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Abstract

Recently a stable pair of finite element spaces for the mixed formulation of the plane
elasticity system has been developed by Arnold and Winther. Here we construct
a two-level overlapping Schwarz preconditioner for the resulting discrete system.
Essentially, this reduces to finding an efficient preconditioner for the form (·, ·) +
(div ·,div ·) in the symmetric tensor space H(div ,Ω). The main difficulty comes
from the well known complexity of building preconditioners for the div operator.
We solve it by taking a decomposition similar to the Helmholz decomposition. Both
additive and multiplicative preconditioners are studied, and the conditioner numbers
are shown to be uniform with respect to the mesh size.

Key words: linear elasticity, mixed finite element methods, preconditioner,
domain decomposition

1 Introduction

The purpose of this paper is to present and analyze the overlapping Schwarz
preconditioner for the mixed formulation of the plane elasticity system. Com-
pared to the primal-based methods, mixed finite element methods have some
well-known advantages [1,14]. For example, the dual variable, which is usually
the variable of primary interest, is computed directly as a fundamental un-
known. Another important advantage, in the case of linear elasticity, is that
the mixed formulations exhibit robustness in the computation of nearly in-
compressible materials. Mixed methods also have some obvious disadvantages,
such as the necessity of constructing stable pairs of finite element spaces and
the fact that the resulting discrete system is indefinite. For decades extensive
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research has been taken to explore the mixed formulation of the plane elas-
ticity system (also known as the weak formulation of the Hellinger-Reissner
principle). Most of them focused on developing stable pairs of mixed finite
element spaces and several different solutions have been proposed [2,3,6,21].
As stated in those papers, the crux of the difficulty is that the stress tensor in
the Hellinger-Reissner principle has to be symmetric. Indeed, the symmetry
condition of the stress tensor is so hard to satisfy that the authors of [2,3,21]
had to resort to composite elements. Only recently did Arnold and Winther
propose a new pair of mixed finite elements (the Arnold-Winther elements)
which does not use composite elements [6]. In this paper we choose to use
the Arnold-Winther elements. The Arnold-Winther finite element spaces con-
sist of piecewise polynomials and satisfy the stability requirement. In [6] only
the pure displacement boundary problems are considered, but we will show
that the spaces also work for the pure traction boundary problems. To prove
it, one only need to modify the interpolation operator given in [6] so that it
preserves the essential boundary condition. Finally, we mention some alter-
native ways to circumvent the difficulty of constructing stable pairs of spaces
while preserving symmetry for the stress tensor. One way is to reformulate
the saddle-point problem by using Lagrangian functionals so that it does not
require symmetric tensors [4]. Another way is to use least-square formulation
so that it does not require the classical discrete inf-sup condition [7].

Throughout the paper, we adopt the convention that a Greek character de-
notes 2 × 2 symmetric tensor, a bold Latin character in lower case denotes
a vector and a bold Latin character in upper case denotes an operator or a
matrix. Let τ = (τij)1≤i,j≤2 be a symmetric tensor, v = (v1, v2)t be a vector
and q be a scalar. Define div v = ∂

∂x
v1 + ∂

∂y
v2 and

divσ =

 ∂
∂x
τ11 + ∂

∂y
τ12

∂
∂x
τ21 + ∂

∂y
τ22

 , airy q =

 ∂2

∂y2 q − ∂2

∂x∂y
q

− ∂2

∂x∂y
q ∂2

∂x2 q

 .
Define the innerproduct between vectors and the innerproduct between ma-
trices as:

u · v = u1v1 + u2v2, σ : τ =
2∑
i=1

2∑
j=1

σijτij.

Let Ω be a convex polygon in R2. We will use the usual notation L2(Ω) for the
set of square integrable functions on Ω and Hs(Ω), where s is a real number,
for the normal Sobolev space defined on Ω [15]. Denote ‖ · ‖s,Ω the Hs-norm
and | · |s,Ω the Hs-seminorm as defined in [15]. Define the spaces

L2(Ω) = {vectors v = (v1, v2)t such that vi ∈ L2(Ω) for i = 1, 2},
H(div ,Ω) = {symmetric tensors τ = (τij)1≤i,j≤2 such that τij ∈ L2(Ω)

and div τ ∈ L2(Ω)},
H0(div ,Ω) = {τ ∈H(div ,Ω) such that τn|∂Ω = 0},
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where n is the outer normal vector on ∂Ω. For simplicity, we will use the
notation (·, ·) to denote the L2-innerproduct and ‖ · ‖ to denote the L2-norm
over scalar, vector or tensor fields defined on the whole Ω. Define the norm on
H(div ,Ω) as ‖τ‖H(div ,Ω) = [(τ , τ )+(div τ ,div τ )]1/2. Now we can state the
mixed formulation of the plane elasticity problem rigorously. We only consider
the pure traction boundary problem: Find σ ∈ H0(div ,Ω) and u ∈ L2(Ω)
such that

∫
Ω Aσ : τ dx+

∫
Ω div τ · u dx = 0 ∀ τ ∈H0(div ,Ω),∫

Ω divσ · v dx =
∫

Ω g · v dx ∀v ∈ L2(Ω).
(1)

where the compliance tensor A : H(div ,Ω)→H(div ,Ω) is bounded, sym-
metric and uniformly positive definite and g ∈ L2(Ω) is the body force. In
order that the above problem be well posed, we need the compatibility condi-
tion on g. Let

RM := span{

1

0

 ,
0

1

 ,
−y
x

}
be the space of infinitesimal rigid motions. By Korn’s inequality, one can see
that for any g ∈ RM⊥L2(Ω) , which means the orthogonal complement of RM
in L2(Ω), system (1) has unique solution in H0(div ,Ω)×RM⊥L2(Ω) [14].

