curves intersect at

$$\begin{cases} x = 1 - y^2 \\ x = y^2 - 1 \end{cases} \Rightarrow 1 - y^2 = y^2 - 1 \Rightarrow y^2 = 1$$

They intersect at points y = 1 and y = -1. Between these two points, the curve $x = y^2 - 1$ is to the left of $x = 1 - y^2$ Hence the area is

$$A = \int_{-1}^{1} \left[(1 - y^2) - (y^2 - 1) \right] dy = \int_{-1}^{1} (2 - 2y^2) \, dy = \frac{8}{3}$$

30. Find the volume of the solid obtained by rotating the region bounded by y = x and $y = \sqrt[3]{x}$ about the axis y = 1.

Solution The cross section is a washer with inner radius $1 - \sqrt[3]{x}$ and outer radius 1 - x. So its area is

$$A(x) = \pi (1-x)^2 - \pi (1-\sqrt[3]{x})^2 = \pi (-2x + x^2 + 2x^{1/3} - x^{2/3})$$

It is also easy to see that the curves y = x and $y = \sqrt[3]{x}$ intersect with each other at x = 0 and x = 1. Then

$$V = \int_0^1 A(x) \, dx = \pi \int_0^1 (-2x + x^2 + 2x^{1/3} - x^{2/3}) \, dx = \frac{7}{30}\pi$$

31. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and $y = 2 - x^2$ about the axis x = 1.

Solution The shell has radius 1 - x, circumference $2\pi(1 - x)$, and height $(2 - x^2) - x^2 = 2 - 2x^2$.

$$V = \int_{-1}^{1} 2\pi (1-x)(2-2x^2) dx$$
$$= 4\pi \int_{-1}^{1} (1-x)(1-x^2) dx = \frac{16}{3}\pi$$