The discretization of the system (1) leads to a symmetric indefinite linear
system. Generally speaking, there were three main approaches toward solv-
ing large symmetric indefinite linear systems corresponding to certain mixed
formulations. One can use the well-studied Uzawa-type method [10,14,17].
The second choice is the positive definite reformulation proposed by Bramble
and Pasciak in [8] and [9]. The third choice is the preconditioned minimum
residual method analyzed in [5,22]. Our paper adopts the idea of precondi-
tioned minimum residual method. An analysis similar to the one in [5] will
show that the problem of constructing a preconditioner for the indefinite lin-
ear system derived from system (1) is essentially the same as the problem
of constructing a preconditioner for the bilinear form (·, ·) + (div ·,div ·) in
the tensor space H0(div ,Ω). We construct the preconditioner by the over-
lapping Schwarz method. For more background on this topic, one can refer to
[16,11,12,24,25]. The main difficulty comes from the well-known complexity of
building overlapping Schwarz preconditioners for the div operator and also
the non-nested character of the finite element spaces.

In Section 2 we briefly present the mixed finite elements introduced in [6]. Fur-
thermore some important observations on this finite element space are stated
and proved. In Section 3 the details of the overlapping Schwarz preconditioner
are explained and the condition number of the preconditioned system is an-
alyzed. In Section 4 the main assumption used in the proof in Section 3 is
proved. The results of numerical experiments illustrating the theory are given
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in Section 5. In Appendix A, we give a proof of the stability and approxima-
tion property of the mixed finite element spaces. In Appendix B, we construct
a Clement-type interpolation operator which is used in Section 4.

2 Finite element discretization

First we present the Arnold-Winther elements. Let T be a quasi-uniform tri-
angulation of Ω. On each triangular element T ∈ T define

ΣT = {symmetric tensors τ ∈ (P3(T ))3 such that div τ ∈ (P1(T ))2},
V T = (P1(T ))2,

where Pi(T ) denotes the space consisting of polynomials of degree i or less.
The degrees of freedom for ΣT are

• the nodal values of the three components of τ (x) (9 dofs)
• the moments of degree 0 and 1 of the two normal components of τ on each

edge of T (12 dofs)
• the moments of degree 0 of the three components of τ on T (3 dofs)

and the degrees of freedom of V T are given as the zero’th and first order
moments. Figure 1 illustrates the degrees of freedom for ΣT . The finite element

Fig. 1. Finite element ΣT

spaces on mesh T and domain Ω are defined as follows:

Σ(T ,Ω) = {τ defined on Ω satisfying τ |T ∈ ΣT for each T ∈ T ,
τ is continuous on the degrees of freedom on each vertex

and each edge of T and τn|∂Ω = 0.}
V (T ,Ω) = {v ∈ L2(Ω) such that v|T ∈ V T for each T ∈ T }.

The definition of Σ(T ,Ω) clearly implies that Σ(T ,Ω) ⊂ H0(div ,Ω) (see
[6,14]). Note that the boundary condition σn|∂Ω = 0 implies two linear re-
lations among the three components of σ on boundary nodes. Hence on the
corner vertices where two boundary edges meet, we will have σ = 0. This fact
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was noticed by Arnold and Winther in [6]. Another immediate observation is
that, by Green’s formula,

divσ ∈ RM⊥V (T ,Ω) , for all σ ∈ Σ(T ,Ω).

We have the discrete elasticity problem: find σ ∈ Σ(T ,Ω) and u ∈ V (T ,Ω)
such that (Aσ, τ ) + (div τ ,u) = 0 ∀τ ∈ Σ(T ,Ω),

(divσ,v) = (g,v) ∀v ∈ V (T ,Ω).
(2)

Let V ⊥ ⊂ Σ be defined as {τ ∈ Σ | (div τ , v) = 0, for all v ∈ V }. We say
the pair of mixed finite element spaces (Σ(T ,Ω), V (T ,Ω)) is stable if there
exists constants c and C independent of the mesh size such that

(Aσ,σ) ≥ c‖σ‖2
H(div ,Ω), for all σ ∈ V ⊥,

sup
τ∈Σ(T ,Ω)

(div τ ,v)

‖τ‖H(div ,Ω)

≥ C‖v‖L2(Ω), for all v ∈ RM⊥V (T ,Ω) .

The second condition is called the discrete inf-sup condition. In [6], the sta-
bility of this new pair of spaces is proved for the pure displacement boundary
problem. A slight modification in the proof will show that it also works for
the pure traction case (see Appendix A). It follows from the results given in
Appendix A that for g ∈ RM⊥L2(Ω) , the discrete solution of (2) exists and
provides a good approximation for the weak solution of (1).

Next we introduce the Argyris element which will play an important role in
the analysis to be given later. Let QT denote the Argyris element [15] defined
on T . It is a quintic element and the degrees of freedom are

• the nodal values (3 dofs), the first derivatives at the nodes (6 dofs) and the
second derivatives at the nodes (9 dofs)
• the moments of degree 0 of ∂

∂n
q on the edges of T (3 dofs)

Define the space

Q̃(T ,Ω) = {q defined on Ω satisfying q|T ∈ QT for each T ∈ T ,
q is continuous on the degrees of freedom on each vertex

and each edge of T and airy q ∈ Σ(T ,Ω)}.

Clearly Q̃(T ,Ω) ⊂ H2(Ω).

It is well know that for any σ ∈H(div ,Ω) satisfying divσ = 0, there exists
a q ∈ H2(Ω) such that airy q = σ. Analogously on the discrete level we have
the following exact sequence:

0 −→ P1(Ω)
⊂−→ Q̃(T ,Ω)

airy−→ Σ(T ,Ω)
div−→ V (T ,Ω).
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The exactness of this sequence for discrete spaces without boundary conditions
was proved on page 408 of [6] and the proof of the above exact sequence follows
from their result. For the convenience of further analysis, we note the following
lemmas:

Lemma 1 For any q ∈ Q̃(T ,Ω), q|∂Ω is a linear function.

Proof. Since (airy q)n|∂Ω = 0, we have ∂2

∂y2 q − ∂2

∂x∂y
q

− ∂2

∂x∂y
q ∂2

∂x2 q

n
∣∣∣∣∣∣∣
∂Ω

=

 ∂
∂s

∂
∂y
q

− ∂
∂s

∂
∂x
q

 = 0.

By the continuity of the first and second derivatives of q on the vertices, it is
obvious that ∇q|∂Ω = const. 2

Let H2
0 (Ω) = {q ∈ H2(Ω) such that q|∂Ω = 0, ∇q|∂Ω = 0} and define

Q(T ,Ω) = {q defined on Ω satisfying q|T ∈ QT for each T ∈ T ,
q is continuous on the degrees of freedom on each vertex

and each edge of T and q|∂Ω = 0, ∇q|∂Ω = 0}.

Clearly Q(T ,Ω) ⊂ H2
0 (Ω). From the previous analysis we can derive

Lemma 2 The following exact sequence holds:

0 −→ Q(T ,Ω)
airy−→ Σ(T ,Ω)

div−→ V (T ,Ω). (3)

3 Overlapping Schwarz preconditioner

In this section we develop an overlapping Schwarz preconditioner for the dis-
crete problem (2) so that preconditioned minimal residual method can be used
to solve this problem. For simplicity, denote Σ = Σ(T ,Ω) and V = V (T ,Ω).
Denote ‖ · ‖Σ and ‖ · ‖V to be the norms on Σ and V respectively, which are
just ‖ · ‖H(div ,Ω) and ‖ · ‖L2(Ω). Let Σ∗ and V ∗ be the dual spaces of Σ and V
with dual norms ‖ · ‖Σ∗ and ‖ · ‖V ∗ . Define operatorsA : Σ→ Σ∗ (Aσ, τ ) = (Aσ, τ ), for all τ ∈ Σ,

B : Σ→ V ∗ (Bσ,v) = (divσ,v), for all v ∈ V .

Let Bt : V → Σ∗ be the adjoint of B. Equation (2) can be rewritten as

M

σ
u

 =

A Bt
B 0


σ
u

 =

F
G

 , (4)
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where F ∈ Σ∗, G ∈ V ∗ and M : Σ × V → Σ∗ × V ∗. Let V /RM be the
quotient space with the quotient norm ‖·‖V /RM . We have the following lemma:

Lemma 3 If (σ,u) is a solution of the equation (4), then

c0(‖F‖Σ∗ + ‖G‖V ∗) ≤ ‖σ‖Σ + ‖u‖V /RM ≤ c1(‖F‖Σ∗ + ‖G‖V ∗),

where c0 and c1 are positive and independent of h.

Proof. By the stability of the finite elements spaces (Σ,V ) and Proposition
1.3 in [14],

‖σ‖Σ + ‖u‖V /RM ≤ c1(‖F‖Σ∗ + ‖G‖V ∗),
where c1 is independent of h. By the Schwartz inequality, the other direction
comes from

‖F‖Σ∗ + ‖G‖V ∗ = sup
τ∈Σ

F (τ )

‖τ‖Σ
+ sup
v∈V

G(v)

‖v‖V

= sup
τ∈Σ

(Aσ, τ ) + (div τ ,u)

‖τ‖Σ
+ sup
v∈V

(divσ,v)

‖v‖V
≤ c(‖σ‖Σ + ‖u‖V ).

2

Our purpose is to find a preconditioner for the operator M. By lemma 3, we
only need to find an operator S : Σ∗×V ∗ → Σ×V such that ‖S‖L(Σ∗×V ∗,Σ×V )

and ‖S−1‖L(Σ×V ,Σ∗×V ∗) are bounded uniformly in h(see [5] for details). Indeed

we can consider those S in the form S =

S1 0

0 S2

, where S1 : Σ∗ → Σ and

S2 : V ∗ → V and their inverses are bounded uniformly in h. Define the
innerproduct

Λ(σ, τ ) = (σ, τ ) + (divσ,div τ )

on Σ. Consider the following problem: find σ ∈ Σ such that

Λ(σ, τ ) = F (τ ), ∀ τ ∈ Σ. (5)

Clearly a good preconditioner for this problem will yield an ideal S1. Similarily,
a good preconditioner for the problem: find u ∈ V such that

(u,v) = G(v), ∀ v ∈ V (6)

will yield an ideal S2. The space V consists of discontinuous linears on the
triangles so the solution of (6) reduces to the inversion of a 3×3 block diagonal
matrix. Hence the problem of finding S reduces to the problem of constructing
S1. In the remainder of this paper we will focus on constructing a two-level
Schwarz preconditioner for problem (5).
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Let TH be a quasi-uniform mesh on Ω with characteristic mesh size H and Th
be a quasi-uniform refinement of TH with characteristic mesh size h. Let Ω̃i,
i = 1, · · · , k be a non-overlapping decomposition of Ω whose boundaries align
with the coarse mesh TH . Extend Ω̃i by one or more layers of fine elements to
get Ωi, then we have an overlapping cover of Ω whose boundaries align with
the fine mesh Th. Figure 2 illustrates how the subdomains are defined inside
Ω and near the boundary of Ω. The bold line contour draws the boundary of
Ω̃i and the outmost dashed line contour draws the boundary of Ωi. We have
illustrated the case of one cell overlap although we may overlap many more
cells in practice.

Ω̃i

Ω i

Ω̃i

Ωi

Fig. 2. Subdomains Ω̃i and Ωi

Assume all Ω̃i and Ωi be convex polygons and denote the characteristic dis-
tance between ∂Ω̃i\∂Ω and ∂Ωi\∂Ω as δ. Furthermore, assume there exist
a positive integer Nc such that for all x ∈ Ω, x is included in at most Nc

subdomains in {Ωi}. Define

Q0 = Q(TH ,Ω), Σ0 = Σ(TH ,Ω), V 0 = V (TH ,Ω),

Q = Q(Th ,Ω), Σ = Σ(Th ,Ω), V = V (Th ,Ω).

For i = 1, · · · , k define Σi, V i and Qi to be the subspaces of Σ, V and Q
respectively, which vanish outside Ωi. Recalling how we defined the boundary
conditions for Q(T ,Ω) and Σ(T ,Ω), it is clear that

Qi ( Q(Th,Ωi), Σi ( Σ(Th,Ωi), for all i = 1, · · · , k.

Hence the space Σi does not correspond to a natural stress tensor approxima-
tion subspace with pure traction boundary condition.

Denote Ψ(T ) to be the set of all nodes in the mesh T . We know that Q0 * Q
and Σ0 * Σ since, for example, a function σ ∈ Σ0 is not continuous at the
points in Ψ(Th) which are on the edges of the coarse grid. Hence we need to
define interpolation operators. The easiest way to do this is to take the average
of the degrees of freedom on those nodes where discontinuity occurs. For any
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point v ∈ Ψ(Th), let Θ(v) be the set of all triangles in TH which contain the
vertex v and |Θ(v)| denote the number of triangles in Θ(v). We define q̃ and
τ̃ as follows: on each element T ∈ Th, let q̃|T ∈ QT and τ̃ |T ∈ ΣT satisfy

airy q̃(v)|T =

(
1

|Θ(v)|
∑

Tv∈Θ(v)

airy q(v)|Tv
)
− airy q(v)|T ,

τ̃ (v)|T =

(
1

|Θ(v)|
∑

Tv∈Θ(v)

τ (v)|Tv
)
− τ (v)|T ,

(7)

on each vertex v of T and vanish at all the other degrees of freedom. Define

I0q = q + q̃, for all q ∈ Q0,

I0τ = τ + τ̃ , for all τ ∈ Σ0.

It is not hard to see that I0 maps Q0 to Q and I0 maps Σ0 to Σ. Therefore
q̃ ∈ H2

0 (Ω) and τ̃ ∈ H0(div ,Ω). Furthermore, since q̃ vanishes on all the
other degrees of freedom except for the second derivatives on each node, we
can derive from a standard scaling argument that for all q ∈ Q0 and i = 0, 1, 2,

|q − I0q|i,Ω = |q̃|i,Ω ≤ ch2−i|q̃|2,Ω ≤ ch2−i|q|2,Ω, (8)

where c is independent of h and H.

The following lemma shows the relations between the spaces defined above.

Lemma 4 The following commutative diagram of exact sequences holds:

0 −→ Q0
airy−→ Σ0

div−→ V 0

↓I0 ↓I0 ↓id

0 −→ Q
airy−→ Σ

div−→ V

(9)

For each i = 1, · · · , k, we have the exact sequence

0 −→ Qi
airy−→ Σi

div−→ V i. (10)

Proof. Let T be a triangle and vi, i = 1, 2, 3 be its three vertices. Denote
the opposite edge to each vertex vi as li. Let τ i, i = 1, 2, 3 be given constant
symmetric tensors. Define q ∈ QT as:

airy q(vi) = τ i, for i = 1, 2, 3;

q(vi) = 0, ∇q(vi) = 0,
∫
li

∂

∂n
q ds = 0, for i = 1, 2, 3
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and define τ ∈ ΣT as:

τ (vi) = τ i, for i = 1, 2, 3;∫
li
τn ds =

∫
li
τns ds = 0,

∫
T
τ dx = 0, for i = 1, 2, 3.

Let n and s denote the outer normal vector and the unit tangential vector
on ∂T respectively. Simple calculation shows that ∂2

∂s2 q = nT (airy q)n and
∂2

∂n∂s
q = −nT (airy q)s. Hence by the definition of q and the integration by

parts, all of
∫
li
(airy q)n · n ds,

∫
li
(airy q)n · s ds,

∫
li
(airy q)n · ns ds and∫

li
(airy q)n · ss ds vanish. Consequently,∫

li
(airy q)n ds = 0,

∫
li
(airy q)ns ds = 0.

Since
∫
li

∂
∂s
q ds = 0 and

∫
li

∂
∂n
q ds = 0 implies

∫
li

∂
∂x
q ds =

∫
li

∂
∂y
q ds = 0, so by

Green’s formula, ∫
T

airy q dx = 0.

We have shown that τ and airy q are identical on all the degrees of freedom.
Therefore τ = airy q and consequently div τ = 0. We will use these results
to prove (9) and (10).

By lemma 2, in order to prove (9), it is sufficient to prove the commutativity
property. By the definition of I0 and I0, for all q ∈ Q0 and τ = airy q we have
τ̃ (v)|T = airy q̃(v)|T at each vertex v of each T ∈ Th, where τ̃ and q̃ were
defined by (7). We can conclude that τ̃ = airy q̃, which implies airy I0 =
I0airy . For any τ ∈ Σ0 we have div τ̃ = 0, which implies div I0τ = div τ .
That completes the proof for (9).

By the definition of Qi and Σi for i = 1, · · · , k, we can see that for each
q ∈ Qi, airy q vanishes on the vertices of Th on ∂Ωi and for each τ ∈ Σi,
τ vanishes on the vertices of Th on ∂Ωi. Hence by lemma 2 and the previous
analysis, (10) is clear. 2

By the commutative diagram (9), we immediately have the following lemma.

Lemma 5 For any τ ∈ Σ0, there exists a positive constant ω independent of
h and H such that

Λ(I0τ , I0τ ) ≤ ωΛ(τ , τ ). (11)

Proof. Since

Λ(I0τ , I0τ ) = ‖I0τ‖2 + ‖div I0τ‖2 = ‖I0τ‖2 + ‖div τ‖2,

we only need to show that ‖I0τ‖2 ≤ ω‖τ‖2. This follows from a standard
scaling argument, the definition of I0 and the quasi-uniformity of the mesh. 2
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Now we can define our preconditioner. Let I be the identity operator. For
i = 1, · · · , k, let Ii denote the natural imbedding of Σi into Σ. Define Pi :
Σ → Σi as the H(div ,Ω) adjoint of Ii and define operators Ti = IiPi, for
i = 0, · · · , k. We also define the bilinear form Λi on Σi ×Σi for each i by

Λi(σ, τ ) = Λ(σ, τ ), for all σ, τ ∈ Σi.

The additive and multiplicative Schwarz preconditioners (denoted by Ba and
Bm respectively) are defined by:

BaΛ =
k∑
i=0

Ti;

BmΛ = I− (I−Tk)(I−Tk−1) · · · (I−T0)2 · · · (I−Tk−1)(I−Tk)

= I− E∗E.

Note that the computation of the action of Ba or Bm on a function F ∈ Σ∗

involves the solution of subspace problems and the application of the interpo-
lation operator Ii and its L2-adjoint.

The proof of the following result is standard: [13,24]

Theorem 6 Assume that (11) holds (with ω ∈ (0, 2) in the multiplicative
case) and that:

(A) For any σ ∈ Σ there exists a decomposition σ =
∑k
i=0 Iiσi and a

constant CA such that
∑k
i=0 Λi(σi,σi) ≤ CAΛ(σ,σ).

Then, we have

1

CA
Λ(σ,σ) . Λ(BaΛσ,σ) . NcωΛ(σ,σ),

2− ω
CAω2N2

c

Λ(σ,σ) . Λ(BmΛσ,σ) . Λ(σ,σ),
(12)

in which . means “less than or equal to” up to a trivial constant.

Remark 7 Theorem 6 indicates that the condition numbers of BaΛ and BmΛ
are bounded above by constants depending only on CA, ω and Nc. Hence if we
can prove assumption (A) with CA independent of h and k, then the condition
numbers of BaΛ and BmΛ are also bounded by constants independent of h
and k.
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4 Proof of assumption (A)

In this section we prove the assumption (A). The main idea of the proof is
very similar to that used in the analysis given in [18]. It is based on the exact
sequence (3) which divides Σ into two parts, one of which is divergence free.
The decomposition in assumption (A) will be constructed seperately on the
two different parts of Σ.

First we introduce some operators. Denote PV 0 to be the L2 orthogonal pro-
jection from V onto V 0. Clearly,

‖PV 0v‖ ≤ ‖v‖, for all v ∈ V . (13)

Let ΠQ denote the natural interpolation operator onto Q associated with the
degrees of freedom.Denote C1(Ω) to be the space of continuous functions with
continuous first derivatives. It is not hard to see that ΠQq is well defined as
long as q ∈ C1(Ω), q has continuous second derivatives on each node of the
fine mesh, q|∂Ω = 0 and ∇q|∂Ω = 0.

We construct a partition of unity {θi}ki=1 using the Argyris finite elements on
the mesh Th (without any boundary conditions). Specifically, we start with a
smooth partition of unity, {θ̃i}ki=1 satisfying

(1) supp(θ̃i) ⊂ Ωi ; (2) |θ̃i|j,∞ ≤ Cδ−j, j = 0, 1, 2,

where | · |j,∞ denotes the W j
∞ seminorm. We then define θi to be the Argyris

interpolant of θ̃i. It easily follows that {θi}ki=1 is a partition of unity satisfying

(1) θi|T ∈ P5(T ) for any T ∈ Th; (2) supp(θi) ⊂ Ωi;

(3) |θi|j,∞ ≤ Cδ−j, j = 0, 1, 2.

Clearly we have

θi|∂Ωi\∂Ω = 0, ∇θi|∂Ωi\∂Ω = 0,

airy θi(v) = 0, for all v ∈ Ψ(Th) ∩ (∂Ωi\∂Ω).

Hence for any q ∈ Q, we have ΠQ(θiq) ∈ Qi. Furthermore, by the approxima-
tion property of the Argyris element (Theorem 6.1.1 in [15]) and the inverse
inequality,

|θiq − ΠQ(θiq)|22,Ω ≤ c
∑
T∈Th

(h4|θiq|6,T )2 ≤ c|θiq|22,Ω for all q ∈ Q.

Note that we can apply the inverse inequality here since θiq|T is a polynomial
of degree less than or equal to 10. Therefore we have

|ΠQ(θiq)|2,Ω ≤ c|θiq|2,Ω, for all q ∈ Q. (14)
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We also need an interpolation operator PQ0 : H2
0 (Ω)→ Q0 such that

|(I− PQ0)q|i,Ω ≤ cH2−i|q|2,Ω, for all q ∈ H2
0 (Ω), i = 0, 1, 2. (15)

We will prove in Appendix B that such an operator exists.

Finally, we can prove the key result of this paper:

Theorem 8 Under the settings of the subdomains and the meshes defined
above, assumption (A) holds with

CA = c(
H4

δ4
+
H2

δ2
+ 1),

where c depends only on ω and Nc.

Proof. For σ ∈ Σ, define σg0 ∈ Σ0 and a u0 ∈ V 0 such that(σg0, τ ) + (div τ ,u0) = 0, ∀τ ∈ Σ0,

(divσg0,v) = (PV 0divσ,v), ∀v ∈ V 0.

For i = 1, · · · , k define σgi ∈ Σ(Th, Ω̃i) and a ui ∈ V (Th, Ω̃i) such that(σgi , τ )Ω̃i
+ (div τ ,ui)Ω̃i

= 0, ∀τ ∈ Σ(Th, Ω̃i),

(divσgi ,v)Ω̃i
= (divσ −PV 0divσ,v)Ω̃i

, ∀v ∈ V (Th, Ω̃i).

We need to show the above definitions are proper, i.e. the compatibility con-
ditions are satisfied. Since RM ⊂ V 0 ⊂ V and divσ ∈ RM⊥V , so clearly

(PV 0divσ,v) = (divσ,v) = 0, for all v ∈ RM.

Thus σg0 is well defined. Since the boundary of Ω̃i aligns with the coarse mesh,
it’s obvious that∫

Ω̃i
(divσ −PV 0divσ) · v dx = 0 for all v ∈ RM.

Therefore σgi is also well defined for i = 1, · · · , k.

The moments of degree 0 and 1 of the normal components of σi on each edge
of the fine mesh on ∂Ω̃i are zero. By the proof of lemma 4, we can extend
σgi to Ωi by a divergence-free function in Ωi\Ω̃i which has nonzero degrees of
freedom only on the nodes on ∂Ω̃i. The resulting function can be extended
by zero outside of Ωi and yields a function (still denoted by σgi ) in Σi. By
construction, divσgi = 0 in Ω\Ω̃i. Since the mesh is quasi-uniform, there
exists a constant c independent of h such that for i = 1, · · · , k,

‖σgi ‖H(div ,Ω) ≤ c‖σgi ‖H(div ,Ω̃i)
.
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By the above inequality and lemma 3,

k∑
i=0

Λ(σgi ,σ
g
i ) ≤ c(‖σg0‖2

H(div ,Ω) +
k∑
i=1

‖σgi ‖2
H(div ,Ω̃i)

)

≤ c(‖PV 0divσ‖2 +
k∑
i=1

‖divσ −PV 0divσ‖2
L2(Ω̃i)

)

≤ c‖divσ‖2.

Next consider σa = σ−I0σ
g
0−
∑k
i=1 σ

g
i . Simple calculation shows that divσa =

0. By the finite overlapping assumption and lemma 5, we know that Λ(σa,σa) ≤
cΛ(σ,σ) where c only depends on Nc and ω. Set

σa0 = airyPQ0airy −1σa,

σai = airy ΠQ(θiairy −1(σa − I0σ
a
0)), for i = 1, · · · , k.

The above definitions are proper since divσa = 0 and div (σa − I0σ
a
0) = 0.

Clearly σa =
∑k
i=0 Iiσ

a
i while σai ∈ Σi and divσai = 0 for i = 0, · · · , k. By

inequality (15),

Λ(σa0,σ
a
0) = ‖airyPQ0airy −1σa‖2 ≤ c‖σa‖2 = cΛ(σa,σa).

Let q̂ = airy −1(σa − I0σ
a
0) and q = airy −1σa. Then

q̂ = airy −1(σa − I0airyPQ0q) = (I− PQ0)q + (I− I0)PQ0q.

By inequality (14), the assumptions on θi, inequality (8) and inequality (15),

k∑
i=1

Λ(σai ,σ
a
i ) =

k∑
i=1

‖airy ΠQ(θiq̂)‖2 ≤ c
k∑
i=1

|θiq̂|22,Ωi

≤ c
k∑
i=1

(δ−4|q̂|20,Ωi + δ−2|q̂|21,Ωi + |q̂|22,Ωi)

≤ cNc(
H4

δ4
+
H2

δ2
+ 1)|q|22,Ω

≤ cNc(
H4

δ4
+
H2

δ2
+ 1)‖σa‖2.

Therefore we can conclude that
∑k
i=0 Λ(σai ,σ

a
i ) ≤ c(H

4

δ4 + H2

δ2 + 1)Λ(σ,σ),
where c depends on ω and Nc.

Finally, define σi = σgi + σai for i = 0, · · · , k. Clearly σ =
∑k
i=0 Iiσi while

σi ∈ Σi and

k∑
i=0

Λ(σi,σi) ≤ 2(
k∑
i=0

Λ(σgi ,σ
g
i ) +

k∑
i=0

Λ(σai ,σ
a
i )) ≤ c(

H4

δ4
+
H2

δ2
+ 1)Λ(σ,σ),

where c depends only on ω and Nc. This completes the proof of lemma 8. 2
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Remark 9 We have shown in the above theorem that CA is of order O(H
4

δ4 +
H2

δ2 +1). Recall that for the classical second order elliptic problem, similar result

has been proved with CA of order O(H
2

δ2 + 1). In our proof the divergence free
part is mapped to the fourth order Argyris finite element space, which brings
H4

δ4 to the result. It is not clear whether a sharper estimate can be proved for
our problem.

5 Numerical Results

Let Ω be the unit square (0, 1)× (0, 1). We solve both the problem (5) and the
problem (2) by the preconditioned MINRES method. The overlapping Schwarz
preconditioners Ba and Bm are used for problem (5) and the preconditioner S
is used for problem (2), as described in Section 3. In the implementation of the
MINRES solver, we use preconditioned Lanczos procedure to generate a tridi-
agonal matrix whose eigenvalues are good approximations of the eigenvalues
of the original matrix. Therefore we can derive an estimate of the condition
number of the original matrix. Note that for symmetric positive matrix we de-
fine the condition number as the ratio between the maximum eigenvalue and
the minimum eigenvalue, while for symmetric indefinite matrix whose eigen-
values lie in [a, b] ∪ [c, d] where a < b < 0 < c < d, we define its condition
number as ad

bc
. For problem (2) the linear system is indeed singular and its

kernel is RM , but we can avoid this kernel in the computation as long as the
body force g satisfies the compatibility condition and the initial guess in the
iterative method is perpendicular to RM .

To get the most accurate condition number estimates from the Lanczos pro-
cedure, we need to choose the test problem carefully. Indeed we experimented
over several different test problems and finally chose the one which gave the
largest condition number estimates. For problem (5) we set the exact solution

to be σ =

x(1− x) 0

0 y(1− y)

. For problem (2), we set µ = 0.5, λ = 1 and

the body force g =

1− 3x2

2y − 1

, which satisfies the compatibility condition.

In Table 1, we report the condition numbers of the unpreconditioned systems
and the preconditioned systems for both the problem (5) and the problem (2).
The coarse mesh and four overlapping subdomains are fixed. The results are
uniform with respect to h.

For problem (5), we also computed the condition numbers for various values
of k and h. The results are given in Table 2 and they are uniform with respect
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Table 1
Condition number estimates, H/δ = 4, k = 4.

Problem (5) Problem (2)

h No Prec. Additive Multiplicative No Prec. Additive Multiplicative

1/8 3.4e+5 5.12 1.06 1.1e+5 12.61 2.09

1/16 1.4e+6 5.01 1.06 1.8e+5 12.36 2.13

1/32 5.5e+6 4.96 1.06 6.3e+5 11.34 2.15

Table 2
Condition number estimates for problem (5), H/δ = 2.

Additive Multiplicative

h k = 4 k = 8 k = 16 k = 4 k = 8 k = 16

1/8 4.86 6.07 6.04 1.02 1.02 1.02

1/16 4.88 5.98 6.02 1.02 1.02 1.02

Table 3
Condition number estimates for problem (5), k = 4, H = 1/2

h δ Additive Multiplicative

1/4 1/4 4.85 1.01

1/8 1/8 5.12 1.06

1/16 1/16 8.35 1.52

1/32 1/32 18.63 2.75

to both k and h.

Finally, in Table 3, we give a set of condition numbers for various δ. Note that
larger values of δ yields better preconditioners.

A Stability of the finite element spaces

For simplicity, we extend our notation ‖ · ‖s,Ω of the Sobolev norm and | · |s,Ω
of the Sobolev semi-norm to the vector case (Hs(Ω))2 and the symmetric
tensor case (Hs(Ω))3. The weak solution for system (1) exists and is unique in
H0(div ,Ω)× RM⊥L2(Ω) . For simplicity, let Σ = Σ(T ,Ω) and V = V (T ,Ω).
Since div Σ ⊂ V , clearly

‖σ‖H(div ,Ω) = ‖σ‖0,Ω ≤ c(Aσ,σ)1/2, for all σ ∈ V ⊥.
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We only need the discrete inf-sup condition to show the stability of the finite
element spaces. Indeed, we have

Lemma 10 There exists a constant c independent of the mesh size such that

sup
τ∈Σ

(div τ ,v)

‖τ‖H(div ,Ω)

≥ c‖v‖0,Ω, ∀v ∈ RM⊥V .

Proof. The results of Grisvard [19,20] imply that when Ω is a convex poly-
gon, the solution (σ,u) of system (1) with g ∈ RM⊥L2(Ω) has the regularity
u ∈ (H2(Ω))2, σ ∈H0(div ,Ω)∩ (H1(Ω))3 and ‖σ‖1,Ω ≤ c‖g‖0,Ω. Taking g =

v gives ‖v‖0,Ω ≤ c (divσ,v)
‖σ‖1,Ω

. Thus, it suffices to construct an interpolation oper-

ator Πh : H0(div ,Ω) ∩ (H1(Ω))3 → Σ bounded in L((H1(Ω))3,H(div ,Ω))
such that div Πh = PV div , where PV : L2(Ω) → V is the L2 orthogonal
projection.

In [6], such an interpolation was defined for the pure displacement case. We
only need to do a slight modification to make it work for the pure traction
problem. Let h be the characteristic mesh size. Let Rh be the interpolation
operator from L2(Ω) onto the space of C0-quadratics with respect to the mesh
Th as defined by Scott and Zhang [23]. Rh preserves the homogeneous bound-
ary condition on H1(Ω) and Rhp = p for all C0-quadratic p defined on mesh
Th. Define Rh mapping (H1(Ω))3 to the space of symmetric tensors of C0-
quadratics with respect to the mesh Th by

• for any corner x of the polygon Ω, Rh(τ )(x) = 0;

• for all the other degrees of freedom x, Rh(τ )(x) =

(Rhτ11)(x) (Rhτ12)(x)

(Rhτ21)(x) (Rhτ22)(x)

.

Consider the triangles in Th as closed subsets of Ω which contain their bound-
ary. For a triangle T ∈ Th, define ST =

⋃{Ti|Ti ∩ T 6= ∅, Ti ∈ Th}. Following
the proof of [23], we will show that

(1) for any τ ∈H0(div ,Ω) ∩ (H1(Ω))3, (Rhτ )n|∂Ω = 0;
(2) (stability) for j = 0, 1 and τ ∈ (H1(Ω))3, ‖Rhτ‖j,T ≤

∑1
i=0 h

i−j|τ |i,ST ;
(3) (approximability) for j = 0, 1, 1 ≤ m ≤ 3 and τ ∈ H0(div ,Ω) ∩

(Hm(Ω))3, ‖Rhτ − τ‖j,T ≤ chm−j|τ |m,ST .

The first result is obvious from the definition. The proof for stability is exactly
the same as the proof of theorem 3.1 in [23]. We need to prove the approx-
imability. By the Bramble-Hilbert lemma, there exists a symmetric tensor of
quadratic polynomials ρ = (ρij)1≤i,j≤2 ∈ (P2)3 such that

‖τ − ρ‖j,ST ≤ Chm−j|τ |m,ST , 0 ≤ j ≤ m ≤ 3.
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Hence

‖Rhτ − τ‖j,T ≤ ‖τ − ρ‖j,T + ‖Rh(τ − ρ)‖j,T + ‖ρ−Rhρ‖j,T

≤ c
1∑
i=0

hi−j‖τ − ρ‖i,ST + ‖ρ−Rhρ‖j,T

≤ chm−j|τ |m,ST + ‖ρ−Rhρ‖j,T .

By the definition of Rh, ρ − Rhρ has none-zero nodal values only at the
corners of polygon Ω. Denote Vc the set of the corners of polygon Ω. Then
‖ρ − Rhρ‖j,T ≤ ch−j+1∑

v∈Vc∩T |ρ(v)|, where |ρ(v)|2 =
∑2
i,j=1 |ρij(v)|2. Now

we evaluate |ρ(v)| for each v ∈ Vc. It is easy to see that v is the intersection of
two edges γ1, γ2 of mesh Th and γ1, γ2 ⊂ ∂Ω ∩ ∂ST . Denote n1, n2 the outer
normal vectors on γ1, γ2 respectively. Then by the boundary condition of τ
and the trace theorem,

h|ρ(v)|2 ≤ c
2∑
i=1

‖ρni‖2
0,γi

= c
2∑
i=1

‖(τ − ρ)ni‖2
0,γi

≤ ch(h−2‖(τ − ρ)‖2
0,ST

+ |(τ − ρ)|21,ST )

≤ ch2m−1|τ |2m,ST .

Hence |ρ(v)| ≤ chm−1|τ |m,ST and consequently ‖ρ−Rhρ‖j,T ≤ chm−j|τ |m,ST .
That completes the proof of approximability for Rh because of the limited
overlap property of {ST}.

Define Πh = Π0
h(I−Rh)+Rh, where Π0

h is defined exactly the same as is defined
in [6]. Πh clearly preserves the boundary condition ofH0(div ,Ω) and as shown
in [6], we have div Πhτ = PV div τ and ‖Π0

hτ‖0,Ω ≤ c(‖τ‖0,Ω + h‖τ‖1,Ω) for
all τ ∈ H(div ,Ω) ∩ (H1(Ω))3. Finally, by the properties of Π0

h and Rh, it is
easy to see that

‖τ − Πhτ‖0,Ω ≤ chm‖τ‖m,Ω, for τ ∈H0(div ,Ω) ∩ (Hm(Ω))3, 1 ≤ m ≤ 3.

Consequently for τ ∈H0(div ,Ω) ∩ (H1(Ω))3,

‖Πhτ‖2
H(div ,Ω) = ‖Πhτ‖2

0,Ω + ‖div Πhτ‖2
0,Ω

= ‖Πhτ‖2
0,Ω + ‖PV div τ‖2

0,Ω

≤ c‖τ‖2
1,Ω.

Therefore Πh is bounded in L((H1(Ω))3,H(div ,Ω)) by a constant indepen-
dent of the mesh size. 2
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B Construction of the operator PQ0

Here we construct an operator PQ0 : H2
0 (Ω) → Q0 such that inequality (15)

holds. Let H1
0 (Ω) = {w ∈ H1(Ω) such that w|∂Ω = 0}. Note that for q ∈

H2
0 (Ω), we have ∇q ∈ (H1

0 (Ω))2. By Scott and Zhang [23], there is a Clement
type operator Π from H1(Ω) to its continuous piecewise linear subspace based
on the mesh TH preserving the homogeneous boundary condition. Let T ∈ TH
and ST =

⋃{Ti|Ti ∩ T 6= ∅, Ti ∈ TH}. Let vi, i = 1, 2, 3 be the three vertices
of T and li be the edge of T which is opposite to the vertex vi. From the proof
of Theorem 3.1 in [23], there exists a constant c independent of H and T such
that

3∑
i=1

|Πw(vi)| ≤ c
1∑

m=0

Hm−1|w|m,ST , for all w ∈ H1(Ω). (B.1)

Define the operator PQ0 as

for each vertex vi in TH :

(PQ0q)(vi) = Πq(vi), airy (PQ0q)(vi) = 0,

∂

∂x
(PQ0q)(vi) = Π(

∂

∂x
q)(vi),

∂

∂y
(PQ0q)(vi) = Π(

∂

∂y
q)(vi);

for each edge li in TH :∫
li

∂

∂n
(PQ0q) ds =

∫
li

∂

∂n
q ds.

Clearly PQ0 is well-defined and maps H2
0 (Ω) to Q0. We will show that PQ0 is

stable in the following sense:

|PQ0q|i,T ≤
2∑

m=0

Hm−i|q|m,ST , for q ∈ H2
0 (Ω), T ∈ TH , i = 0, 1, 2. (B.2)

By the inverse inequality, we only need to prove inequality (B.2) for i = 0. Let
φj, j = 1, · · · , 21 be the basis of the Argyris element in T , that is, φj equals
to 1 on the j’th degree of freedom while vanishing on all the other degrees of
freedom. The Argyris element is almost affine but not affine, but by using the
technique in the proof of Theorem 6.1.1 in [15], we can conclude that there
exists a constant c which is independent of H and T such that ‖φj‖0,T ≤ cH
when the j’th degree of freedom is the nodal value at the vertex or the moment
on the edge, while ‖φj‖0,T ≤ cH2 when the j’th degree of freedom is the first
derivative at the vertex. For each q ∈ H2

0 (Ω), we have PQ0q|T =
∑21
j=1 Nj(q)φj,
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where Nj : H2
0 (Ω)→ R are defined as

Nj(q) =



Πq(vi), when the j’th dof is the nodal value on vi ;

Π(
∂

∂x
q)(vi),

Π(
∂

∂y
q)(vi),

when the j’th dof is the first derivative on vi ;

0, when the j’th dof is the second derivative on vi ;∫
li

∂
∂n
q ds, when the j’th dof is the moment on li .

Thus

‖PQ0q‖0,T ≤
21∑
j=1

|Nj(q)|‖φj‖0,T ≤ c

(
H

3∑
i=1

|Πq(vi)|

+H2
3∑
i=1

|Π(
∂

∂x
q)(vi)|+H2

3∑
i=1

|Π(
∂

∂y
q)(vi)|+H

3∑
i=1

|
∫
li

∂

∂n
q ds|

)
.

By the inequality (B.1),

3∑
i=1

|Π(
∂

∂x
q)(vi)|+

3∑
i=1

|Π(
∂

∂y
q)(vi)| ≤ c

2∑
m=1

Hm−2|q|m,ST ,

3∑
i=1

|Πq(vi)| ≤ c
1∑

m=0

Hm−1|q|m,ST .

By the trace theorem, we have

|
∫
li

∂

∂n
q ds|2 ≤ cH

∫
li
| ∂
∂n

q|2 ds

≤ cH(H−1‖∇q‖2
T +H|∇q|21,T )

≤ C
2∑

m=1

H2m−2|q|2m,T .

The stability result (B.2) follows immediately from combining all the above
inequalities.

Finally we prove the inequality (15). Let q ∈ H2
0 (Ω). By the Bramble-Hilbert

lemma, there exists a linear polynomial p such that

‖q − p‖i,ST ≤ cH2−i|q|2,ST , for i = 0, 1, 2.

One important observation is that PQ0p|T = p|T . By the triangle inequality
and inequality (B.2),

|q − PQ0q|i,T ≤ |q − p|i,T + |PQ0(q − p)|i,T
≤ cH2−i|q|2,ST ,
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where c is independent of H and T . Thus inequality (15) follows from the
limited overlap property of {ST}.
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